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Motivation

• Ground state and low-temperature 
Gibbs state are among the most 
important problems in many-body 
physics and quantum chemistry.



How does the Nature prepare  
low energy states?

Proteins function in a thermal bath at temperature T=310K

High Temperature superconducting materials can be cooled down to 

superconducting phase by putting into liquid Nitrogen (T=77K)



Simulating Nature
Recently, a series of quantum algorithm simulating the dissipative 

dynamics in Nature has been proposed to prepare Gibbs state and 

ground state of quantum systems

They have ground state or Gibbs state as their fixed points

They are efficiently implementable on a quantum circuit.

𝑑𝜌

𝑑𝑡
= −𝑖 𝐺, 𝜌 + ℒ(𝜌)



Simulating Nature
The ground state preparation algorithm proposed by [DCL 23]
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Simulating Nature

• Correctness 

    (Ground state or Gibbs state is the fixed point)

• Implementable 

   (can be efficiently implemented on a quantum circuit)

• Efficient 

    (Converge to the fixed point in polynomial time, i.e. 𝑇𝑚𝑖𝑥 = 𝑂(𝑝𝑜𝑙𝑦 𝑁)



• Gap of Gibbs samplers implies fast mixing.

   Inverse polynomial gap implies 𝑂(𝑝𝑜𝑙𝑦 𝑁) mixing time. Constant gap implies 𝑂 𝑁  mixing time.

• Log Sobolov constant implies rapid mixing.

   Positive log Sobolev constant implies 𝑂 log 𝑁  mixing time. 

Mixing time of quantum systems: 

Existing results on Gibbs samplers



Mixing time of quantum systems: 
Existing results

Commuting Non-Commuting

Gibbs 
state

1D commuting Local Hamiltonian:
O(N)->O(log N)

2D toric code: O(N)
?

High 
temperature:

O(N)

Ground 
state ? ?



Current challenges in proving mixing time

• The Lindbladians of non-commuting Hamiltonians are quasi-local. Their 

mixing times are widely open.

   

• Current mathematical tools for proving mixing time do not apply to 

Lindbladians for ground state preparation.

• It is difficult to improve 𝑂 𝑝𝑜𝑙𝑦 𝑁  mixing time to 𝑂(log 𝑁).
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Quasi-free systems
Consider a quadratic fermionic Hamiltonian with annihilation and creation 

operators as the jump operator.

𝐻 = 

𝑖,𝑗

𝑎𝑖𝑗𝑐𝑖𝑐𝑗
† , 𝐴𝑘 = 𝑐𝑘 , 𝑐𝑘

†

We show that the one-body density matrix 𝑃𝑖𝑗 = 𝑇𝑟(𝜌𝑐𝑖𝑐𝑗
†) is 

exponentially converging to the ground state distribution 𝑃𝑓.

𝑑𝑃

𝑑𝑡
= −(𝑃 − 𝑃𝑓)



Quasi-free systems
Consider a quadratic fermionic Hamiltonian with annihilation and creation 

operators as the jump operator.

𝐻 = 

𝑖,𝑗

𝑎𝑖𝑗𝑐𝑖𝑐𝑗
† , 𝐴𝑘 = 𝑐𝑘 , 𝑐𝑘

†

Using Wick’s Theorem, all k-body density matrices can be derived from 

one-body density matrix, so all local density matrices are exponentially 

converging at a constant rate.



Quasi-free systems
Consider a transverse field Ising model with coupling operators A =
𝑋1, 𝑋𝑛 , 𝑌1, 𝑌𝑛.

Using J-W transformation, we can convert the Lindbladian to the quasi-

free form.



Quasi-free systems
Matrix element of Pauli operator 𝑋1 in the computational basis and energy 

basis, allowing energy transitions. (𝑔/𝐽 = 1.5)



Mixing time of TFIM
(boundary dissipation)

Energy decay of Lindbladian dynamics and the loglog plot of mixing time, showing 

mixing time scales polynomially with system size. 𝑇𝑚𝑖𝑥 = 𝑂(𝑛3)

In quasifree setting, we evaluate the mixing time using the energy decay rate.



Quasi-free systems
Another quasi-free example is the cluster Hamiltonian.

The coupling operators are

We choose ℎ1/𝐽 = 0.1, where the Hamiltonian is in the SPT phase and 

has a fourfold degenerate ground state.



Mixing time of cluster Hamiltonian
(boundary dissipation)

Energy decay of Lindbladian dynamics and the loglog plot of mixing time, 

showing mixing time scales polynomially with system size. 𝑇𝑚𝑖𝑥 = 𝑂(𝑛3)



Mixing time of non-quasi free systems:
Tensor network methods

We represent all operators as MPOs and evaluating the mixing time by 

directly propagating the Lindbladian.

The mixing time is defined as 



Mixing time of non-quasi free systems:
Tensor network methods

Assumption: All the jump operators and states during time evolution have 

low bond dimension structure.

After each time step, we compress the bond dimension of 𝜌.

Main difficulty:

Fast compression method.

  Direct tensor network compression is very slow, so we use an approximate fitting method that is 100 
times faster



Tensor network methods are reliable

We verify the low bond dimension assumption by showing that the TN 

results with different bond dimensions match very well.

For the Lindbladian dynamics of N=20 
TFIM, the relative error of TN results with 
different bond dimension is less than 
0.1%.



Mixing time of Heisenberg model in a magnetic field
(boundary dissipation)

Consider the Hamiltonian:

with 𝐴 = 𝑋1, 𝑌1, 𝑍1, 𝑋𝑛, 𝑌𝑛, 𝑍𝑛

The numerical result shows

𝑇𝑚𝑖𝑥 = 𝑂(𝑛2.5)

Boundary dissipation→ 𝑝𝑜𝑙𝑦 𝑁 mixing time



Rapid mixing of 1D gapped local Hamiltonians

For the TFIM Hamiltonian,

we use all 3N Pauli operators 
as coupling operators.
 
Our numerical result shows

𝑇𝑚𝑖𝑥 = 𝑂(log 𝑁)



Rapid mixing of 1D gapped local Hamiltonians

For the Heisenberg model 
in a magnetic field,

 
Our numerical result shows

𝑇𝑚𝑖𝑥 = 𝑂(log 𝑁)
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• The Lindbladians of non-commuting Hamiltonians are quasi-local. Their 
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• Current mathematical tools for proving mixing time do not apply to 

Lindbladians for ground state preparation.
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Current challenges in proving mixing time

• The Lindbladians of non commuting Hamiltonians are quasi-local. Their 

mixing times are widely open.

   

• Current mathematical tools for proving mixing time do not apply to 

Lindbladians for ground state preparation.

• It is difficult to improve 𝑂 𝑝𝑜𝑙𝑦 𝑁 mixing time to 𝑂(log 𝑁).

Theoretical analysis of mixing time faces many serious difficulties.
However, our numerical method directly shows strong evidence of rapid mixing in non-
commuting Hamiltonians for ground state preparation.



Mixing time of quantum systems: 
Existing results

Commuting Non-Commuting

Gibbs 
state

1D commuting Local Hamiltonian:
O(N)->O(log N)

2D toric code: O(N)

? High 
temperature:

O(N)

Ground 
state

1D gapped local Hamiltonian
Boundary:  O(poly N)

Bulk: O(log N)



An interesting observation

• We find that the mixing time of Lindbladian can often be characterized 

by the non-Hermitian part.

For boundary dissipative TFIM, the non-

Hermitian part also has an 𝑂 𝑛−3  gap



An interesting observation

• We find that the mixing time of Lindbladian can often be characterized 

by the non-Hermitian part.

For bulk dissipative TFIM, direct propagation 

of the non-Hermitian part also shows 
𝑂 log 𝑁  mixing time



Outlook

• Generalize previous results about fast mixing of commuting 

Hamiltonians to non-commuting ones. 

• Numerical simulation of Lindbladian dynamics of 2D local Hamiltonians.

• Quantum advantage in 2D, or even 1D?
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