Bypassing the Impossibility of Online Learning Thresholds: Unbounded Losses and Transductive Priors

Nikita Zhivotovskiy¹

¹UC Berkeley, Department of Statistics

Based on the joint work with Jian Qian and Sasha Rakhlin (MIT)

Online learning for thresholds is hard

Observe a sequence x_1, \ldots, x_T of points in [0, 1] labeled by a threshold as either $+1$ or -1 .

This yields T mistakes after T rounds.

Thresholds \mapsto classification with half-spaces (linear classification).

Question

How does the difficulty of online learning thresholds affect online learning with unbounded losses:

- logistic regression loss $-\log(\sigma(y\langle x,\theta\rangle))$,
- **n** hinge loss $(1 y\langle x, \theta \rangle)_+$,

regression with square loss $(y - \langle x, \theta \rangle)^2$?

Sequential linear regression

We observe a sequence $(x_t, y_t)_{t=1}^T$, with $x_t \in \mathbb{R}^d, y_t \in \mathbb{R}$. At round t we observe x_t and $(x_1, y_1), \ldots, (x_{t-1}, y_{t-1})$ and want to predict y_t .

$$
\widehat{\theta}_t = \arg\min_{\theta \in \mathbb{R}^d} \left(\sum_{i=1}^{t-1} (y_i - \langle x_i, \theta \rangle)^2 + (\langle x_t, \theta \rangle)^2 + \lambda \|\theta\|^2 \right).
$$

Theorem: Vovk, 1998

Assume that $\mathsf{max}_t\, \Vert x_t \Vert_2 \leq r$ and $\mathsf{max}_t\, |\mathsf{y}_t| \leq m.$ The following holds for any $\theta^{\star} \in \mathbb{R}^d$:

$$
\sum_{t=1}^{T} (\gamma_t - \langle x_t, \hat{\theta}_t \rangle)^2 \le \sum_{t=1}^{T} (\gamma_t - \langle x_t, \theta^* \rangle)^2
$$

$$
+ \lambda \|\theta^* \|^2 + dm^2 \log \left(1 + \frac{Tr^2}{d\lambda} \right)
$$

.

Back to binary loss and thresholds

There are ways to bypass the difficulty of the threshold example:

- Assuming that the sequence x_1, \ldots, x_T is i.i.d.
- Making the margin assumption as in the perceptron analysis.
- Smoothed online learning.
- **Transductive setup:** the set $\{x_1, \ldots, x_T\}$ is known in advance.

If we are given the set $\{x_1, \ldots, x_T\}$, we can limit ourselves to $T + 1$ predictors and make at most $\log_2(T+1)$ mistakes.

- The transductive model in online learning provides a simple playground where the difficulty of learning thresholds is not present.
- Transductive online regret bounds imply statistical excess risk bounds!

Regression: Can we improve Vovk's bound?

Assume that $\{x_1, \ldots, x_T\}$ is known in advance.

Initiated by Bartlett, Koolen, Malek, Takimoto, and Warmuth (2015): the minimax strategy for the regression problem is found.

Theorem: Gaillard, Gerchinovitz, Huang, Stoltz (2019)
\n
$$
\widetilde{\theta}_t = \arg \min_{\theta \in \mathbb{R}^d} \left(\sum_{i=1}^{t-1} (y_i - \langle x_i, \theta \rangle)^2 + (\langle x_t, \theta \rangle)^2 + \lambda \sum_{i=1}^T (\langle x_i, \theta \rangle)^2 \right).
$$
\nThe following holds for any $\theta^* \in \mathbb{R}^d$,
\n
$$
\sum_{t=1}^T (y_t - \langle x_t, \widetilde{\theta}_t \rangle)^2 \le \sum_{t=1}^T (y_t - \langle x_t, \theta^* \rangle)^2 + \lambda T m^2 + dm^2 \log \left(1 + \frac{1}{\lambda} \right).
$$

Implications

In particular, fixing $\lambda = \frac{d}{l}$ $\frac{d}{d}$, we obtain for $T > 2d$, for any sequence of x_t -s and for any θ^* ,

$$
\sum_{t=1}^T (\gamma_t - \langle x_t, \widetilde{\theta}_t \rangle)^2 - \sum_{t=1}^T (\gamma_t - \langle x_t, \theta^{\star} \rangle)^2 \lesssim dm^2 \log \left(T/d \right).
$$

The loss is technically unbounded, we bound neither $\Vert x_{t}\Vert$, nor $\Vert\theta^{\star}\Vert$! Since x_1, \ldots, x_T are known, we may assume $||x_t||_2 < 1$.

We still might have to pay for $\|\theta^\star\|_2$.

Question

In the transductive setup, for which loss functions can we obtain the d log T regret bound independent of both x_1, \ldots, x_T and θ^{\star} ?

An approach based on exponential weights

The upper bound of Vovk (1998), is usually proved by general results for FTRL predictors + linear algebra.

We return to the original approach: Vovk's predictor is an instance of the exponential weights predictor.

Let $\ell_{\theta}(\cdot) : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_{+}$ be a set of loss functions parameterized by some $\Theta \subseteq \mathbb{R}^d$.

Fix some prior μ over Θ . Define $\rho_1 = \mu$ and for $t \geq 2$:

$$
\rho_t(\theta) \propto \exp\left(-\eta \sum_{i=1}^{t-1} \ell_\theta(x_i, y_i)\right) \mu(\theta).
$$

Beyond FTRL/linear algebra: ExpWeights for Sparsity

Example: How to take sparsity of θ^\star into account? ($\|\theta^\star\|_0 \leq s$) Choose the data dependent prior in $\mathbb{R}^d,$ which is a product of d scaled densities in R,

$$
f(x) = \frac{3}{2(1+|x|)^4}.
$$

$$
\mu(\theta) = \prod_{j=1}^d \frac{3 \cdot \sqrt{\sum_{t=1}^T (x_t^{(j)})^2}/\tau}{2\left(1+|\theta^{(j)}| \cdot \sqrt{\sum_{t=1}^T (x_t^{(j)})^2}/\tau\right)^4}.
$$

An x_t -independent version of this prior has been used by Dalalyan and Tsybakov for denoising problems.

Sparsity

Define

$$
L_t(\theta, x, y) = (y - \langle x, \theta \rangle)^2 + \sum_{i=1}^{t-1} (y_i - \langle x_i, \theta \rangle)^2, -A \text{ quadratic form!}
$$

$$
\widehat{f}_t(x) = \frac{m}{2} \log \left(\frac{\int_{\mathbb{R}^d} \exp\left(-\frac{1}{2m^2} L_t(\theta, x, m)\right) \mu(\theta) d\theta}{\int_{\mathbb{R}^d} \exp\left(-\frac{1}{2m^2} L_t(\theta, x, -m)\right) \mu(\theta) d\theta} \right).
$$
Gaussian-type integral

Theorem: Qian, Rakhlin, Zh

Assume that $\mathsf{max}_t \, |\mathsf{y}_t| \leq \mathsf{m}$ and that the smallest scaled singular value condition (similar to the lower tail of the RIP condition) is satisfied with constant $\kappa_s.$ For any s-sparse $\theta^\star \in \mathbb{R}^d,$

$$
\sum_{t=1}^T (\gamma_t - \widehat{f}_t(x_t))^2 - \sum_{t=1}^T (\gamma_t - \langle x_t, \theta^{\star} \rangle)^2 \lesssim sm^2 \log \left(\frac{dT}{\kappa_s^2 s} \right).
$$

Logistic regression

Logistic regression with the logarithmic loss: $x \in \mathbb{R}^d, y \in \{1, -1\}.$ Our probability assignment for x is given by

$$
\sigma(y\langle x,\theta\rangle)=\frac{1}{1+\exp(-y\langle x,\theta\rangle)}.
$$

We focus on the logarithmic/cross-entropy loss $-\log(\sigma(v\langle x,\theta \rangle))$.

Regret =
$$
-\sum_{t=1}^{T} \log(\widehat{p}_t(x_t, y_t)) - \inf_{\theta} \left[-\sum_{t=1}^{T} \log(\sigma(y_t \langle x_t, \theta \rangle)) \right].
$$

Probability assignments in logistic regression

What are the best known regret bounds?

Regret =
$$
-\sum_{t=1}^{T} \log(\widehat{p}_t(x_t, y_t)) - \inf_{\theta \in \mathbb{R}^d} - \sum_{t=1}^{T} \log(\sigma(y_t(x_t, \theta))).
$$

- Online gradient descent: Regret $\lesssim \|\theta^\star\|$ $\sqrt{ }$ T.
- Online Newton step: Regret $\lesssim d$ exp $(\|\theta^\star\|)$ log $(\tau).$
- Exponential weights: Regret $\lesssim d \log(\|\theta^\star\| \textit{T})$ (Kakade and Ng, 2004, Cesa-Bianchi and Lugosi 2006, Foster, Kale, Luo, Mohri, and Sridharan 2018) — all related to (Vovk, 2001)'s work on sequential linear regression.

In fact, min $\{d\log(\|\theta^\star\|),$ $T\}$ cannot be improved! The example is based on the lower bound for classification of thresholds.

The hard case

Recall

$$
\theta^* = \arg \inf_{\theta \in \mathbb{R}^d} - \sum_{t=1}^T \log(\sigma(y_t \langle x_t, \theta \rangle)).
$$

Do we really need to suffer from large $\|\theta^{\star}\|$?

Logistic Regression with known x_t -s

We focus on the sequential probability assignment where the covariates x_t (i.e., the set $\{x_1, \ldots, x_T\}$) are known in advance.

Theorem: Qian, Rakhlin, Zh

Given a known set of covariates $\{x_1, \ldots, x_T\}$, there exists an expweights-based sequence of probability assignments \hat{p}_t such that

$$
\sum_{t=1}^T -\log(\widehat{p}_t(x_t, y_t)) - \inf_{\theta \in \mathbb{R}^d} \sum_{t=1}^T -\log(\sigma(y_t(x_t, \theta))) \lesssim d \log T.
$$

Geometric ideas

The solution θ^\star classifies the sample as follows:

■ Aggregate with exponential weights with respect to the slabs (VC class).

Implications in the i.i.d. case

Observation: Regret bounds in online learning with known x_t -s imply excess risk bounds in the i.i.d. case without any assumptions on x_t .

"Fixed design" online prediction implies results for random design statistical setup!

If we observe an i.i.d. sample $(X_1, Y_1), \ldots, (X_T, Y_T)$, then there is a predictor \widetilde{p} such that

$$
\mathop{\mathbb{E}}(-\log(\widetilde{p}(X,Y))) - \inf_{\theta \in \mathbb{R}^d} \mathop{\mathbb{E}}(-\log(\sigma(Y\langle X, \theta \rangle))) \lesssim \frac{d \log T}{T}.
$$

Classification with hinge loss

$$
\frac{(\gamma-\hat{\mathcal{Y}f(x)})_+}{\gamma}.
$$

First, using exponential weights with Gaussian prior with clipping:

Theorem: Qian, Rakhlin, Zh

Assume that $||x_t|| \leq 1$. Then, for any $\eta \in [0, 3/(10\gamma)]$, there is a sequence of predictors $\{\hat{f}_t(\cdot)\}_{t=1}^T$ such that

$$
\sum_{t=1}^{T} \frac{(\gamma - y_t \hat{f}_t(x_t))_+}{\gamma} \n\leq (1 + 2\eta \gamma) \left(\sum_{t=1}^{T} \frac{(\gamma - y_t(x_t, \theta^{\star}))_+}{\gamma} + \frac{cd \log (1 + \eta^2 T^2 ||\theta^{\star}||^2)}{\eta \gamma} \right)
$$

.

Back to transductive setting

When the set $\{x_1, \ldots, x_T\}$ is known, the dependence on both γ and θ^\star disappears under the logarithm:

Theorem: Qian, Rakhlin, Zh

Assume that $||x_t|| \leq 1$. Then, in the transductive setting, for any $\eta \in [0, 3/(10\gamma)]$, there is a sequence of predictors $\hat{f}(x_t)$ such that

$$
\sum_{t=1}^{T} \frac{(\gamma - y_t \hat{f}(x_t))_+}{\gamma} \leq (1 + 2\eta \gamma) \left(\sum_{t=1}^{T} \frac{(\gamma - y_t \langle x_t, \theta^* \rangle)_+}{\gamma} + \frac{cd \log(T)}{\eta \gamma} \right).
$$