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Online learning for thresholds is hard

Observe a sequence x1, . . . , xT of points in [0, 1] labeled by a
threshold as either +1 or −1.
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This yields T mistakes after T rounds.
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Thresholds 7→ classification with half-spaces (linear classification).

Question

How does the difficulty of online learning thresholds affect online
learning with unbounded losses:

logistic regression loss − log(σ(y⟨x, θ⟩)),
hinge loss (1− y⟨x, θ⟩)+,
regression with square loss (y − ⟨x, θ⟩)2?
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Sequential linear regression

We observe a sequence (xt , yt)Tt=1, with xt ∈ Rd , yt ∈ R. At round t
we observe xt and (x1, y1), . . . , (xt−1, yt−1) and want to predict yt .

θ̂t = arg min
θ∈Rd

(∑t−1

i=1
(yi − ⟨xi, θ⟩)2 + (⟨xt , θ⟩)2 + λ∥θ∥2

)
.

Theorem: Vovk, 1998

Assume that maxt ∥xt∥2 ≤ r and maxt |yt | ≤ m. The following
holds for any θ⋆ ∈ Rd :

T∑
t=1

(yt − ⟨xt , θ̂t⟩)2 ≤
T∑

t=1

(yt − ⟨xt , θ⋆⟩)2

+ λ∥θ⋆∥22 + dm2 log

(
1+

Tr2

dλ

)
.
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Back to binary loss and thresholds
There are ways to bypass the difficulty of the threshold example:

Assuming that the sequence x1, . . . , xT is i.i.d.
Making the margin assumption as in the perceptron analysis.
Smoothed online learning.
Transductive setup: the set {x1, . . . , xT} is known in advance.

If we are given the set {x1, . . . , xT}, we can limit ourselves to T + 1
predictors and make at most log2(T + 1) mistakes.

The transductive model in online learning provides a
simple playground where the difficulty of learning
thresholds is not present.

Transductive online regret bounds imply statistical excess
risk bounds!
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Regression: Can we improve Vovk’s bound?

Assume that {x1, . . . , xT} is known in advance.

Initiated by Bartlett, Koolen, Malek, Takimoto, and Warmuth (2015):
the minimax strategy for the regression problem is found.

Theorem: Gaillard, Gerchinovitz, Huard, Stoltz (2019)

θ̃t = arg min
θ∈Rd

(
t−1∑
i=1

(yi − ⟨xi, θ⟩)2 + (⟨xt , θ⟩)2 + λ

T∑
i=1

(⟨xi, θ⟩)2
)
.

The following holds for any θ⋆ ∈ Rd ,

T∑
t=1

(yt−⟨xt , θ̃t⟩)2 ≤
T∑

t=1

(yt−⟨xt , θ⋆⟩)2+λTm2+dm2 log

(
1+

1
λ

)
.

Zhivotovskiy Transductive priors 6 / 19



Implications

In particular, fixing λ = d
T , we obtain for T > 2d , for any sequence

of xt-s and for any θ⋆,

T∑
t=1

(yt − ⟨xt , θ̃t⟩)2 −
T∑

t=1

(yt − ⟨xt , θ⋆⟩)2 ≲ dm2 log (T/d) .

The loss is technically unbounded, we bound neither ∥xt∥, nor ∥θ⋆∥ !
Since x1, . . . , xT are known, we may assume ∥xt∥2 ≤ 1.

We still might have to pay for ∥θ⋆∥2.
Question

In the transductive setup, for which loss functions can we obtain
the d log T regret bound independent of both x1, . . . , xT and θ⋆?
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An approach based on exponential weights

The upper bound of Vovk (1998), is usually proved by general results
for FTRL predictors + linear algebra.

We return to the original approach: Vovk’s predictor is an instance
of the exponential weights predictor.

Let ℓθ(·) : X × Y → R+ be a set of loss functions parameterized by
some Θ ⊆ Rd .
Fix some prior µ over Θ. Define ρ1 = µ and for t ≥ 2:

ρt(θ) ∝ exp

(
−η

t−1∑
i=1

ℓθ(xi, yi)

)
µ(θ).
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Beyond FTRL/linear algebra: ExpWeights for Sparsity

Example: How to take sparsity of θ⋆ into account? (∥θ⋆∥0 ≤ s)

Choose the data dependent prior in Rd , which is a product of d
scaled densities in R,

f (x) =
3

2(1+ |x|)4
.

µ(θ) =
d∏

j=1

3 ·
√∑T

t=1(x
(j)
t )2/τ

2
(
1+ |θ(j)| ·

√∑T
t=1(x

(j)
t )2/τ

)4 .

An xt-independent version of this prior has been used by Dalalyan
and Tsybakov for denoising problems.
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Sparsity
Define

Lt(θ, x, y) = (y−⟨x, θ⟩)2+
∑t−1

i=1
(yi−⟨xi, θ⟩)2, — A quadratic form!

f̂t(x) =
m
2
log

( ∫
Rd exp

(
− 1

2m2 Lt(θ, x,m)
)
µ(θ)dθ∫

Rd exp

(
− 1
2m2 Lt(θ, x,−m)

)
︸ ︷︷ ︸

Gaussian-type integral

µ(θ)dθ

)
.

Theorem: Qian, Rakhlin, Zh

Assume thatmaxt |yt | ≤ m and that the smallest scaled singular
value condition (similar to the lower tail of the RIP condition) is
satisfied with constant κs . For any s-sparse θ⋆ ∈ Rd ,

T∑
t=1

(yt − f̂t(xt))2 −
T∑

t=1

(yt − ⟨xt , θ⋆⟩)2 ≲ sm2 log

(
dT
κ2s s

)
.
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Logistic regression

Logistic regression with the logarithmic loss: x ∈ Rd , y ∈ {1,−1}.
Our probability assignment for x is given by

σ(y⟨x, θ⟩) = 1
1+ exp(−y⟨x, θ⟩)

.

We focus on the logarithmic/cross-entropy loss − log(σ(y⟨x, θ⟩)).

Regret = −
T∑

t=1

log(p̂t(xt , yt))− inf
θ

[
−

T∑
t=1

log(σ(yt⟨xt , θ⟩))

]
.
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Probability assignments in logistic regression
What are the best known regret bounds?

Regret = −
T∑

t=1

log(p̂t(xt , yt))− inf
θ∈Rd

−
T∑

t=1

log(σ(yt⟨xt , θ⟩)).

Online gradient descent: Regret ≲ ∥θ⋆∥
√
T .

Online Newton step: Regret ≲ dexp(∥θ⋆∥) log(T ).
Exponential weights: Regret ≲ d log(∥θ⋆∥T ) (Kakade and Ng,
2004, Cesa-Bianchi and Lugosi 2006, Foster, Kale, Luo, Mohri,
and Sridharan 2018) — all related to (Vovk, 2001)’s work on
sequential linear regression.

In fact, min{d log(∥θ⋆∥), T} cannot be improved! The example
is based on the lower bound for classification of thresholds.
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The hard case
Recall

θ⋆ = arg inf
θ∈Rd

−
T∑

t=1

log(σ(yt⟨xt , θ⟩)).

Do we really need to suffer from large ∥θ⋆∥?

θ⋆
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Logistic Regression with known xt-s

We focus on the sequential probability assignment where the
covariates xt (i.e., the set {x1, . . . , xT}) are known in advance.

Theorem: Qian, Rakhlin, Zh

Given a known set of covariates {x1, . . . , xT}, there exists an exp-
weights-based sequence of probability assignments p̂t such that

T∑
t=1

− log(p̂t(xt , yt))− inf
θ∈Rd

T∑
t=1

− log(σ(yt⟨xt , θ⟩)) ≲ d log T .
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Geometric ideas
The solution θ⋆ classifies the sample as follows:

Inside the “grey-zone”: exponential weights with

data-dependent prior µ(θ) ∝ exp
(
−λθ⊤

(∑
t∈“grey” xtx

⊤
t

)
θ
)
.

Outside, put probability 1 to the correct label.
Aggregate with exponential weights with respect to the slabs
(VC class).
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Implications in the i.i.d. case

Observation: Regret bounds in online learning with known xt-s
imply excess risk bounds in the i.i.d. case without any
assumptions on xt .

“Fixed design” online prediction implies results for random
design statistical setup!

If we observe an i.i.d. sample (X1,Y1), . . . , (XT ,YT ), then there is a
predictor p̃ such that

E(− log(p̃(X ,Y)))− inf
θ∈Rd

E(− log(σ(Y⟨X , θ⟩))) ≲ d log T
T

.
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Classification with hinge loss

(γ − yf̂ (x))+
γ

.

First, using exponential weights with Gaussian prior with clipping:

Theorem: Qian, Rakhlin, Zh

Assume that ∥xt∥ ≤ 1. Then, for any η ∈ [0, 3/(10γ)], there is
a sequence of predictors {f̂t(·)}Tt=1 such that

T∑
t=1

(γ − yt f̂t(xt))+
γ

≤ (1+ 2ηγ)

(
T∑

t=1

(γ − yt⟨xt , θ⋆⟩)+
γ

+
cd log

(
1+ η2T 2∥θ⋆∥2

)
ηγ

)
.
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Back to transductive setting

When the set {x1, . . . , xT} is known, the dependence on both γ and
θ⋆ disappears under the logarithm:

Theorem: Qian, Rakhlin, Zh

Assume that ∥xt∥ ≤ 1. Then, in the transductive setting, for any
η ∈ [0, 3/(10γ)], there is a sequence of predictors f̂ (xt) such
that

T∑
t=1

(γ − yt f̂ (xt))+
γ

≤ (1+ 2ηγ)

(
T∑

t=1

(γ − yt⟨xt , θ⋆⟩)+
γ

+
cd log (T )

ηγ

)
.
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