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Mixing Time of Open Quantum Systems

Heisenberg Picture

∂tA = LA = i[H,A]︸ ︷︷ ︸
=:H

+
∑
j

V †
j [A, Vj ] + [V †

j , A]Vj︸ ︷︷ ︸
=:D

.

Schrödinger Picture

∂tρ = L⋆ρ = −i[H, ρ] +
∑
j

[Vjρ, V
†
j ] + [Vj , ρV

†
j ].

Question: How fast does the system approach to equilibrium
(thermalize)? “Mixing Time”.

Why do we care?
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Why do we care?
Algorithmic advancement employing Lindblad equations:

Universal quantum computation, useful in quantum field theories
simulation
[Verstraete-Wolf-Cirac, Nature Physics 2009], [Osborne-Eisert-Verstraete PRL
2010], [Verstraete-Cirac PRL 2010]

To prepare and sample from thermal states
[Chen-Kastoryano-Gilyen 2023], [Chen-Kastoryano-Brandao-Gilyen 2023],
[Rall-Wang-Wocjan Quantum 2023], [Ding-Li-Lin 2024], [Jiang-Irani 2024], etc

Ground states preparation
[Ding-Chen-Lin PRR 2024]

To find local minima in quantum systems
[Chen-Huang-Preskill-Zhou STOC 2024]

Quantum control
[Li-Wang ICML 2023]

Classical optimization
[Chen-Lu-Wang-Liu-Li 2023]
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Mixing Time

Quantum Info (target)
Quantum Markov Semigroup

∂tA = LA

Probability Viewpoint
(Ergodicity, Detailed Balance, etc)

Dynamical System /
Differential Equation Viewpoint

(Lyapunov functionals)

tmix(ϵ) = inf{t ≥ 0 : ∥esL
⋆

(ρ)− σ∥1 ≤ ϵ,∀ρ, s ≥ t}.
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Previous Works for Mixing Time Estimate
How to estimate the mixing time? Typical route:

One starts with a Lindbladian that satisfies detailed balance
condition under certain inner product. (If not, consider a
symmetrization of L, denote as LH .)

Estimate the lower bound of the spectral gap of L (or LH , if not
detailed balanced), denote as g. 1

It implies exponential decay with rate g, namely,

∥A(t)∥ ≤ ∥A(0)∥ e−gt.

Then by duality, one can get an estimate of the mixing time.
In particular, g ∼ 1/poly(N) implies tmix ∼ poly(N).

For some g, e.g., g = Ω(1), modified logarithmic Sobolev
inequality can tighten the bound ⇒ tmix ∼ polylog(N). 2

1[Temme 2013], [Kastoryano-Brandao 2016], [Barthel-Zhang 2022], [Chen-Brandao
2021], [Rouze-Franca-Alhambra 2024], etc.

2Kastoryano, Temme, Capel, Gao, Rouze, Stilck Franca, Bardet, Lucia,
Perez-Garcia, Junge, LaRacuente, Li, Lu, and more.
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Existing Works: Take-away

To estimate mixing time:
One needs to estimate the spectral gap of the full Lindbladian L.
Detailed Balance of L is important!

However, estimation of the spectral gap of L can be difficult!
Even when H and D are both simple, L can still be hard.

Questions:
Can we use information about the dissipative part D and the
Hamiltonian part H separately to yield a mixing time estimation?
What if L is not detailed balance? Are there still some cases that
we can estimate?
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Open Question
Question: Can we use information about the dissipative part D and
the Hamiltonian part H separately to yield a mixing time estimation?

Answer: Yes!
We provide a theoretical framework and propose a set of
conditions on the operators H and D such that we can still
establish the exponential convergence of the Lindbladian
dynamics to its equilibrium.
It does not requires L to be detailed balanced.
So what? Applications? We provide a number of physical
examples where our conditions can be easily verified, including
the transverse field Ising model, Heisenberg model, and
quantum walk, with some Pauli noise.
The technique is based on the construction of an energy
functional inspired by the hypocoercivity of (classical) kinetic
theory.
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What is Hypocoercivity?
Some History:

kinetic theory: theory for kinetic equations, e.g.,
Boltzmann Eq, Fokker-Planck Eq, etc.

The name of hypocoercivity is suggested by Thierry Gallay, and
coined and developed by Cédric Villani (2001, 2005).

Significant contributors: (imcomplete)
Desvillettes, Mouhot, Neumann, Hérau, Dolbeault,
Schmeiser, Armstrong, Mourrat, Filbet, Tadmor,
Pareschi, Brigati, Arnold, Carlen, Guo, Lu, Li, Tran,
Wang, Shvydkoy, Bedrossian, Zelati, Soffer, more!

Applications: Kinetic theory, fluid dynamics, SDEs,
sampling, math bio, uncertainty quantif., and more!

Quantum!
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Schmeiser, Armstrong, Mourrat, Filbet, Tadmor,
Pareschi, Brigati, Arnold, Carlen, Guo, Lu, Li, Tran,
Wang, Shvydkoy, Bedrossian, Zelati, Soffer, more!

Applications: Kinetic theory, fluid dynamics, SDEs,
sampling, math bio, uncertainty quantif., and more!

Quantum!

Di Fang (Duke) Mixing Time of Open Quantum Systems via Hypocoercivity 9 / 24



Mixing time: state of the art and open question The Idea of Hypocoercivity Our Results – Statement and Understanding Applications to Physical Examples

What is Hypocoercivity?
Some History: kinetic theory: theory for kinetic equations, e.g.,
Boltzmann Eq, Fokker-Planck Eq, etc.

The name of hypocoercivity is suggested by Thierry Gallay, and
coined and developed by Cédric Villani (2001, 2005).

Significant contributors: (imcomplete)
Desvillettes, Mouhot, Neumann, Hérau, Dolbeault,
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Minimal Example – Coercivity v.s. Hypocoercivity
Consider a n-dimensional real-valued ODE of:

d

dt
x = −Ax, t ≥ 0.

A = AH +AA is coercive if there exists a constant g > 0 s.t.

⟨AHx, x⟩ = xTAHx ≥ g ∥x∥2 , ∀x.

If so, we can easily show that ∥x(t)∥ ≤ ∥x(0)∥ e−gt. However,
coercivity is not a necessary condition for exp. decay. E.g.,

A =

(
0 −1
1 1

)
→ e-vals are

1

2
± i

√
3

2
.

From ODE basics, the solution decays with a rate 1
2 . But the vanilla

energy method no longer works! d
dt ∥x(t)∥ ≤ 0 (instead of −g ∥x(t)∥).

From Arnold’s talk that DF attended in 2017. Similar ODE examples, see standard
ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page194]
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A = AH +AA is coercive if there exists a constant g > 0 s.t.

⟨AHx, x⟩ = xTAHx ≥ g ∥x∥2 , ∀x.
If so, we can easily show that ∥x(t)∥ ≤ ∥x(0)∥ e−gt.

2 ∥x∥ d

dt
∥x∥ =

d

dt
∥x∥2 = ⟨ẋ, x⟩+ ⟨x, ẋ⟩

= −⟨Ax, x⟩ − ⟨x,Ax⟩

= −2⟨x,AHx⟩ ≤ −2g ∥x∥2

However, coercivity is not a necessary condition for exp. decay. E.g.,

A =

(
0 −1
1 1

)
→ e-vals are

1

2
± i

√
3

2
.

From ODE basics, the solution decays with a rate 1
2 . But the vanilla

energy method no longer works! d
dt ∥x(t)∥ ≤ 0 (instead of −g ∥x(t)∥).

From Arnold’s talk that DF attended in 2017. Similar ODE examples, see standard
ODE textbook, e.g., [Teschl Page 203], [Brauer-Nohel Page194]
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Minimal Example – Coercivity v.s. Hypocoercivity

A =

(
0 −1
1 1

)
→ e-vals are

1

2
± i

√
3

2
.

Easy fix: Instead of the l2 norm

∥x∥, consider a twisted l2 norm

∥x∥P :=
√
xTPx, P = [2, 1; 1, 2]

Instead of x2 + y2, the Lyapunov
function is now x2+y2+xy ∝ ∥x∥2P .

d

dt
∥x∥P ≤ −1

2
∥x∥P

∥x∥P and ∥x∥ are equivalent.

For e−tA that decays yet A not coercive, it is “hypocoercive”.
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Our Results – Preparation

For Lindblad Equation (Heisenberg picture)

∂tA = LA = i[H,A]︸ ︷︷ ︸
=:HA

+
∑
j

V †
j [A, Vj ] + [V †

j , A]Vj︸ ︷︷ ︸
=:DA

.

Denote the global equilib. state as σ. We consider GNS inner product

⟨A,B⟩ = tr(σA†B).

Remark: Other inner products ⟨A,B⟩α = tr(σαA†σ1−αB) are also ok.

Question: What happens if one does a naive energy method?
Suppose σ is maximally mixed state. We will only see the contribution
from the part D!

If D is degenerate, dimkerD > 1. The energy method fails!
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Our Results – Intuition
Consider Trotterization viewpoint:

etL = etH+tD ≈
(
etH/LetD/L

)L

Any matrix A can be decomposed into

A = PA+ (I − P)A,

where P is the projection onto the kernel of D.
By dissipative nature of D ⇒ dynamics exp. damps (I − P)A.
For PA, we observe that

etH/LPA =PA+HPAt/L+O(t2/L2)

=PA+ (I − P)HPAt/L+ PHPAt/L+O(t2/L2)

If PHP = 0, the PA part is being driven to the image of I − P, i.e.,
the orthogonal complement of kerD, which will then be damped by D
in the next step.
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Our Results – Intuition
Consider Trotterization viewpoint:

etL = etH+tD ≈
(
etH/LetD/L

)L

Any matrix A can be decomposed into

A = PA+ (I − P)A,

where P is the projection onto the kernel of D.

Dissipation

Null space of D

Hamiltonian
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Our Results – Intuition
Consider Trotterization viewpoint:

etL = etH+tD ≈
(
etH/LetD/L

)L

Consider a single-qubit minimal example with Hamiltonian and a jump
operator given by

H = X, V = |0⟩ ⟨0| .

Explicit calculation yields that kerD consists of diagonal matrix,

A =
(
a b
c d

)
, PA =

(
a 0
0 d

)
.

Notethat H transforms a diagonal matrix into an off-diagonal one, so
that PHP = 0. We can also compute that

etDA =
(

a e−tb
e−tc d

)
,

where everything outside of kerD is damped exponentially, while the
dynamics governed by H mixes the terms.
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Our Results – Conditions

Condition 1: The operator D is symmetric and satisfies

−⟨DA,A⟩ ≥ λm ∥(I − P)A∥2 ,

with some positive λm, for all A such that tr[σA] = 0.

Condition 2: The operator H is skew-symmetric and satisfies

∥HPA∥2 ≥ λM ∥PA∥2 ,

with some positive λM , for all A such that tr[σA] = 0.

Condition 3: PHP = 0.

Condition 4: ∥H(I − P)A∥+ ∥DA∥ ≤ C ′
M∥(I − P)A∥, for all

Hermitian A.
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Our Results

Theorem (Main result)

Under conditions 1-4, there exist positive constants λ and C, explicitly
computable in terms of λm, λM and CM such that∥∥∥et(H+D)A

∥∥∥ ≤ Ce−λt ∥A∥ , ∀t ≥ 0.

Corollary (Mixing time estimate)

Under conditions 1-4, for λm, λM ≤ O(1), C ′
M ≥ Ω(1), if σ is full-rank,

the mixing time tmix(ϵ) satisfies

tmix(ϵ) = O
(

C ′2
M

λmλM
log(∥σ−1∥∞/ϵ)

)
.

Remark: 1. L does NOT need to satisfy detailed balanced conditions.
2. Take-home message: Hamiltonian enhances mixing.
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C =
(1 + ε

1− ε

)1/2

, λ = min

{
1

4

λm

1 + ε
,
1

3

ε

1 + ε

λM

α+ λM

}
,

where ε are defined in
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1

2
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λmλM

(α+ λM )(1 + C ′
M/(2

√
α))2

, 1
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Applications to Physical Examples – Single Qutrit
Example 1: Single Qutrit. Hilbert sp. is spanned by {|0⟩ , |1⟩ , |2⟩}.

H = ω(|1⟩ ⟨2|+ |2⟩ ⟨1|)

V1 =
√
γσ−, V2 =

√
γσ+,

where σ− = |0⟩ ⟨1| is the lowering operator, and σ+ = |1⟩ ⟨0| is the
raising operator. HA = i[H,A], DA =

∑
j V

†
j [A, Vj ] + [V †

j , A]Vj .
The unique equilibrium state is

σ =
1

2
|0⟩ ⟨0|+ 1

4
|1⟩ ⟨1|+ 1

4
|2⟩ ⟨2|.

One can verify all conditions with λm = (3/2)γ, λM = ω2, and
C ′

M = O(|ω|+ γ). Our theorem yields:

tmix(ϵ) = O((ω2 + γ2)ω−2γ−1 log(1/ϵ))
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Applications to Physical Examples – N-body systems
Dephasing noise:

DA = γ
∑
i

(ZiAZi −A).

The kernel of D is spanned by {Z⊗b⃗ : b⃗ ∈ {0, 1}N}.
Easy to check that λm = 2γ.

Example 2: Transverse Field Ising Model.

H =

N−1∑
i=1

ZiZi+1 + h

N∑
i=1

Xi,

λM = 4h2, and C ′
M = 2((N − 1) +Nh) + 2Nγ. Applying Theorem 2,

tmix(ϵ) = O
(
N2(1 + γ)2

γh2
(N + log(1/ϵ))

)
.

Example 3: The Heisenberg Model..

H = −
N−1∑
i=1

(JxXiXi+1 + JyYiYi+1 + JzZiZi+1) + h

N∑
i=1

Xi.

λM = 4h2, and C ′
M = O(N(1 + γ)).

tmix(ϵ) = O
(
N2(1 + γ)2

γh2
(N + log(1/ϵ))

)
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Applications to Physical Examples – N-body systems

Example 4: Quantum Walk Under Dephasing Noise.
On a d-regular connected graph G = (V,E), denote its adjacency
matrix as

H =
∑
ij

hij |i⟩ ⟨j| .

The smallest eigenvalue of the graph Laplacian L = dI −H is 0. The
second smallest eigenvalue is denoted as ∆ (i.e. the spectral gap).

λM = 2∆ and C ′
M = O(d+ γN). Our theorem yields:

tmix(ϵ) = O
(
(d+ γN)2

γ∆
(N + log(1/ϵ))

)
.
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Our results – Proof Idea
If we consider a naive energy estimate using ∥A∥2,

∂tA = (H+D)A, ⟨A,B⟩ = tr(σA†B).

Only the symmetric part D will remain. This is the same as the
minimal example of ODE!

To characterize the convergence we construct a twisted norm, which
serves as a Lyapunov functional of the system, as

L[A] :=
1

2
∥A∥2 − εℜ⟨AA,A⟩,

with some ε ∈ (0, 1) to be fixed and

A :=
(
αI + (HP)∗(HP)

)−1
(HP)∗,

for some α > 0. Importantly, this Lyapunov functional can be shown
equivalent to ∥A∥, namely,

1

2
(1− ε) ∥A∥2 ≤ L[A] ≤ 1

2
(1 + ε) ∥A∥2 .
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1

2
∥A∥2 − εℜ⟨AA,A⟩,

with some ε ∈ (0, 1) to be fixed and

A :=
(
αI + (HP)∗(HP)

)−1
(HP)∗,

for some α > 0.

Remark. In fact Condition 4, i.e.

∥H(I − P)A∥+ ∥DA∥ ≤ C ′
M∥(I − P)A∥,

for all Hermitian A, can be relaxed to

∥AH(I − P)A∥+ ∥ADA∥ ≤ CM (α) ∥(I − P)A∥

for all Hermitian A.
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Conclusion

We propose a new theoretical framework to estimate the mixing time
of the Lindblad Equation that treats H and D separately via
hypocoercivity. It

thus circumvents the need for a priori estimation of the spectral
gap of the full Lindbladian generator;
does not require the Lindbladian to satisfy the detailed balance
condition;
can be applied to various physical examples, include Transverse
Field Ising Model, Heisenberg Model, and quantum walk.
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Future Directions

More applications?

Relax the condition of PHP = 0?

There are various different frameworks of hypocoercivity for
kinetic theory. What are their quantum analog? Can they yield
tighter estimate?

Thank you for your attention!

Reference:
Mixing Time of Open Quantum Systems via Hypocoercivity
Di Fang, Jianfeng Lu, Yu Tong [arXiv:2404.11503]
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