Bypassing the Impossibility of Online Learning Thresholds: Unbounded Losses and Transductive Priors

Nikita Zhivotovskiy¹

¹UC Berkeley, Department of Statistics

Based on the joint work with Jian Qian and Sasha Rakhlin (MIT)

Online learning for thresholds is hard

Observe a sequence x_1, \ldots, x_T of points in [0, 1] labeled by a threshold as either +1 or -1.

This yields T mistakes after T rounds.

Thresholds \mapsto classification with half-spaces (linear classification).

Question

How does the difficulty of online learning thresholds affect online learning with unbounded losses:

- logistic regression loss $-\log(\sigma(y\langle x, \theta \rangle))$,
- hinge loss $(1 y\langle x, \theta \rangle)_+$,

• regression with square loss $(y - \langle x, \theta \rangle)^2$?

Sequential linear regression

We observe a sequence $(x_t, y_t)_{t=1}^T$, with $x_t \in \mathbb{R}^d$, $y_t \in \mathbb{R}$. At round *t* we observe x_t and $(x_1, y_1), \ldots, (x_{t-1}, y_{t-1})$ and want to predict y_t .

$$\widehat{\theta}_t = \arg\min_{\theta \in \mathbb{R}^d} \left(\sum_{i=1}^{t-1} (y_i - \langle x_i, \theta \rangle)^2 + (\langle x_t, \theta \rangle)^2 + \lambda \|\theta\|^2 \right).$$

Theorem: Vovk, 1998

Assume that $\max_t ||x_t||_2 \le r$ and $\max_t |y_t| \le m$. The following holds for any $\theta^* \in \mathbb{R}^d$:

$$\sum_{t=1}^{T} (y_t - \langle x_t, \widehat{\theta}_t \rangle)^2 \leq \sum_{t=1}^{T} (y_t - \langle x_t, \theta^* \rangle)^2 + \lambda \|\theta^*\|_2^2 + dm^2 \log\left(1 + \frac{Tr^2}{d\lambda}\right)$$

Back to binary loss and thresholds

There are ways to bypass the difficulty of the threshold example:

- Assuming that the sequence x_1, \ldots, x_T is i.i.d.
- Making the margin assumption as in the perceptron analysis.
- Smoothed online learning.
- **Transductive setup:** the set $\{x_1, \ldots, x_T\}$ is known in advance.

If we are given the set $\{x_1, \ldots, x_T\}$, we can limit ourselves to T + 1 predictors and make at most $\log_2(T + 1)$ mistakes.

- The transductive model in online learning provides a simple playground where the difficulty of learning thresholds is not present.
- Transductive online regret bounds imply statistical excess risk bounds!

Regression: Can we improve Vovk's bound?

Assume that $\{x_1, \ldots, x_T\}$ is known in advance.

Initiated by Bartlett, Koolen, Malek, Takimoto, and Warmuth (2015): the minimax strategy for the regression problem is found.

Theorem: Gaillard, Gerchinovitz, Huard, Stoltz (2019)

$$\widetilde{\theta}_{t} = \arg\min_{\theta \in \mathbb{R}^{d}} \left(\sum_{i=1}^{t-1} (y_{i} - \langle x_{i}, \theta \rangle)^{2} + (\langle x_{t}, \theta \rangle)^{2} + \lambda \sum_{i=1}^{T} (\langle x_{i}, \theta \rangle)^{2} \right).$$
The following holds for any $\theta^{\star} \in \mathbb{R}^{d}$,

$$\sum_{t=1}^{T} (y_{t} - \langle x_{t}, \widetilde{\theta}_{t} \rangle)^{2} \leq \sum_{t=1}^{T} (y_{t} - \langle x_{t}, \theta^{\star} \rangle)^{2} + \lambda Tm^{2} + dm^{2} \log \left(1 + \frac{1}{\lambda}\right)$$

Implications

In particular, fixing $\lambda = \frac{d}{T}$, we obtain for T > 2d, for any sequence of x_t -s and for any θ^* ,

$$\sum_{t=1}^{T} (y_t - \langle x_t, \widetilde{\theta}_t \rangle)^2 - \sum_{t=1}^{T} (y_t - \langle x_t, \theta^{\star} \rangle)^2 \lesssim dm^2 \log \left(T/d\right).$$

The loss is technically unbounded, we bound neither $||x_t||$, nor $||\theta^*||$! Since x_1, \ldots, x_T are known, we may assume $||x_t||_2 \le 1$.

We still might have to pay for $\|\theta^{\star}\|_2$.

Question

In the transductive setup, for which loss functions can we obtain the d log T regret bound independent of both x_1, \ldots, x_T and θ^* ?

An approach based on exponential weights

The upper bound of Vovk (1998), is usually proved by general results for FTRL predictors + linear algebra.

We return to the original approach: Vovk's predictor is an instance of the exponential weights predictor.

Let $\ell_{\theta}(\cdot) : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ be a set of loss functions parameterized by some $\Theta \subseteq \mathbb{R}^d$.

Fix some prior μ over Θ . Define $\rho_1 = \mu$ and for $t \ge 2$:

$$\rho_t(\theta) \propto \exp\left(-\eta \sum_{i=1}^{t-1} \ell_{\theta}(\mathbf{x}_i, \mathbf{y}_i)\right) \mu(\theta).$$

Beyond FTRL/linear algebra: ExpWeights for Sparsity

Example: How to take sparsity of θ^* into account? ($\|\theta^*\|_0 \leq s$) Choose the data dependent prior in \mathbb{R}^d , which is a product of *d* scaled densities in \mathbb{R} ,

$$f(x) = \frac{3}{2(1+|x|)^4}.$$
$$\mu(\theta) = \prod_{j=1}^d \frac{3 \cdot \sqrt{\sum_{t=1}^T (x_t^{(j)})^2}/\tau}{2\left(1+|\theta^{(j)}| \cdot \sqrt{\sum_{t=1}^T (x_t^{(j)})^2}/\tau\right)^4}.$$

An x_t -independent version of this prior has been used by Dalalyan and Tsybakov for denoising problems.

Sparsity

Define

$$L_t(\theta, x, y) = (y - \langle x, \theta \rangle)^2 + \sum_{i=1}^{t-1} (y_i - \langle x_i, \theta \rangle)^2, - \text{A quadratic form!}$$
$$\widehat{f}_t(x) = \frac{m}{2} \log \left(\frac{\int_{\mathbb{R}^d} \exp\left(-\frac{1}{2m^2} L_t(\theta, x, m)\right) \mu(\theta) d\theta}{\int_{\mathbb{R}^d} \exp\left(-\frac{1}{2m^2} L_t(\theta, x, -m)\right)} \mu(\theta) d\theta \right).$$
Gaussian-type integral

Theorem: Qian, Rakhlin, Zh

Assume that $\max_t |y_t| \leq m$ and that the smallest scaled singular value condition (similar to the lower tail of the RIP condition) is satisfied with constant κ_s . For any s-sparse $\theta^* \in \mathbb{R}^d$,

$$\sum_{t=1}^{T} (y_t - \widehat{f}_t(x_t))^2 - \sum_{t=1}^{T} (y_t - \langle x_t, \theta^* \rangle)^2 \lesssim sm^2 \log\left(\frac{dT}{\kappa_s^2 s}\right).$$

Logistic regression

Logistic regression with the logarithmic loss: $x \in \mathbb{R}^d$, $y \in \{1, -1\}$. Our probability assignment for x is given by

$$\sigma(y\langle x,\theta\rangle) = \frac{1}{1 + \exp(-y\langle x,\theta\rangle)}$$

We focus on the logarithmic/cross-entropy loss $-\log(\sigma(y\langle x, \theta \rangle))$.

$$\text{Regret} = -\sum_{t=1}^{T} \log(\widehat{p}_t(x_t, y_t)) - \inf_{\theta} \left[-\sum_{t=1}^{T} \log(\sigma(y_t \langle x_t, \theta \rangle)) \right]$$

Probability assignments in logistic regression

What are the best known regret bounds?

$$\text{Regret} = -\sum_{t=1}^{T} \log(\widehat{p}_t(x_t, y_t)) - \inf_{\theta \in \mathbb{R}^d} - \sum_{t=1}^{T} \log(\sigma(y_t \langle x_t, \theta \rangle)).$$

- Online gradient descent: Regret $\leq \|\theta^{\star}\|\sqrt{T}$.
- Online Newton step: Regret $\leq d \exp(\|\theta^*\|) \log(T)$.
- Exponential weights: Regret ≤ dlog(||θ*||T) (Kakade and Ng, 2004, Cesa-Bianchi and Lugosi 2006, Foster, Kale, Luo, Mohri, and Sridharan 2018) all related to (Vovk, 2001)'s work on sequential linear regression.

In fact, $\min\{d \log(\|\theta^*\|), T\}$ cannot be improved! The example is based on the lower bound for classification of thresholds.

The hard case

Recall

$$\theta^{\star} = \arg \inf_{\theta \in \mathbb{R}^d} - \sum_{t=1}^T \log(\sigma(y_t \langle x_t, \theta \rangle)).$$

Do we really need to suffer from large $\|\theta^{\star}\|$?

Logistic Regression with known x_t -s

We focus on the sequential probability assignment where the covariates x_t (i.e., the set $\{x_1, \ldots, x_T\}$) are known in advance.

Theorem: Qian, Rakhlin, Zh

Given a known set of covariates $\{x_1, \ldots, x_T\}$, there exists an expweights-based sequence of probability assignments \hat{p}_t such that

$$\sum_{t=1}^{T} -\log(\widehat{p}_t(x_t, y_t)) - \inf_{\theta \in \mathbb{R}^d} \sum_{t=1}^{T} -\log(\sigma(y_t \langle x_t, \theta \rangle)) \lesssim d \log T.$$

Geometric ideas

The solution θ^* classifies the sample as follows:

- Outside, put probability 1 to the correct label.
- Aggregate with exponential weights with respect to the slabs (VC class).

Implications in the i.i.d. case

Observation: Regret bounds in online learning with known x_t -s imply excess risk bounds in the i.i.d. case without any assumptions on x_t .

"Fixed design" online prediction implies results for random design statistical setup!

If we observe an i.i.d. sample $(X_1, Y_1), \ldots, (X_T, Y_T)$, then there is a predictor \tilde{p} such that

$$\mathbb{E}(-\log(\widetilde{p}(X,Y))) - \inf_{ heta \in \mathbb{R}^d} \mathbb{E}(-\log(\sigma(Y\langle X, heta
angle))) \lesssim rac{d\log T}{T}$$

Classification with hinge loss

$$\frac{(\gamma - y\widehat{f}(x))_+}{\gamma}$$

First, using exponential weights with Gaussian prior with clipping:

Theorem: Qian, Rakhlin, Zh

Assume that $||x_t|| \leq 1$. Then, for any $\eta \in [0, 3/(10\gamma)]$, there is a sequence of predictors $\{\hat{f}_t(\cdot)\}_{t=1}^T$ such that

$$\sum_{t=1}^{T} \frac{(\gamma - y_t \widehat{f}_t(x_t))_+}{\gamma}$$

$$\leq (1 + 2\eta\gamma) \left(\sum_{t=1}^{T} \frac{(\gamma - y_t \langle x_t, \theta^* \rangle)_+}{\gamma} + \frac{cd \log \left(1 + \eta^2 T^2 ||\theta^*||^2\right)}{\eta\gamma} \right)$$

Back to transductive setting

When the set $\{x_1, \ldots, x_T\}$ is known, the dependence on both γ and θ^* disappears under the logarithm:

Theorem: Qian, Rakhlin, Zh

Assume that $||x_t|| \le 1$. Then, in the transductive setting, for any $\eta \in [0, 3/(10\gamma)]$, there is a sequence of predictors $\hat{f}(x_t)$ such that

$$\sum_{t=1}^{T} \frac{(\gamma - y_t \widehat{f}(x_t))_+}{\gamma}$$

 $\leq (1 + 2\eta\gamma) \left(\sum_{t=1}^{T} \frac{(\gamma - y_t \langle x_t, \theta^* \rangle)_+}{\gamma} + \frac{cd \log{(T)}}{\eta\gamma} \right).$