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DIFFERENTIAL PRIVACY

A privacy mechanism is a randomised algorithm taking an input dataset
X =(Xi,...,Xn) € X" and producing publishable data Z. Formally, it is a
collection of conditional distributions Q@ = {Q(|x) : x € X"} such that

Z|{X = x} ~ Q(-|x).

Privacy mechanism Q is called a-(central) differentially private (Dwork et al., 2006) if

p QUK _ L P(ZEAX=x) _ .
Y Q) TSP PR(ZeAx=x) = ¢

forall x,x € X"suchthat > |, 1{x; # x{} < 1. We focus on the regime a € (0, 1].

YiYu



DIFFERENTIAL PRIVACY
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For the central differential privacy (CDP), where there is a trusted central data
curator having access to all the raw data. For example, when estimating a univariate
mean, we can have

~ 1
0=7=-5S "X+ —W, with W~ Lap(1).
SO Xt W, wi ap(1)
Total added noise is of order (n’a”) .

A stronger notion of differential privacy is the local differential privacy (LDP), where
data are randomised before collection, that is

P(Z € AlXi = -
sup sup (Z €Al X)<e

P(Z € AlX, = x') i€ {1,...,n}.
A xxlex IED(Zl€/4|)(,:X/) - ’ IE{ y ,n}

For example, when estimating a univariate mean, we can have

~ 1¢ BN 1 . o iid.
6= f;z,-: nz;(x,JraW,), with {Wi}, "= Lap(1).

Total added noise is of order (na”) ™.



DIFFERENTIAL PRIVACY

Remarks

» Non-interactive, sequentially interactive and fully-interactive LDP mechanisms.

» Pure and approximate DP.

Pure DP: Q(A|x) < e*Q(A|x) and Approximate DP: Q(A|x) < e*Q(A|x) + 8.

» Similarity: both CDP and LDP assume that each user possesses one unit of data.

> Difference: all raw data can be used before privatisation in CDP, but every unit of
raw data needs to be privatised before any statistical inference in LDP.
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DIFFERENTIAL PRIVACY

Remarks
» Non-interactive, sequentially interactive and fully-interactive LDP mechanisms.

» Pure and approximate DP.

Pure DP: Q(A|x) < e*Q(A|x) and Approximate DP: Q(A|x) < e*Q(A|x) + 8.

» Similarity: both CDP and LDP assume that each user possesses one unit of data.

> Difference: all raw data can be used before privatisation in CDP, but every unit of
raw data needs to be privatised before any statistical inference in LDP.

> Question: do we have something in between when each user possesses multiple
units of data?
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USER-LEVEL LDP & FEDERATED DP

User/server

Raw data

Privatised data

Final estimator
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LDP, CDP or a mixture of both...



USER-LEVEL LDP & FEDERATED DP

User/server 1 2 n
1 2
Raw data [EA) TP ¢ 50 X Yecar
Under certain privacy constraints

LDP, CDP or a mixture of both...

\\é /

Privatised data

Final estimator

> LDP: Rate optimality and phase transition for user-level local differential privacy
(arXiv: 2405.11923, Alexander Kent, Thomas B. Berrett and Y.)

> CDP: Federated transfer learning with differential privacy (arXiv: 2403.11343, Mengchu Li,
Ye Tian, Yang Feng and Y.)
» A mixture of both: Private distributed learning in functional data (ongoing work, Gengyu

Xue, Zhenhua Lin and Y.)
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USER-LEVEL LDP & FEDERATED DP

A simple example: univariate mean estimation measured in squared loss, with n
users/sites and T units of data per user.

Setting Minimax rates References

No privacy 1/(nT) Very easy to show
Local item-level 1/(nTa?) Duchi et al. (2018)
Local user-level (small T) 1/(nTa?) Our result

Local user-level (large T) —ner? Our result
Central item-level 1/(nT) Vv 1/(n*T*a?)  Levy et al. (2021)

Central user-level (small T)  1/(nT)V 1/(n*Ta?)  Levy et al. (2021)
Federated 1/(nT) vV 1/(nT?a?)  Our result
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USER-LEVEL LDP & FEDERATED DP

A simple example: univariate mean estimation measured in squared loss, with n
users/sites and T units of data per user.

Setting Minimax rates References

No privacy 1/(nT) Very easy to show
Local item-level 1/(nTa?) Duchi et al. (2018)
Local user-level (small T) 1/(nTa?) Our result

Local user-level (large T) e’ Our result
Central item-level 1/(nT) Vv 1/(n*T*a?)  Levy et al. (2021)
Central user-level (small T)  1/(nT)V 1/(n*Ta?)  Levy et al. (2021)
Federated 1/(nT) vV 1/(nT?a?)  Our result

Extensions
> Hierarchy

> Heterogeneity
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ExXTENSION 1: HIERARCHY

E

m observations per function T functions per user n users

/==

User-level DP Central DP Local DP
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ExXTENSION 1: HIERARCHY

Sparse functional mean estimation: Sobolev class W(+y, C) mean function
estimation measured in functional L,-norm squared loss, with n users/sites, T
functions data per user and m observational points per function.

Imposing central user-level for within each user and federated across users, we have

1

—V—=V (nTm)_Z“ZY% \% (nTZmaz)_#
nT ~ nTa? '

Private distributed learning in functional data (ongoing work, Gengyu Xue, Zhenhua Lin and Y.)
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EXTENSION 2: HETEROGENEITY

In general, we have that

Minimax rate < target-only minimax rate A transfer-learning minimax rate,
where
target-only rate < non-private rate V central DP rate
and

transfer-learning rate

= upper bound on source-target diff V non-private rate V federated DP rate

Problem Target only  Transfer learning
H . H H 1 1 2 1 1
Univariate mean estimation T + Tz—?z h” + 7 =4 Tz

. . d d 2, d d
Low-dim regression ++ g h* + T+ i
B B H s s’ 2 s sd
High-dim regression T+ o b+ %+

Federated transfer learning with differential privacy (arXiv: 2403.11343, Mengchu Li, Ye Tian, Yang Feng and
Y.)
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User-level local differential privacy

(with Alexander Kent and Thomas B. Berrett, arXiv: 2405.11923)



ILLUSTRATION
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User/server

Raw data

User-level LDP

Privatised data

Final estimator
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OUTLINE

» A minimax framework

» Infinite-T scenario with general minimax upper and lower bounds

» Finite-T scenario

P Multivariate mean estimation (omitted in the talk)
> Sparse, high-dimensional mean estimation

» Nonparametric density estimation (omitted in the talk)
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A MINIMAX FRAMEWORK

For o > 0, a collection of conditional distributions {Q;}{_; constitutes a user-level
a-LDP mechanism if, for all i € {1,..., n}, all X x’EfT € X7 and all
Zy(i—1) € Z,

Q(Zi € SIX = X, Zugy = 216-1)

W _ 0 < e
s Qi(Zi € S|X1:T =X 1;T721:(i71) = Z1:(i71))

We consider the user-level a-LDP minimax risk

Ro1.a(0(P),®0p) = inf infsupEpq{®o p(t9 6(P))}.
Q€Qa § pecp
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INFINITE-T SCENARIO

A motivating example

Estimating the mean of a distribution from the family P = {P: Ep(X) € [-1,1]},
we can show that the user-level LDP minimax risk is lower bounded

1
nTao?’

Rara(0(P), () 2 1A

This coincides with the item-level minimax rate (Duchi et al., 2018).
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A motivating example

Estimating the mean of a distribution from the family P = {P: Ep(X) € [-1,1]},
we can show that the user-level LDP minimax risk is lower bounded

1
nTao?’

Rara(0(P), () 2 1A

This coincides with the item-level minimax rate (Duchi et al., 2018).
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INFINITE-T SCENARIO

A motivating example

Estimating the mean of a distribution from the family P = {P: Ep(X) € [-1,1]},
we can show that the user-level LDP minimax risk is lower bounded
1

Rora(0(P). () 2 1A 7.

This coincides with the item-level minimax rate (Duchi et al., 2018).
Question: When T — oo, will R, 7, (9(’P ) vanish?

Answer: Up to logarithmic factor

Rinoora (0(P), () = e,

> Rioo,a (0(P), (-)2) = Ra1,a (0(P>), (-)?) and
» P = {6g: 0 € O(P)} - collection of Dirac distributions.
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INFINITE-T SCENARIO

General infinite-T rates

Given § > 0, let N(9) be the d-covering number of the metric space (O, p) with
© = 0(P) and suppose that N(20) > 1. For a € (0, 1] and with
diam(©) = supy 4o p(6,6’), it holds that

®(d) 1 12na’ + log(2)
2 log (N(26))

< O(5) + P (diam(©))N(5)e " /.

} < Rioora (0(P), D0 p)
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INFINITE-T SCENARIO

®(9) 12n0? + log(2)
2 {1 ~ log (N(26)) } < Rico,a (0(P), ® 0 p)

< ®(0) + @ (diam(©)) /\/(5)e*nuz/zo

Remarks

» Forall T € N, it holds that

®(5) 12na” + log(2)
Ru1,a(0(P), ®op) 2 2 {1 - log (N(26)) }

» Choosing
N(2618) > exp ([24na® + 210g(2)]) and ®(5us) > & (diam(©)) N(Sus)e "™/,

we have that
®(618) < Rinoo,a (0(P), 0 p) < D(dus).
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INFINITE-T SCENARIO

d(5) 12na? +| g( )

< @(6) + ¢(diam(@)) N((S)e*mvz/zo

The lower bound is due to an application of Fano’s inequality and an upper bound
on the private Kullback-Leibler divergence (Duchi et al., 2018).

The upper bound is obtained via a non-interactive mechanism with a voting
procedure.
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INFINITE-T SCENARIO

Rusora (0(P), @ 0 p) < &(5) + & (diam(©)) N(8)e " /»

An upper bound procedure

» Step 1. Construct a §-cover of (©, p) and make it non-overlapping.
> Step 2. Each user publicises a private vote for which ball their data lie in.

» Step 3. Output the centre of the majority-vote ball.

EEENCEE
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INFINITE-T SCENARIO

v

Risooia (0(P), ® 0 p) < &(8) + b (diam(©)) N(8)e ™"/

An upper bound procedure

Step 1. Construct a d-cover of (©, p) and make it non-overlapping.

Step 2. Each user publicises a private vote for which ball their data lie in.
Step 3. Output the centre of the majority-vote ball.

Interpretation of the upper bound

®(0) - the error occurred when the correct ball is chosen.

> & (diam(©)) - the error occurred when the correct ball is not chosen.

> N((S)e_"o‘z/20 - the probability upper bound of the correct ball is not chosen.
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INFINITE-T SCENARIO

Applications of the general bounds

d-dim. mean (B,(1))  Sparse mean  Density (Sobolev S-smooth)

No privacy d/n slog(d/s)/n  n28/C5+D
P d/(na?) sd/(na?) (na2)—25/(26+2)
'POO efnaz/d efnaz/s (na2)72g
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION

Consider the family of distributions
Pd,s = {P: supp(P) C Boo(1) C ]Rd, IEA(X)lo < s}

and the functional 6(P) = Ep(X).
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION

Consider the family of distributions
Pd,s = {P: supp(P) C Boo(1) C ]Rd, IEA(X)lo < s}

and the functional 6(P) = Ep(X).

THEOREM For s satisfying 16 log(d)/3 < s < d, assume that na® > slog(ed). We
have that

1 d VT 7Cno¢2/s 2
e (1+Ez) 1l ve S Rura(0(Pas), 1|+ 1)

slog(nTa’d) v e/ |y sdlog?(nTa?) e
T nTa?
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION

1 d v —Cna?/s 2
s|FA 14 — —13| Ve S Rat.a(0(Pas), |- 1I7)

{M " /} . {M Ve /d}

T nTa?

Remarks

Roughly speaking, under the condition that T 2> log{d/(na?)}, we consider two
regimes.

> If na? < d7, for some 0 < «y < 1, then up to logarithmic factors
2
Ra, 1.0 (0(Pa,s), || -113) = s/Tv e /s,
» If na? 2 dlog(nTa?), then up to logarithmic factors
R 1. (0(Pd,s), || - [13) =< sd/(nTa?).
Roughly speaking, we say the rate is

N

S —Cna?/s
T .

(

d
V——Ve
no

Rot.a(0(Pas), I - 12)

~lw
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION

s 1 A 1+ d v 1Y ve ™R (0(Pa.s), || - 112)
T o ~ n,T,c d,s)s 2

T nTa?

The lower bound is due to an application of Assouad’s method and an upper bound
on the private total-variation distance (Acharya et al., 2023).

The upper bound is obtained by a two-component procedure depending on the
value of T.

» Large T. If na? < dlog(nTa?), then we summon a hashing-type voting procedure. Half
of the users voting for the non-zero coordinates and the other half conduct an
s-dimensional mean estimation.

» Small T. If na? > dlog(nTa?), then we summon a thresholding step after initial
estimation.
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION

In the large T scenario, the intuition is that T data points are enough to obtain a
good enough coordinate selection.
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION
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In the large T scenario, the intuition is that T data points are enough to obtain a
good enough coordinate selection.

With a pre-specified threshold €, which is also used to select entries to be non-zero
as long as the T-sample average exceeds ¢, let

Si={j:16]>2}, S={:0<|6]<2} and S ={j: 6 =0}

Let A be the event that S; are all chosen and S, are all non-chosen.



FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION

In the large T scenario, the intuition is that T data points are enough to obtain a
good enough coordinate selection.

With a pre-specified threshold €, which is also used to select entries to be non-zero
as long as the T-sample average exceeds ¢, let
Si={j:16]>2}, S={:0<|6]<2} and S ={j: 6 =0}

Let A be the event that S; are all chosen and S, are all non-chosen.

the estimation error follows

E{|16 - 0]I3}
S Z 0+ Z [e’P{A} + 1P{A}] + Z error
j:0;=0,8;=0 j:0;=0,8;7#0 j:0;#0

<0 4 se” + sP{ A} + s-dim vector est error rate
<s|og(dT02) " s’ log(nTa?/s)
~ T nTa?

2

/s

—Cna
Ve
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION
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Lying in the core of the sparse,
high-dimensional mean estimation
procedures is a multivariate mean
estimation procedure (with

dist. supported on B (1)).

Lying in the core of the multivariate
(Boo(1)) mean estimation procedure is
a univariate mean estimation
procedure (with dist. supported on

[=1,1]).
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FINITE-T SCENARIO: SPARSE, HIGH-DIM. MEAN ESTIMATION

1 d YT 7(‘n(y2/s 2
s|l=AL 14+ — 1 Ve " SRu1.a(0(Pas), |- 1I2)

na?

slog(nTa’d) v e /s | sdlog?(nTa?) v e/l
T nTao?

Discussions
» Comparisons with item-level LDP rates.
» The exponential terms in upper and lower bounds: Where are they from?

» What if we do not have the knowledge of s?
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CENARIO

3
B}
o

o

nT-item level equiv.
to user-level

User-level harder

3
2
Yo

o

nT-item level equiv.
to user-level

User-level harder

User-level easier
T = log

Both impossible B ADOSSIBIS
1 1
(a) Estimation on £2-ball (b) Sparse mean estimation (s = 1)
d-dim. mean (B(1))  s-sparse d-dim. mean Density (Sobolev 3-smooth)
Small T d/(nTa?) s/T Asd/(nTa?) (nTa2)=28/26+D)
Large T e—ne’/d e—ne’/s (na?)—28
a?/ 2) >
Boundary ena’/d s"s d/(na?) 21 (na2)2ﬁ+1

en’/dd/(na?) <1
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DiscussioNs

» User-level LDP in other statistical tasks, e.g. testing.

> Mixture of different notions of DP, including use of public data in distributed
learning.

» Phase transition regarding T in FDP.

> Largee.

> Adaptivity.
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DiscussioNs

» User-level LDP in other statistical tasks, e.g. testing.

> Mixture of different notions of DP, including use of public data in distributed
learning.

» Phase transition regarding T in FDP.

> Largee.

> Adaptivity.

» Dependent data.
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