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Online learning for thresholds is hard

Observe a sequence xi, . .., x7 of points in [0, 1] labeled by a
threshold as either +1 or —1.
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This yields T mistakes after T rounds.
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Thresholds — classification with half-spaces (linear classification).

How does the difficulty of online learning thresholds affect online
learning with unbounded losses:

m logistic regression loss — log(o(y(x, 6))),
m hinge loss (1 — y(x,0))+,

m regression with square loss (y — (x, 0))*?
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Sequential linear regression

We observe a sequence (x;, y;){_;, with x; € R?,y; € R. At round t
we observe x; and (x1, y1), ..., (xt—1, yt—1) and want to predict y;.

;= arg min (3 (vi— (. 0))* + (0, 0))* + A1)

HeRrd =1

Theorem: Vovk, 1998

Assume that max; ||x¢||2 < r and max; |y;| < m. The following
holds for any 6* € R9:
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Back to binary loss and thresholds
There are ways to bypass the difficulty of the threshold example:

m Assuming that the sequence xq, ..., x7 is i.i.d.
m Making the margin assumption as in the perceptron analysis.
m Smoothed online learning.
]

Transductive setup: the set {xi, ..., xr} is known in advance.

If we are given the set {xi,...,x7}, we can limit ourselves to T + 1
predictors and make at most log,(T + 1) mistakes.

m The transductive model in online learning provides a
simple playground where the difficulty of learning
thresholds is not present.

m Transductive online regret bounds imply statistical excess
risk bounds!
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Regression: Can we improve Vovk’s bound?

Assume that {xi, ..., xr} is known in advance.

Initiated by Bartlett, Koolen, Malek, Takimoto, and Warmuth (2015):
the minimax strategy for the regression problem is found.

Theorem: Gaillard, Gerchinovitz, Huard, Stoltz (2019)

t—1
tharggng]and (Z(y,-— (xi, 0))* + ((x:,0 —&—AZ Xi, 0 ) .

i=1

The following holds for any §* € R¢,

A
t=1
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1
Z xt, 2 Z yi—(x¢, 0 +)\Tm2+dm2 log (1 + >
t=1
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Implications

In particular, fixing A = <, we obtain for T > 2d, for any sequence

<
of x;-s and for any 6%,

T
§ Xt7

t=1 t=1

—(xt,0%))* < dm*log (T/d).

Mﬂ

The loss is technically unbounded, we bound neither ||x||, nor ||0*]| !
Since x, . .., xr are known, we may assume ||x[[> < 1.

We still might have to pay for ||6*||,.

In the transductive setup, for which loss functions can we obtain
the dlog T regret bound independent of both x1, . .., x7 and 6*?
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An approach based on exponential weights

The upper bound of Vovk (1998), is usually proved by general results
for FTRL predictors + linear algebra.

We return to the original approach: Vovk’s predictor is an instance
of the exponential weights predictor.

Let p(-) : X x Y — R, be a set of loss functions parameterized by
some © C RY.

Fix some prior p over ©. Define p; = p and for t > 2:

pe(0) 0<eXP( nzﬁexﬁy’) 0).
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Beyond FTRL/linear algebra: ExpWeights for Sparsity

Example: How to take sparsity of 6* into account? (||0*]|o < s)

Choose the data dependent prior in RY, which is a product of d
scaled densities in R,

3
0= Sy

o S
=19 <1 + 60| - ZtT:](xt(j))z/T>

An x¢-independent version of this prior has been used by Dalalyan
and Tsybakov for denoising problems.
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Sparsity
Define
t—1

L0, x,y) = (y—(x, 9))24—2_ (vi—{(x;,0))*, — A quadratic form!

=1

]/Et(X) - gbg ( fRd exp (—imth(Q,X, m)) w(0)do )
fRd exp (_WLt(Q, X, m)> M(@)de

Gaussian-type integral

Theorem: Qian, Rakhlin, Zh

Assume that max; |y:| < m and that the smallest scaled singular
value condition (similar to the lower tail of the RIP condition) is
satisfied with constant ;. For any s-sparse 0* € RY,

T dT
*\ \2 < I
Z Ye — ft Xt Z Ye — (xt, 0 >) s’ og (/« S)

t=1 t=1

-
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Logistic regression

Logistic regression with the logarithmic loss: x € RY, y € {1, —1}.
Our probability assignment for x is given by

1

o(y(x,0)) = 1+ exp(—y(x,0))"

We focus on the logarithmic/cross-entropy loss — log(a(y(x, 8))).

;
Regret = — Z log(pe(xt, yt)) |nf Z log(a(yi(xt,0)))
t=1
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Probability assignments in logistic regression

What are the best known regret bounds?

Regret = Zlog pe(xe, yt)) — |nf *Zbg o(ye(xt, 0))).

m Online gradient descent: Regret < ||60*||v/T.
m Online Newton step: Regret < dexp(||0*||) log(T).

m Exponential weights: Regret < d (Kakade and Ng,
2004, Cesa-Bianchi and Lugosi 2006, Foster, Kale, Luo, Mohri,
and Sridharan 2018) — all related to (Vovk, 2001)’s work on
sequential linear regression.

In fact, min{d log(||6*||), T} cannot be improved! The example
is based on the lower bound for classification of thresholds.
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The hard case

Recall .
0* —arg inf — S | ).
arg inf, ; og(a(yi(x:,6)))

Do we really need to suffer from large ||6*||?
\ [ J

\ 9* [ J
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Logistic Regression with known x;-s

We focus on the sequential probability assignment where the
covariates x; (i.e., the set {x, ..., xr}) are known in advance.

Theorem: Qian, Rakhlin, Zh

Given a known set of covariates {x1, . . ., xt }, there exists an exp-
weights-based sequence of probability assignments p; such that

Mﬂ

— log(p:(xt, yt)) — |nf Z log(o(ye(xt,0))) < dlog T.

t=1

Zhivotovskiy Transductive priors 14/19



Geometric ideas
The solution 6* classifies the sample as follows:

m Inside the “grey-zone”: exponential weights with
data-dependent prior u(60) o exp (—)\HT (Zte“grey» xtxtT> 9).

m Outside, put probability 1 to the correct label.

m Aggregate with exponential weights with respect to the slabs
(VCclass). o o *
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Implications in the i.i.d. case

Observation: Regret bounds in online learning with known x;-s
imply excess risk bounds in the i.i.d. case without any
assumptions on x;.

“Fixed design” online prediction implies results for random
design statistical setup!

If we observe an i.i.d. sample (X, Y1),...,(Xr, Yr), then there is a
predictor p such that
) dlog T
E(—log(p(X, Y))) — inf E(—log(a(Y(X,0)))) <
9eRd T
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Classification with hinge loss

(v = yf(x))+
S

First, using exponential weights with Gaussian prior with clipping:

Theorem: Qian, Rakhlin, Zh

Assume that ||x;|| < 1. Then, for any n € [0,3/(107)], there is
a sequence of predictors {f;(-)}_, such that

ET: (v — yife(x)) +

t=1 v

T
il cdlog (1+ 172 T2(|6%|)?
= B! my
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Back to transductive setting

When the set {xi, ..., xr} is known, the dependence on both 7 and
0* disappears under the logarithm:

Theorem: Qian, Rakhlin, Zh

Assume that ||x¢|| < 1. Then, in the transductive setting, for any
n € [0,3/(107)], there is a sequence of predictors f(x;) such
that

; (v — ytf}}j(xt))'F

< (14+207) (Z (= el ), cdlogm) |

s g my
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