Mixing time: state of the art and open question The Idea of Hypocoercivity

ity Our Results – Statement and Uni 000000 g Applications to Physical Examples 0000000

Mixing Time of Open Quantum Systems via Hypocoercivity

Di Fang

Department of Mathematics Duke Quantum Center Duke University

Join work with Jianfeng Lu (Duke Math), Yu Tong (Duke Math/ECE) arXiv:2404.11503

¹ Initiated @ IPAM long program on Mathematical and Computational Challenges in Quantum Computing, Fall 2023.

Outline

- Mixing time: state of the art and open question
- 2 The Idea of Hypocoercivity
- Our Results Statement and Understanding
- 4 Applications to Physical Examples

Heisenberg Picture

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}} + \underbrace{\sum_{j} V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}}.$$

Heisenberg Picture

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}} + \underbrace{\sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}}.$$

Schrödinger Picture

$$\partial_t \rho = \mathcal{L}^* \rho = -i[H,\rho] + \sum_j [V_j \rho, V_j^\dagger] + [V_j, \rho V_j^\dagger].$$

Heisenberg Picture

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}} + \underbrace{\sum_{j} V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}}.$$

Schrödinger Picture

$$\partial_t \rho = \mathcal{L}^* \rho = -i[H, \rho] + \sum_j [V_j \rho, V_j^{\dagger}] + [V_j, \rho V_j^{\dagger}].$$

Question: How fast does the system approach to equilibrium (thermalize)? "Mixing Time".

Heisenberg Picture

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}} + \underbrace{\sum_{j} V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}}.$$

Schrödinger Picture

$$\partial_t \rho = \mathcal{L}^* \rho = -i[H, \rho] + \sum_j [V_j \rho, V_j^{\dagger}] + [V_j, \rho V_j^{\dagger}].$$

Question: How fast does the system approach to equilibrium (thermalize)? "Mixing Time".

Why do we care?

Why do we care?

Algorithmic advancement employing Lindblad equations:

• Universal quantum computation, useful in quantum field theories simulation

[Verstraete-Wolf-Cirac, Nature Physics 2009], [Osborne-Eisert-Verstraete PRL 2010], [Verstraete-Cirac PRL 2010]

- To prepare and sample from thermal states [Chen-Kastoryano-Gilyen 2023], [Chen-Kastoryano-Brandao-Gilyen 2023], [Rall-Wang-Wocjan Quantum 2023], [Ding-Li-Lin 2024], [Jiang-Irani 2024], etc
- Ground states preparation

[Ding-Chen-Lin PRR 2024]

- To find local minima in quantum systems [Chen-Huang-Preskill-Zhou STOC 2024]
- Quantum control

[Li-Wang ICML 2023]

Classical optimization

[Chen-Lu-Wang-Liu-Li 2023]

Mixing Time

Quantum Info (target) Quantum Markov Semigroup $\partial_t A = \mathcal{L}A$

$$t_{\min}(\epsilon) = \inf\{t \ge 0 : \|e^{s\mathcal{L}^{\star}}(\rho) - \sigma\|_1 \le \epsilon, \forall \rho, s \ge t\}.$$

Mixing Time

Quantum Info (target)

Quantum Markov Semigroup

 $\partial_t A = \mathcal{L}A$

Probability Viewpoint (Ergodicity, Detailed Balance, etc)

$$t_{\min}(\epsilon) = \inf\{t \ge 0 : \|e^{s\mathcal{L}^{\star}}(\rho) - \sigma\|_1 \le \epsilon, \forall \rho, s \ge t\}.$$

Mixing Time

$$t_{\min}(\epsilon) = \inf\{t \ge 0 : \|e^{s\mathcal{L}^{\star}}(\rho) - \sigma\|_1 \le \epsilon, \forall \rho, s \ge t\}.$$

а ог нуросоетск

Our Results – Statement and Understa
 000000

Applications to Physical Examples

Previous Works for Mixing Time Estimate

How to estimate the mixing time? Typical route:

 One starts with a Lindbladian that satisfies detailed balance condition under certain inner product. (If not, consider a symmetrization of *L*, denote as *L_H*.)

Di Fang (Duke)

Mixing Time of Open Quantum Systems via Hypocoercivity

¹[Temme 2013], [Kastoryano-Brandao 2016], [Barthel-Zhang 2022], [Chen-Brandao 2021], [Rouze-Franca-Alhambra 2024], etc. ²Kastoryano, Temme, Capel, Gao, Rouze, Stilck Franca, Bardet, Lucia, Perez-Garcia, Junge, LaRacuente, Li, Lu, and more.

Previous Works for Mixing Time Estimate

How to estimate the mixing time? Typical route:

- One starts with a Lindbladian that satisfies detailed balance condition under certain inner product. (If not, consider a symmetrization of *L*, denote as *L_H*.)
- Estimate the lower bound of the spectral gap of \mathcal{L} (or \mathcal{L}_H , if not detailed balanced), denote as g.¹

¹[Temme 2013], [Kastoryano-Brandao 2016], [Barthel-Zhang 2022], [Chen-Brandao 2021], [Rouze-Franca-Alhambra 2024], etc. ²Kastoryano, Temme, Capel, Gao, Rouze, Stilck Franca, Bardet, Lucia, Perez-Garcia, Junge, LaRacuente, Li, Lu, and more.

Di Fang (Duke)

Mixing Time of Open Quantum Systems via Hypocoercivity

Previous Works for Mixing Time Estimate

How to estimate the mixing time? Typical route:

- One starts with a Lindbladian that satisfies detailed balance condition under certain inner product. (If not, consider a symmetrization of *L*, denote as *L_H*.)
- Estimate the lower bound of the spectral gap of \mathcal{L} (or \mathcal{L}_H , if not detailed balanced), denote as g.¹
- It implies exponential decay with rate g, namely,

 $\|A(t)\| \le \|A(0)\| e^{-gt}.$

Then by duality, one can get an estimate of the mixing time. In particular, $g \sim 1/\text{poly}(N)$ implies $t_{\text{mix}} \sim \text{poly}(N)$.

²Kastoryano, Temme, Capel, Gao, Rouze, Stilck Franca, Bardet, Lucia, Perez-Garcia, Junge, LaRacuente, Li, Lu, and more.

Di Fang (Duke)

Mixing Time of Open Quantum Systems via Hypocoercivity

¹[Temme 2013], [Kastoryano-Brandao 2016], [Barthel-Zhang 2022], [Chen-Brandao 2021], [Rouze-Franca-Alhambra 2024], etc.

Previous Works for Mixing Time Estimate

How to estimate the mixing time? Typical route:

- One starts with a Lindbladian that satisfies detailed balance condition under certain inner product. (If not, consider a symmetrization of *L*, denote as *L_H*.)
- Estimate the lower bound of the spectral gap of \mathcal{L} (or \mathcal{L}_H , if not detailed balanced), denote as g.¹
- It implies exponential decay with rate g, namely,

 $\|A(t)\| \le \|A(0)\| e^{-gt}.$

Then by duality, one can get an estimate of the mixing time. In particular, $g \sim 1/\text{poly}(N)$ implies $t_{\text{mix}} \sim \text{poly}(N)$.

• For some g, e.g., $g = \Omega(1)$, modified logarithmic Sobolev inequality can tighten the bound $\Rightarrow t_{\text{mix}} \sim \text{polylog}(N)$.²

¹[Temme 2013], [Kastoryano-Brandao 2016], [Barthel-Zhang 2022], [Chen-Brandao 2021], [Rouze-Franca-Alhambra 2024], etc.

²Kastoryano, Temme, Capel, Gao, Rouze, Stilck Franca, Bardet, Lucia, Perez-Garcia, Junge, LaRacuente, Li, Lu, and more.

Existing Works: Take-away

To estimate mixing time:

- One needs to estimate the spectral gap of the full Lindbladian *L*.
- Detailed Balance of *L* is important!

Existing Works: Take-away

To estimate mixing time:

- One needs to estimate the spectral gap of the full Lindbladian \mathcal{L} .
- Detailed Balance of *L* is important!

However, estimation of the spectral gap of \mathcal{L} can be difficult! Even when H and \mathcal{D} are both simple, \mathcal{L} can still be hard.

Existing Works: Take-away

To estimate mixing time:

- One needs to estimate the spectral gap of the full Lindbladian \mathcal{L} .
- Detailed Balance of *L* is important!

However, estimation of the spectral gap of \mathcal{L} can be difficult! Even when H and \mathcal{D} are both simple, \mathcal{L} can still be hard.

Questions:

- Can we use information about the dissipative part D and the Hamiltonian part H separately to yield a mixing time estimation?
- What if L is not detailed balance? Are there still some cases that we can estimate?

Question: Can we use information about the dissipative part \mathcal{D} and the Hamiltonian part \mathcal{H} separately to yield a mixing time estimation?

Question: Can we use information about the dissipative part \mathcal{D} and the Hamiltonian part \mathcal{H} separately to yield a mixing time estimation?

- We provide a theoretical framework and propose a set of conditions on the operators \mathcal{H} and \mathcal{D} such that we can still establish the exponential convergence of the Lindbladian dynamics to its equilibrium.
- It does not requires \mathcal{L} to be detailed balanced.

Question: Can we use information about the dissipative part \mathcal{D} and the Hamiltonian part \mathcal{H} separately to yield a mixing time estimation?

- We provide a theoretical framework and propose a set of conditions on the operators \mathcal{H} and \mathcal{D} such that we can still establish the exponential convergence of the Lindbladian dynamics to its equilibrium.
- It does not requires \mathcal{L} to be detailed balanced.
- So what? Applications?

Question: Can we use information about the dissipative part \mathcal{D} and the Hamiltonian part \mathcal{H} separately to yield a mixing time estimation?

- We provide a theoretical framework and propose a set of conditions on the operators \mathcal{H} and \mathcal{D} such that we can still establish the exponential convergence of the Lindbladian dynamics to its equilibrium.
- It does not requires \mathcal{L} to be detailed balanced.
- So what? Applications? We provide a number of physical examples where our conditions can be easily verified, including the transverse field Ising model, Heisenberg model, and quantum walk, with some Pauli noise.

Question: Can we use information about the dissipative part \mathcal{D} and the Hamiltonian part \mathcal{H} separately to yield a mixing time estimation?

- We provide a theoretical framework and propose a set of conditions on the operators H and D such that we can still establish the exponential convergence of the Lindbladian dynamics to its equilibrium.
- It does not requires \mathcal{L} to be detailed balanced.
- So what? Applications? We provide a number of physical examples where our conditions can be easily verified, including the transverse field Ising model, Heisenberg model, and quantum walk, with some Pauli noise.
- The technique is based on the construction of an energy functional inspired by the hypocoercivity of (classical) kinetic theory.

Some History:

Some History: kinetic theory: theory for kinetic equations, e.g., Boltzmann Eq, Fokker-Planck Eq, etc.

Some History: kinetic theory: theory for kinetic equations, e.g., Boltzmann Eq, Fokker-Planck Eq, etc.

The name of hypocoercivity is suggested by Thierry Gallay, and coined and developed by Cédric Villani (2001, 2005).

Some History: kinetic theory: theory for kinetic equations, e.g., Boltzmann Eq, Fokker-Planck Eq, etc.

The name of hypocoercivity is suggested by Thierry Gallay, and coined and developed by Cédric Villani (2001, 2005; memoir arXiv in 2006, published in 2009), who was awarded the 2010 Fields Medal.

Some History: kinetic theory: theory for kinetic equations, e.g., Boltzmann Eq, Fokker-Planck Eq, etc.

The name of hypocoercivity is suggested by Thierry Gallay, and coined and developed by Cédric Villani (2001, 2005; memoir arXiv in 2006, published in 2009), who was awarded the 2010 Fields Medal.

Some History: kinetic theory: theory for kinetic equations, e.g., Boltzmann Eq, Fokker-Planck Eq, etc.

The name of hypocoercivity is suggested by Thierry Gallay, and coined and developed by Cédric Villani (2001, 2005; memoir arXiv in 2006, published in 2009), who was awarded the 2010 Fields Medal.

Significant contributors: (imcomplete)

Desvillettes, Mouhot, Neumann, Hérau, Dolbeault, Schmeiser, Armstrong, Mourrat, Filbet, Tadmor, Pareschi, Brigati, Arnold, Carlen, Guo, Lu, Li, Tran, Wang, Shvydkoy, Bedrossian, Zelati, Soffer, more!

Applications: Kinetic theory, fluid dynamics, SDEs, sampling, math bio, uncertainty quantif., and more!

Some History: kinetic theory: theory for kinetic equations, e.g., Boltzmann Eq, Fokker-Planck Eq, etc.

The name of hypocoercivity is suggested by Thierry Gallay, and coined and developed by Cédric Villani (2001, 2005; memoir arXiv in 2006, published in 2009), who was awarded the 2010 Fields Medal.

Significant contributors: (imcomplete)

Desvillettes, Mouhot, Neumann, Hérau, Dolbeault, Schmeiser, Armstrong, Mourrat, Filbet, Tadmor, Pareschi, Brigati, Arnold, Carlen, Guo, Lu, Li, Tran, Wang, Shvydkoy, Bedrossian, Zelati, Soffer, more!

Applications: Kinetic theory, fluid dynamics, SDEs, sampling, math bio, uncertainty quantif., and more!

Quantum!

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

From **Arnold**'s talk that DF attended in 2017. Similar ODE examples, see standard ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page194]

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

 $A = A_H + A_A$ is coercive if there exists a constant g > 0 s.t.

$$\langle A_H x, x \rangle = x^T A_H x \ge g \|x\|^2, \quad \forall x.$$

From **Arnold**'s talk that DF attended in 2017. Similar ODE examples, see standard ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page 194]

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

 $A = A_H + A_A$ is coercive if there exists a constant g > 0 s.t.

$$\langle A_H x, x \rangle = x^T A_H x \ge g \|x\|^2, \quad \forall x.$$

If so, we can easily show that $||x(t)|| \le ||x(0)|| e^{-gt}$.

From **Arnold**'s talk that DF attended in 2017. Similar ODE examples, see standard ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page 194]

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

 $A = A_H + A_A$ is coercive if there exists a constant g > 0 s.t.

$$\langle A_H x, x \rangle = x^T A_H x \ge g \|x\|^2, \quad \forall x.$$

If so, we can easily show that $||x(t)|| \le ||x(0)|| e^{-gt}$.

$$2 \|x\| \frac{d}{dt} \|x\| = \frac{d}{dt} \|x\|^2 = \langle \dot{x}, x \rangle + \langle x, \dot{x} \rangle$$
$$= -\langle Ax, x \rangle - \langle x, Ax \rangle$$

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

 $A = A_H + A_A$ is coercive if there exists a constant g > 0 s.t.

$$\langle A_H x, x \rangle = x^T A_H x \ge g \|x\|^2, \quad \forall x.$$

If so, we can easily show that $||x(t)|| \le ||x(0)|| e^{-gt}$.

$$2 \|x\| \frac{d}{dt} \|x\| = \frac{d}{dt} \|x\|^2 = \langle \dot{x}, x \rangle + \langle x, \dot{x} \rangle$$
$$= -\langle Ax, x \rangle - \langle x, Ax \rangle = -2\langle x, A_H x \rangle \le -2g \|x\|^2$$

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

 $A = A_H + A_A$ is coercive if there exists a constant g > 0 s.t.

$$\langle A_H x, x \rangle = x^T A_H x \ge g \|x\|^2, \quad \forall x.$$

If so, we can easily show that $||x(t)|| \le ||x(0)|| e^{-gt}$. However, coercivity is not a necessary condition for exp. decay.

From **Arnold**'s talk that DF attended in 2017. Similar ODE examples, see standard ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page194]

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

 $A = A_H + A_A$ is coercive if there exists a constant g > 0 s.t.

$$\langle A_H x, x \rangle = x^T A_H x \ge g \|x\|^2, \quad \forall x.$$

If so, we can easily show that $||x(t)|| \le ||x(0)|| e^{-gt}$. However, coercivity is not a necessary condition for exp. decay. E.g.,

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \to A_H = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

From **Arnold**'s talk that DF attended in 2017. Similar ODE examples, see standard ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page 194]

Consider a *n*-dimensional real-valued ODE of:

$$\frac{d}{dt}x = -Ax, \quad t \ge 0.$$

 $A = A_H + A_A$ is coercive if there exists a constant g > 0 s.t.

$$\langle A_H x, x \rangle = x^T A_H x \ge g \|x\|^2, \quad \forall x.$$

If so, we can easily show that $||x(t)|| \le ||x(0)|| e^{-gt}$. However, coercivity is not a necessary condition for exp. decay. E.g.,

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \rightarrow \text{ e-vals are } rac{1}{2} \pm i rac{\sqrt{3}}{2}.$$

From ODE basics, the solution decays with a rate $\frac{1}{2}$. But the vanilla energy method no longer works! $\frac{d}{dt} ||x(t)|| \le 0$ (instead of -g ||x(t)||).

From **Arnold**'s talk that DF attended in 2017. Similar ODE examples, see standard ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page 194]

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \rightarrow \text{ e-vals are } \frac{1}{2} \pm i \frac{\sqrt{3}}{2}.$$

Easy fix: Instead of the l_2 norm ||x||, consider a twisted l^2 norm

 $\|x\|_P := \sqrt{x^T P x}, \quad P = [2, 1; 1, 2]$

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \rightarrow \text{ e-vals are } \frac{1}{2} \pm i \frac{\sqrt{3}}{2}.$$

Easy fix: Instead of the l_2 norm ||x||, consider a twisted l^2 norm

$$\|x\|_P := \sqrt{x^T P x}, \quad P = [2, 1; 1, 2]$$

Instead of $x^2 + y^2$, the Lyapunov function is now $x^2 + y^2 + xy \propto ||x||_P^2$.

$$\frac{d}{dt} \left\| x \right\|_P \leq -\frac{1}{2} \left\| x \right\|_P$$

 $\|x\|_P$ and $\|x\|$ are equivalent.

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \rightarrow \text{ e-vals are } \frac{1}{2} \pm i \frac{\sqrt{3}}{2}.$$

Easy fix: Instead of the l_2 norm ||x||, consider a twisted l^2 norm

$$\|x\|_P := \sqrt{x^T P x}, \quad P = [2, 1; 1, 2]$$

Instead of $x^2 + y^2$, the Lyapunov function is now $x^2 + y^2 + xy \propto ||x||_P^2$.

$$\frac{d}{dt} \left\| x \right\|_P \leq -\frac{1}{2} \left\| x \right\|_P$$

 $\|x\|_P$ and $\|x\|$ are equivalent.

For e^{-tA} that decays yet A not coercive, it is "hypocoercive".

For Lindblad Equation (Heisenberg picture)

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}A} + \underbrace{\sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}A}.$$

For Lindblad Equation (Heisenberg picture)

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}A} + \underbrace{\sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}A}.$$

Denote the global equilib. state as σ . We consider GNS inner product

$$\langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

Remark: Other inner products $\langle A, B \rangle_{\alpha} = tr(\sigma^{\alpha} A^{\dagger} \sigma^{1-\alpha} B)$ are also ok.

For Lindblad Equation (Heisenberg picture)

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}A} + \underbrace{\sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}A}.$$

Denote the global equilib. state as σ . We consider GNS inner product

$$\langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

Remark: Other inner products $\langle A, B \rangle_{\alpha} = tr(\sigma^{\alpha} A^{\dagger} \sigma^{1-\alpha} B)$ are also ok.

Lindblad equation is linear \Rightarrow consider the "difference" between a Hermitian *A* and the fixed point of *L* starting from *A*, i.e. the fluctuation around the global equilibrium, can be defined as

$$A - \frac{\langle I, A \rangle}{\langle I, I \rangle} I = A - \operatorname{tr}[\sigma A]I,$$

For Lindblad Equation (Heisenberg picture)

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}A} + \underbrace{\sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}A}.$$

Denote the global equilib. state as σ . We consider GNS inner product

$$\langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

Remark: Other inner products $\langle A, B \rangle_{\alpha} = tr(\sigma^{\alpha} A^{\dagger} \sigma^{1-\alpha} B)$ are also ok. Question: What happens if one does a naive energy method?

For Lindblad Equation (Heisenberg picture)

$$\partial_t A = \mathcal{L}A = \underbrace{i[H, A]}_{=:\mathcal{H}A} + \underbrace{\sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j}_{=:\mathcal{D}A}.$$

Denote the global equilib. state as σ . We consider GNS inner product

$$\langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

Remark: Other inner products $\langle A, B \rangle_{\alpha} = tr(\sigma^{\alpha} A^{\dagger} \sigma^{1-\alpha} B)$ are also ok.

Question: What happens if one does a naive energy method? Suppose σ is maximally mixed state. We will only see the contribution from the part \mathcal{D} !

If D is degenerate, dim ker D > 1. The energy method fails!

Di Fang (Duke)

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H}+t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L}e^{t\mathcal{D}/L}\right)^L$$

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H}+t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L}e^{t\mathcal{D}/L}\right)^L$$

Any matrix A can be decomposed into

$$A = \mathcal{P}A + (\mathcal{I} - \mathcal{P})A,$$

where \mathcal{P} is the projection onto the kernel of \mathcal{D} .

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H}+t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L}e^{t\mathcal{D}/L}\right)^L$$

Any matrix A can be decomposed into

$$A = \mathcal{P}A + (\mathcal{I} - \mathcal{P})A,$$

where \mathcal{P} is the projection onto the kernel of \mathcal{D} . By dissipative nature of $\mathcal{D} \Rightarrow$ dynamics exp. damps $(\mathcal{I} - \mathcal{P})A$.

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H}+t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L}e^{t\mathcal{D}/L}\right)^L$$

Any matrix A can be decomposed into

$$A = \mathcal{P}A + (\mathcal{I} - \mathcal{P})A,$$

where \mathcal{P} is the projection onto the kernel of \mathcal{D} . By dissipative nature of $\mathcal{D} \Rightarrow$ dynamics exp. damps $(\mathcal{I} - \mathcal{P})A$. For $\mathcal{P}A$, we observe that

$$e^{t\mathcal{H}/L}\mathcal{P}A = \mathcal{P}A + \mathcal{H}\mathcal{P}At/L + \mathcal{O}(t^2/L^2)$$
$$= \mathcal{P}A + (\mathcal{I} - \mathcal{P})\mathcal{H}\mathcal{P}At/L + \mathcal{P}\mathcal{H}\mathcal{P}At/L + \mathcal{O}(t^2/L^2)$$

If $\mathcal{PHP} = 0$, the $\mathcal{P}A$ part is being driven to the image of $\mathcal{I} - \mathcal{P}$, i.e., the orthogonal complement of ker \mathcal{D} , which will then be damped by \mathcal{D} in the next step.

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H} + t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L} e^{t\mathcal{D}/L} \right)^{L}$$

Any matrix A can be decomposed into

$$A = \mathcal{P}A + (\mathcal{I} - \mathcal{P})A,$$

where \mathcal{P} is the projection onto the kernel of \mathcal{D} .

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H}+t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L}e^{t\mathcal{D}/L}\right)^L$$

Consider a single-qubit minimal example with Hamiltonian and a jump operator given by

$$H = X, \quad V = |0\rangle \langle 0|.$$

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H}+t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L}e^{t\mathcal{D}/L}\right)^L$$

Consider a single-qubit minimal example with Hamiltonian and a jump operator given by

$$H = X, \quad V = |0\rangle \langle 0|.$$

Explicit calculation yields that $\ker \mathcal{D}$ consists of diagonal matrix,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \mathcal{P}A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}.$$

Note that ${\cal H}$ transforms a diagonal matrix into an off-diagonal one, so that ${\cal PHP}=0.$

Consider Trotterization viewpoint:

$$e^{t\mathcal{L}} = e^{t\mathcal{H}+t\mathcal{D}} \approx \left(e^{t\mathcal{H}/L}e^{t\mathcal{D}/L}\right)^L$$

Consider a single-qubit minimal example with Hamiltonian and a jump operator given by

$$H = X, \quad V = |0\rangle \langle 0|.$$

Explicit calculation yields that $\ker D$ consists of diagonal matrix,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \mathcal{P}A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}.$$

Note that \mathcal{H} transforms a diagonal matrix into an off-diagonal one, so that $\mathcal{PHP} = 0$. We can also compute that

$$e^{t\mathcal{D}}A = \begin{pmatrix} a & e^{-t}b \\ e^{-t}c & d \end{pmatrix},$$

where everything outside of $\ker \mathcal{D}$ is damped exponentially, while the dynamics governed by \mathcal{H} mixes the terms.

Di Fang (Duke)

Condition 1: The operator \mathcal{D} is symmetric and satisfies

$$-\langle \mathcal{D}A, A \rangle \ge \lambda_m \| (\mathcal{I} - \mathcal{P})A \|^2$$
,

with some positive λ_m , for all A such that $tr[\sigma A] = 0$.

Condition 1: The operator \mathcal{D} is symmetric and satisfies

$$-\langle \mathcal{D}A, A \rangle \ge \lambda_m \| (\mathcal{I} - \mathcal{P})A \|^2,$$

with some positive λ_m , for all A such that $tr[\sigma A] = 0$.

Condition 2: The operator \mathcal{H} is skew-symmetric and satisfies

$$\left\|\mathcal{HPA}\right\|^{2} \geq \lambda_{M} \left\|\mathcal{PA}\right\|^{2},$$

with some positive λ_M , for all A such that $tr[\sigma A] = 0$.

Condition 1: The operator \mathcal{D} is symmetric and satisfies

$$-\langle \mathcal{D}A, A \rangle \ge \lambda_m \| (\mathcal{I} - \mathcal{P})A \|^2,$$

with some positive λ_m , for all A such that $tr[\sigma A] = 0$.

Condition 2: The operator \mathcal{H} is skew-symmetric and satisfies

$$\left\|\mathcal{HPA}\right\|^{2} \geq \lambda_{M} \left\|\mathcal{PA}\right\|^{2},$$

with some positive λ_M , for all A such that $tr[\sigma A] = 0$.

Condition 3: $\mathcal{PHP} = 0$.

Condition 1: The operator \mathcal{D} is symmetric and satisfies

$$-\langle \mathcal{D}A, A \rangle \ge \lambda_m \| (\mathcal{I} - \mathcal{P})A \|^2,$$

with some positive λ_m , for all A such that $tr[\sigma A] = 0$.

Condition 2: The operator \mathcal{H} is skew-symmetric and satisfies

$$\left\|\mathcal{HPA}\right\|^{2} \geq \lambda_{M} \left\|\mathcal{PA}\right\|^{2},$$

with some positive λ_M , for all A such that $tr[\sigma A] = 0$.

Condition 3: $\mathcal{PHP} = 0$.

Condition 4: $\|\mathcal{H}(\mathcal{I} - \mathcal{P})A\| + \|\mathcal{D}A\| \le C'_M \|(\mathcal{I} - \mathcal{P})A\|$, for all Hermitian *A*.

Theorem (Main result)

Under conditions 1-4, there exist positive constants λ and C, explicitly computable in terms of λ_m , λ_M and C_M such that

$$\left\| e^{t(\mathcal{H} + \mathcal{D})} A \right\| \le C e^{-\lambda t} \left\| A \right\|, \qquad \forall t \ge 0.$$

Theorem (Main result)

Under conditions 1-4, there exist positive constants λ and C, explicitly computable in terms of λ_m , λ_M and C_M such that

$$\left\|e^{t(\mathcal{H}+\mathcal{D})}A\right\| \le Ce^{-\lambda t} \left\|A\right\|, \qquad \forall t \ge 0.$$

$$C = \left(\frac{1+\varepsilon}{1-\varepsilon}\right)^{1/2}, \quad \lambda = \min\left\{\frac{1}{4}\frac{\lambda_m}{1+\varepsilon}, \frac{1}{3}\frac{\varepsilon}{1+\varepsilon}\frac{\lambda_M}{\alpha+\lambda_M}\right\},\,$$

where ε are defined in

$$\varepsilon = \frac{1}{2} \min \left\{ \frac{\lambda_m \lambda_M}{(\alpha + \lambda_M)(1 + C'_M / (2\sqrt{\alpha}))^2}, 1 \right\}.$$

Theorem (Main result)

Under conditions 1-4, there exist positive constants λ and C, explicitly computable in terms of λ_m , λ_M and C_M such that

$$\left\| e^{t(\mathcal{H} + \mathcal{D})} A \right\| \le C e^{-\lambda t} \left\| A \right\|, \qquad \forall t \ge 0.$$

Corollary (Mixing time estimate)

Under conditions 1-4, for $\lambda_m, \lambda_M \leq \mathcal{O}(1), C'_M \geq \Omega(1)$, if σ is full-rank, the mixing time $t_{\min}(\epsilon)$ satisfies

$$t_{\min}(\epsilon) = \mathcal{O}\left(rac{C_M'^2}{\lambda_m \lambda_M} \log(\|\sigma^{-1}\|_{\infty}/\epsilon)
ight).$$

Theorem (Main result)

Under conditions 1-4, there exist positive constants λ and C, explicitly computable in terms of λ_m , λ_M and C_M such that

$$\left\| e^{t(\mathcal{H} + \mathcal{D})} A \right\| \le C e^{-\lambda t} \left\| A \right\|, \qquad \forall t \ge 0.$$

Corollary (Mixing time estimate)

Under conditions 1-4, for $\lambda_m, \lambda_M \leq \mathcal{O}(1), C'_M \geq \Omega(1)$, if σ is full-rank, the mixing time $t_{\min}(\epsilon)$ satisfies

$$t_{\min}(\epsilon) = \mathcal{O}\left(\frac{C_M'^2}{\lambda_m \lambda_M} \log(\|\sigma^{-1}\|_{\infty}/\epsilon)\right).$$

Remark: 1. \mathcal{L} does NOT need to satisfy detailed balanced conditions.

Di Fang (Duke)

Theorem (Main result)

Under conditions 1-4, there exist positive constants λ and C, explicitly computable in terms of λ_m , λ_M and C_M such that

$$\left\| e^{t(\mathcal{H} + \mathcal{D})} A \right\| \le C e^{-\lambda t} \left\| A \right\|, \qquad \forall t \ge 0.$$

Corollary (Mixing time estimate)

Under conditions 1-4, for $\lambda_m, \lambda_M \leq \mathcal{O}(1), C'_M \geq \Omega(1)$, if σ is full-rank, the mixing time $t_{\min}(\epsilon)$ satisfies

$$t_{\min}(\epsilon) = \mathcal{O}\left(\frac{C_M'^2}{\lambda_m \lambda_M} \log(\|\sigma^{-1}\|_{\infty}/\epsilon)\right).$$

Remark: 1. \mathcal{L} does NOT need to satisfy detailed balanced conditions. 2. Take-home message: Hamiltonian enhances mixing.

Di Fang (Duke)

g Applications to Physical Examples 000000

Applications to Physical Examples - Single Qutrit

Example 1: Single Qutrit. Hilbert sp. is spanned by $\{|0\rangle, |1\rangle, |2\rangle\}$.

Applications to Physical Examples – Single Qutrit

Example 1: Single Qutrit. Hilbert sp. is spanned by $\{|0\rangle, |1\rangle, |2\rangle\}$.

 $H = \omega(|1\rangle \langle 2| + |2\rangle \langle 1|)$

$$V_1 = \sqrt{\gamma}\sigma^-, \quad V_2 = \sqrt{\gamma}\sigma^+,$$

where $\sigma^- = |0\rangle \langle 1|$ is the lowering operator, and $\sigma^+ = |1\rangle \langle 0|$ is the raising operator. $\mathcal{H}A = i[H, A]$, $\mathcal{D}A = \sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j$.

Applications to Physical Examples – Single Qutrit

Example 1: Single Qutrit. Hilbert sp. is spanned by $\{|0\rangle, |1\rangle, |2\rangle\}$.

 $H = \omega(|1\rangle \langle 2| + |2\rangle \langle 1|)$

$$V_1 = \sqrt{\gamma}\sigma^-, \quad V_2 = \sqrt{\gamma}\sigma^+,$$

where $\sigma^- = |0\rangle \langle 1|$ is the lowering operator, and $\sigma^+ = |1\rangle \langle 0|$ is the raising operator. $\mathcal{H}A = i[H, A], \mathcal{D}A = \sum_j V_j^{\dagger}[A, V_j] + [V_j^{\dagger}, A]V_j$. The unique equilibrium state is

$$\sigma = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{4} |1\rangle \langle 1| + \frac{1}{4} |2\rangle \langle 2|.$$

One can verify all conditions with $\lambda_m = (3/2)\gamma$, $\lambda_M = \omega^2$, and $C'_M = \mathcal{O}(|\omega| + \gamma)$. Our theorem yields:

$$t_{\min}(\epsilon) = \mathcal{O}((\omega^2 + \gamma^2)\omega^{-2}\gamma^{-1}\log(1/\epsilon))$$

Dephasing noise:

$$\mathcal{D}A = \gamma \sum_{i} (Z_i A Z_i - A).$$

The kernel of \mathcal{D} is spanned by $\{Z^{\otimes \vec{b}} : \vec{b} \in \{0,1\}^N\}$. Easy to check that $\lambda_m = 2\gamma$.

Dephasing noise:

$$\mathcal{D}A = \gamma \sum_{i} (Z_i A Z_i - A).$$

The kernel of \mathcal{D} is spanned by $\{Z^{\otimes \vec{b}} : \vec{b} \in \{0, 1\}^N\}$. Easy to check that $\lambda_m = 2\gamma$. Example 2: Transverse Field Ising Model.

$$H = \sum_{i=1}^{N-1} Z_i Z_{i+1} + h \sum_{i=1}^{N} X_i,$$

Dephasing noise:

$$\mathcal{D}A = \gamma \sum_{i} (Z_i A Z_i - A).$$

The kernel of \mathcal{D} is spanned by $\{Z^{\otimes \vec{b}} : \vec{b} \in \{0, 1\}^N\}$. Easy to check that $\lambda_m = 2\gamma$. Example 2: Transverse Field Ising Model.

$$H = \sum_{i=1}^{N-1} Z_i Z_{i+1} + h \sum_{i=1}^{N} X_i,$$

 $\lambda_M = 4h^2$, and $C_M' = 2((N-1) + Nh) + 2N\gamma$. Applying Theorem 2,

$$t_{\min}(\epsilon) = \mathcal{O}\left(\frac{N^2(1+\gamma)^2}{\gamma h^2}(N+\log(1/\epsilon))\right).$$

Example 3: The Heisenberg Model..

$$H = -\sum_{i=1}^{N-1} (J_x X_i X_{i+1} + J_y Y_i Y_{i+1} + J_z Z_i Z_{i+1}) + h \sum_{i=1}^{N} X_i.$$

Di Fang (Duke)

Vixing Time of Open Quantum Systems via Hypocoercivity

Dephasing noise:

$$\mathcal{D}A = \gamma \sum_{i} (Z_i A Z_i - A).$$

The kernel of \mathcal{D} is spanned by $\{Z^{\otimes \vec{b}} : \vec{b} \in \{0, 1\}^N\}$. Easy to check that $\lambda_m = 2\gamma$. Example 2: Transverse Field Ising Model.

$$H = \sum_{i=1}^{N-1} Z_i Z_{i+1} + h \sum_{i=1}^{N} X_i,$$

 $\lambda_M = 4h^2$, and $C_M' = 2((N-1) + Nh) + 2N\gamma$. Applying Theorem 2,

$$t_{\min}(\epsilon) = \mathcal{O}\left(\frac{N^2(1+\gamma)^2}{\gamma h^2}(N+\log(1/\epsilon))\right).$$

Example 3: The Heisenberg Model..

$$H = -\sum_{i=1}^{N-1} (J_x X_i X_{i+1} + J_y Y_i Y_{i+1} + J_z Z_i Z_{i+1}) + h \sum_{i=1}^{N} X_i.$$

Di Fang (Duke)

Vixing Time of Open Quantum Systems via Hypocoercivity

Example 4: Quantum Walk Under Dephasing Noise. On a *d*-regular connected graph G = (V, E), denote its adjacency matrix as

$$H = \sum_{ij} h_{ij} \ket{i} ig\langle j
vert.$$

The smallest eigenvalue of the graph Laplacian L = dI - H is 0. The second smallest eigenvalue is denoted as Δ (i.e. the spectral gap).

Example 4: Quantum Walk Under Dephasing Noise. On a *d*-regular connected graph G = (V, E), denote its adjacency matrix as

$$H = \sum_{ij} h_{ij} \ket{i} ig\langle j
vert.$$

The smallest eigenvalue of the graph Laplacian L = dI - H is 0. The second smallest eigenvalue is denoted as Δ (i.e. the spectral gap). $\lambda_M = 2\Delta$ and $C'_M = O(d + \gamma N)$. Our theorem yields:

$$t_{\min}(\epsilon) = \mathcal{O}\left(\frac{(d+\gamma N)^2}{\gamma \Delta}(N+\log(1/\epsilon))\right).$$

If we consider a naive energy estimate using $||A||^2$,

$$\partial_t A = (\mathcal{H} + \mathcal{D})A, \quad \langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

If we consider a naive energy estimate using $||A||^2$,

$$\partial_t A = (\mathcal{H} + \mathcal{D})A, \quad \langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

Only the symmetric part ${\cal D}$ will remain. This is the same as the minimal example of ODE!

If we consider a naive energy estimate using $||A||^2$,

$$\partial_t A = (\mathcal{H} + \mathcal{D})A, \quad \langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

Only the symmetric part ${\cal D}$ will remain. This is the same as the minimal example of ODE!

To characterize the convergence we construct a twisted norm, which serves as a Lyapunov functional of the system, as

$$\mathfrak{L}[A] := \frac{1}{2} \|A\|^2 - \varepsilon \Re \langle \mathcal{A}A, A \rangle,$$

with some $\varepsilon \in (0,1)$ to be fixed and

$$\mathcal{A} := \left(\alpha \mathcal{I} + (\mathcal{HP})^* (\mathcal{HP})\right)^{-1} (\mathcal{HP})^*,$$

for some $\alpha > 0$.

If we consider a naive energy estimate using $||A||^2$,

$$\partial_t A = (\mathcal{H} + \mathcal{D})A, \quad \langle A, B \rangle = \operatorname{tr}(\sigma A^{\dagger} B).$$

Only the symmetric part ${\cal D}$ will remain. This is the same as the minimal example of ODE!

To characterize the convergence we construct a twisted norm, which serves as a Lyapunov functional of the system, as

$$\mathfrak{L}[A] := \frac{1}{2} \|A\|^2 - \varepsilon \Re \langle \mathcal{A}A, A \rangle,$$

with some $\varepsilon \in (0,1)$ to be fixed and

$$\mathcal{A} := \left(\alpha \mathcal{I} + (\mathcal{HP})^* (\mathcal{HP})\right)^{-1} (\mathcal{HP})^*,$$

for some $\alpha > 0$. Importantly, this Lyapunov functional can be shown equivalent to ||A||, namely,

$$\frac{1}{2}(1-\varepsilon) \|A\|^2 \le \mathfrak{L}[A] \le \frac{1}{2}(1+\varepsilon) \|A\|^2.$$

To characterize the convergence we construct a twisted norm, which serves as a Lyapunov functional of the system, as

$$\mathfrak{L}[A] := \frac{1}{2} \left\| A \right\|^2 - \varepsilon \Re \langle \mathcal{A}A, A \rangle,$$

with some $\varepsilon \in (0,1)$ to be fixed and

$$\mathcal{A} := \left(\alpha \mathcal{I} + (\mathcal{HP})^* (\mathcal{HP}) \right)^{-1} (\mathcal{HP})^*,$$

for some $\alpha > 0$.

Remark. In fact Condition 4, i.e.

$$\|\mathcal{H}(\mathcal{I}-\mathcal{P})A\| + \|\mathcal{D}A\| \le C'_M \|(\mathcal{I}-\mathcal{P})A\|,$$

for all Hermitian A, can be relaxed to

$$\left\|\mathcal{AH}(\mathcal{I}-\mathcal{P})A\right\| + \left\|\mathcal{AD}A\right\| \le C_M(\alpha) \left\|(\mathcal{I}-\mathcal{P})A\right\|$$

for all Hermitian A.

Di Fang (Duke)

Conclusion

We propose a new theoretical framework to estimate the mixing time of the Lindblad Equation that treats \mathcal{H} and \mathcal{D} separately via hypocoercivity. It

- thus *circumvents* the need for a priori estimation of the spectral gap of the full Lindbladian generator;
- does not require the Lindbladian to satisfy the detailed balance condition;
- can be applied to various physical examples, include Transverse Field Ising Model, Heisenberg Model, and quantum walk.

Future Directions

- More applications?
- Relax the condition of PHP = 0?
- There are various different frameworks of hypocoercivity for kinetic theory. What are their quantum analog? Can they yield tighter estimate?

Thank you for your attention!

Reference:

Mixing Time of Open Quantum Systems via Hypocoercivity Di Fang, Jianfeng Lu, Yu Tong [arXiv:2404.11503]

Di Fang Assistant Professor @ Math

Jianfeng Lu James B. Duke Distinguished Professor @ Math, Physics

Charles S. Sydnor Distinguished

Quantum Computing Quantum Information @ Duke Math

Henry PfisterYu TongJeffrey N. Vinik Associate ProfessorAssistant Professor@ ECE, Math@ Math, ECE