Mixing time of local Hamiltonians: Rapid state preparation via dissipative dynamics

Yongtao Zhan

Joint work with Jakob Huhn, Haoen Li, Zhiyan Ding, Garnet Chan, Lin Lin

Contents

- Background (Existing result and current challenges)
- Our results
- Outlook

Contents

- Background (Existing result and current challenges)
- Our results
- Outlook

Motivation

• Ground state and low-temperature Gibbs state are among the most important problems in many-body physics and quantum chemistry.

How does the Nature prepare low energy states?

Proteins function in a thermal bath at temperature T=310K

High Temperature superconducting materials can be cooled down to superconducting phase by putting into liquid Nitrogen (T=77K)

Recently, a series of quantum algorithm simulating the dissipative dynamics in Nature has been proposed to prepare Gibbs state and ground state of quantum systems

$$
\frac{d\rho}{dt} = -i[G,\rho] + \mathcal{L}(\rho)
$$

They have ground state or Gibbs state as their fixed points They are efficiently implementable on a quantum circuit.

The ground state preparation algorithm proposed by [DCL 23]

- Correctness
- Implementable
- Efficient

• Correctness \checkmark

(Ground state or Gibbs state is the fixed point)

• Implementable \blacktriangledown

(can be efficiently implemented on a quantum circuit)

• Efficient ?

(Converge to the fixed point in polynomial time, i.e. $T_{mix} = O(poly N)$

Mixing time of quantum systems: Existing results on Gibbs samplers

• Gap of Gibbs samplers implies fast mixing.

Inverse polynomial gap implies $O(poly N)$ mixing time. Constant gap implies $O(N)$ mixing time.

• Log Sobolov constant implies rapid mixing.

Positive log Sobolev constant implies $O(\log N)$ mixing time.

Mixing time of quantum systems: Existing results

Current challenges in proving mixing time

- The Lindbladians of non-commuting Hamiltonians are quasi-local. Their mixing times are widely open. $\mathsf{\hat{X}}$
- Current mathematical tools for proving mixing time do not apply to Lindbladians for ground state preparation. $\mathsf{\hat{X}}$
- It is difficult to improve $O(poly N)$ mixing time to $O(log N)$.

Contents

- Background (Existing result and current challenges)
- Our results
- Outlook

Consider a quadratic fermionic Hamiltonian with annihilation and creation operators as the jump operator.

$$
H = \sum_{i,j} a_{ij} c_i c_j^{\dagger}, \qquad A_k = c_k, c_k^{\dagger}
$$

$$
\frac{d\rho}{dt} = -\mathrm{i}[H,\rho] + \sum_k K_k \rho K_k^{\dagger} - \frac{1}{2} \{K_k^{\dagger} K_k, \rho\}.
$$

We show that the one-body density matrix $P_{ij} = Tr(\rho c_i c_j^{\dagger})$ is exponentially converging to the ground state distribution P_f .

$$
\frac{dP}{dt} = -(P - P_f)
$$

Consider a quadratic fermionic Hamiltonian with annihilation and creation operators as the jump operator.

$$
H = \sum_{i,j} a_{ij} c_i c_j^{\dagger}, \qquad A_k = c_k, c_k^{\dagger}
$$

$$
\frac{d\rho}{dt} = -\mathrm{i}[H,\rho] + \sum_k K_k \rho K_k^{\dagger} - \frac{1}{2} \{K_k^{\dagger} K_k, \rho\}
$$

Using Wick's Theorem, all k-body density matrices can be derived from one-body density matrix, so all local density matrices are exponentially converging at a constant rate.

Consider a transverse field Ising model with coupling operators $A =$ $X_1, X_n, Y_1, Y_n.$

$$
\hat{H}_{\text{TFIM}} = -g \sum_{i=1}^{n} Z_i - J \sum_{i=1}^{n-1} X_i X_{i+1},
$$

$$
K = \sum_{i,j\in[N]} \tilde{f}(\lambda_i - \lambda_j) |\psi_i\rangle \langle \psi_i | X_1 |\psi_j\rangle \langle \psi_j |,
$$

$$
\tilde{f}(\omega) = \begin{cases} 0 & \colon \omega \ge 0 \\ 1 & \colon \omega < 0 \end{cases}.
$$

Using J-W transformation, we can convert the Lindbladian to the quasifree form.

Matrix element of Pauli operator X_1 in the computational basis and energy basis, allowing energy transitions. $(g/J = 1.5)$

Mixing time of TFIM (boundary dissipation)

Energy decay of Lindbladian dynamics and the loglog plot of mixing time, showing mixing time scales polynomially with system size. $T_{mix} = O(n^3)$

In quasifree setting, we evaluate the mixing time using the energy decay rate.

Another quasi-free example is the cluster Hamiltonian.

$$
\hat{H} = -J \sum_{i=1}^{n-2} X_i Z_{i+1} X_{i+2} - h_1 \sum_{i=1}^{n} Z_i.
$$

The coupling operators are $A = X_1, X_n, Y_1, Y_n$.

We choose $h_1/I = 0.1$, where the Hamiltonian is in the SPT phase and has a fourfold degenerate ground state.

Mixing time of cluster Hamiltonian (boundary dissipation)

Energy decay of Lindbladian dynamics and the loglog plot of mixing time, showing mixing time scales polynomially with system size. $T_{mix} = O(n^3)$

Mixing time of non-quasi free systems: Tensor network methods

We represent all operators as MPOs and evaluating the mixing time by directly propagating the Lindbladian.

$$
\frac{d\rho}{dt} = -i[H,\rho] + \sum_{k} K_{k}\rho K_{k}^{\dagger} - \frac{1}{2} \{ K_{k}^{\dagger}K_{k},\rho \}.
$$

$$
K_{k} = \int_{-\infty}^{\infty} f(s)e^{iHt} A e^{-iHt} ds
$$

The mixing time is defined as

$$
\tau_{\text{mix}}(\epsilon) = \min \left\{ t \mid \langle \psi | \rho_t | \psi \rangle \ge 1/2 \text{ for input state } \rho_0 = \mathbb{I}/2^n \right\}
$$

Mixing time of non-quasi free systems: Tensor network methods

Assumption: All the jump operators and states during time evolution have low bond dimension structure.

$$
\frac{d\rho}{dt} = -i[H, \rho] + \sum_{k} K_k \rho K_k^{\dagger} - \frac{1}{2} \{ K_k^{\dagger} K_k, \rho \}.
$$

$$
K_k = \int_{-\infty}^{\infty} f(s) e^{iHt} A e^{-iHt} ds
$$

After each time step, we compress the bond dimension of ρ .

Main difficulty:

Fast compression method.

 Direct tensor network compression is very slow, so we use an approximate fitting method that is 100 times faster

Tensor network methods are reliable

We verify the low bond dimension assumption by showing that the TN results with different bond dimensions match very well.

For the Lindbladian dynamics of N=20 TFIM, the relative error of TN results with different bond dimension is less than 0.1%.

Mixing time of Heisenberg model in a magnetic field (boundary dissipation)

Boundary dissipation \rightarrow $poly N$ mixing time

Rapid mixing of 1D gapped local Hamiltonians

For the TFIM Hamiltonian,

$$
H = -\sum_{i=1}^{n} g_i Z_i - J \sum_{i=1}^{n-1} X_i X_{i+1}
$$

we use all 3N Pauli operators as coupling operators.

Our numerical result shows $T_{mix} = O(\log N)$

Rapid mixing of 1D gapped local Hamiltonians

For the Heisenberg model in a magnetic field,

$$
H = -J\sum_{i=1}^{n-1} X_i X_{i+1} - \Delta \sum_{i=1}^{n-1} (Y_i Y_{i+1} + Z_i Z_{i+1}) - \sum_{i=1}^{n} g_i Z_i,
$$

Our numerical result shows $T_{mix} = O(\log N)$

Current challenges in proving mixing time

- The Lindbladians of non-commuting Hamiltonians are quasi-local. Their mixing times are widely open.
- Current mathematical tools for proving mixing time do not apply to Lindbladians for ground state preparation.
- It is difficult to improve $O(poly N)$ mixing time to $O(log N)$.

Theoretical analysis of mixing time faces many serious difficulties.

Current challenges in proving mixing time

• The Lindbladians of non commuting Hamiltonians are quasi-local. Their mixing times are widely open.

• Current mathematical tools for proving mixing time do not apply to Lindbladians for ground state preparation.

• It is difficult to improve $O(poly N)$ mixing time to $O(log N)$.

Theoretical analysis of mixing time faces many serious difficulties. However, our numerical method directly shows strong evidence of rapid mixing in noncommuting Hamiltonians for ground state preparation.

Mixing time of quantum systems: Existing results

An interesting observation

• We find that the mixing time of Lindbladian can often be characterized by the non-Hermitian part.

$$
\frac{d\rho}{dt}=-\mathrm{i}[H,\rho]+\sum_{\boldsymbol{k}}\hspace{-0.5em}\chi_{\boldsymbol{k}}\rho K_{\boldsymbol{k}}^{\dagger}-\frac{1}{2}\{K_{\boldsymbol{k}}^{\dagger}K_{\boldsymbol{k}},\rho\}.
$$

For boundary dissipative TFIM, the non-Hermitian part also has an $O(n^{-3})$ gap

An interesting observation

• We find that the mixing time of Lindbladian can often be characterized by the non-Hermitian part.

$$
\frac{d\rho}{dt} = -\mathrm{i}[H,\rho] + \sum_{k} \mathbf{K}_{k} \rho K_{k}^{\dagger} - \frac{1}{2} \{K_{k}^{\dagger} K_{k},\rho\}.
$$

For bulk dissipative TFIM, direct propagation of the non-Hermitian part also shows $O(log N)$ mixing time

Outlook

- Generalize previous results about fast mixing of commuting Hamiltonians to non-commuting ones.
- Numerical simulation of Lindbladian dynamics of 2D local Hamiltonians.
- Quantum advantage in 2D, or even 1D?