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Quantum Gibbs sampling

» Quantum Gibbs sampling: Given a Hamiltonian H, prepare the
thermal state ¢ = e #H,

» Designing quantum Gibbs samplers based on Lindblad equations:

d 1
P =Lo=_ VapV] = S{V]Vap}
acA

Lap
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» Quantum Gibbs sampling: Given a Hamiltonian H, prepare the
thermal state ¢ = e #H,

» Designing quantum Gibbs samplers based on Lindblad equations:
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» We aim to design a Lindbladian £ such that
® o is the unique stationary state under L.

® The Lindbladian L is efficiently implementable on the quantum
computer.

® The Lindbladian £ admits a polynomial mixing time.
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Quantum Gibbs sampling

» We aim to design a Lindbladian £ such that
® o is the unique stationary state under L.

® The Lindbladian L is efficiently implementable on the quantum
computer.

® The Lindbladian £ admits a polynomial mixing time.

» The first two conditions have been perfectly addressed by [Che+23;
CKG23; DLL24; Gil+24].

» The mixing time is much more challenging.
® Commuting cases

® Non-commuting local, high temperature [RFA24]
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Motivation

» Most of existing works focus on local or quasi-local jump operators.
» Can global jump operators help?

» In general, there are exponential many possible choices of global
jump operators.
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Motivation

» Most of existing works focus on local or quasi-local jump operators.
» Can global jump operators help?

» In general, there are exponential many possible choices of global
jump operators.

» The 2D-Toric code case: using symmetries of the system to design
global jumps

» How to pick from the exponential many choices without sufficient
prior information?

» Just randomly pick from them!
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Roadmap

» Construction of a Lindblad dynamic: random unitary design.
» The algorithmic implementation: randomized method.

» The mixing time analysis and implications
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The random coupling operators

We choose an ensemble of random coupling operators such that the
two-point correlation vanishes:

E (il Algy) (] Alvw)™ = O(1/N)di 16 k-
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The random coupling operators

We choose an ensemble of random coupling operators such that the
two-point correlation vanishes:

E (Wi Aly) (il Alow)™ = ©(1/N)j 105 k-

This ensemble can be constructed through A = U2DU;, where

» U, is sampled from a unitary 2-design, i.e.,

E[U$20U5%%] = Eyttaa: [UP20U1#7].
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The random coupling operators

We choose an ensemble of random coupling operators such that the
two-point correlation vanishes:

E (Wi Aly) (il Alow)™ = ©(1/N)j 105 k-

This ensemble can be constructed through A = U2DUT, where

» U, is sampled from a unitary 2-design, i.e.,

E[U$20U5%%] = Eyttaa: [UP20U1#7].

» D is a diagonal random operator with random +1 entries without
correlation, given by D = 02 @ 072 ® - - - @ £, where py,- -+ , pp are
independent binary random variable.
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The Davies Generator

We consider the Davies generator using the random Hermitian coupling
operators:

=5, 3 2(6) (D) pAe) - 5 {(A) Ao} )

wEBY

> Let (|¢)i), A;) be the eigenstates and eigenvalues of the Hamiltonian.
» w € By :=spec(H) — spec(H) are the Bohr frequencies

> The operators A;(w) = >, N [¥i) (Wi |Aal ) ()] are the
Fourier components of the Helsenberg evolution of A,:

elHtAaelet — § :Aa(w)e’“’t.
w

» The weight function v(w) = min(1, e~#¥) is chosen to ensure the
detailed balance condition.
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The integral form reformulation

For the random coupling operator case, the Davies generator is equivalent
to the integral form construction in [CKG23; DCL24; DLL24].

Theorem
The random Davies generator can be reformulated as

1
ED[[)] = ]EQ(KQPKJ - E{KJKavp}) )

where K, is expressed as the following integral form:

K, = / F(s)e™ e Aseeds = S F(\ — ) o) (il A ) (.

ij€N]
with a weight function f defined such that

Fw) = V(W) forany we By C [=[H]|, [ HIIl.

Hongrui Chen October 24, 2024 8 /22



Roadmap

» Construction of a Lindblad dynamic: random unitary design.
» The algorithmic implementation: randomized method.

» The mixing time analysis and implications
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The randomized method

Let {£.}.ca be an ensemble of Lindbladians. For L= Esp Ly we
simulate £ by the random product approximation

eTE ~ eT[,M . eTL17 (1)

» Each L; is randomly sampled from p.

» For fixed T, as 7 — 0, the random product converges to the exact
evolution eT£.

» Motivated by gDRIFT method in Hamiltonian simulation [Cam19]
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The Randomzied Method

» Now we discuss the simulation of e™%2 at each time step.

> Each £,(p) = VapVI — L{p, V,VI} only includes a single jump
operator, allowing a simple short-time implementation.
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The Randomzied Method

» Now we discuss the simulation of e™%2 at each time step.

> Each £,(p) = VapVI — L{p, V,VI} only includes a single jump
operator, allowing a simple short-time implementation.

» Dilation-based method.
= 0o Vi . .
> Let V, := V Oa be the dilated Hamiltonian on the system
coupled with an acilla.

e = Trle *V¥(0)(0] @ p)e™**V"] + O(+?)

10) — _ Discard
exp(—iVﬁ)
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Analysis of the randomized method

Question: How many steps are required for the simulation algorithm to
achieve an € error?

> Let F,(L,) = e™%2 + O(7?) be a one-step implementation of a
single jump operator.

» The Average channel: &,  := (Ea}'r(ﬁa))M.
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Analysis of the randomized method

Question: How many steps are required for the simulation algorithm to
achieve an € error?

> Let F,(L,) = e™%2 + O(7?) be a one-step implementation of a
single jump operator.

» The Average channel: &,  := (Ea}'r(ﬁa))M.

Theorem
Suppose || V,]|2 < A, (or,

> 1l-order Trotter O (|.A|N?t?/e).
> sub-optimal dependency on t,1/e [CW19; Che+23].

Lalloe < \), recall £ = EapLa, we have

Em—eEll =0(e), if M=t/

<

> Avoiding complex oracles of control-circuits.
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The algorithmic implementation

» Recall that the integral form of our construction is given by

1
Lplp] := Ea(KaPKJ - E{KJK&P}) )

where K is expressed as the following integral form:

K, = / f(s)e™ A,e= M ds

» Using the randomized method, we reduce the problem to simulating
a jump operator K, sampled from the ensemble in each time step.

» Each e™“*: can be implemented by dilation, similar to [DCL24].
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The algorithmic implementation

> First, we approximate €% by the evolution of the dilated
Hamiltonian K, = |0) (1| ® KI + |1) (0] K.

> Next, we evaluate the integral by quadrature:
K, = f(s))eM Ae= M A = K.

> Applying Trotterization, we only need to implement e~ /™K
> Note K; = 0, ® eH Ae=sH with o) = w; (oxRef (s))+ o, Imf(s)))

» Recall A= UQDU;, we express the evolution of R/ as

e—iT,I:I/ =(l® eis,HU2)e—ir,(a,®D)(l ® U;‘e—is,H)'

» e~ /m(21®D) s just a Hamiltonian evolution of Pauli strings [WWBA11].

Hongrui Chen October 24, 2024 14 / 22



Roadmap

» Construction of a Lindblad dynamic: random unitary design
» The algorithmic implementation: randomized method

» The mixing time analysis and implications

Hongrui Chen October 24, 2024 15 / 22



The mixing time analysis

Theorem
The evolution p; satisfies
> Let pi(t) = E (¢;] pt |¢i) be the diagonal terms. We have

pi = O(1/N) > (Y — Ai)pic — v(Ai = M)pi) -
ki

Classical Metropolis—Hasting with uniform proposal on the diagonal entries

> Let Q;(t) = E (¢j] pe |¢0i) be the non-diagnonal terms. We have

Qs = ~0(1/M) Y & (10— A) + 0% — 1)) @y
k

Exponential decaying coherence
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The mixing time analysis

Theorem

Let rg(H) denote the ratio of the states within an energy window above
the ground state:

The spectral gap of Lp is bounded below by 1 2 rg(H).
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The mixing time analysis

Theorem

Let rg(H) denote the ratio of the states within an energy window above
the ground state:

_ #{I¥i) 2 A < Amin (H) +1/5} .

rs(H) N

The spectral gap of Lp is bounded below by 1 2 rg(H).

Example

If the spectral density approximately follows the Wigner semi-circle law
(with appropriate normalization), we have

~241/8 T2
sty [ R,

—2 2T

implying polynomial-time mixing as long (3 is not exponentially large.
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The mixing time analysis

A provable example [Chi-+23]:
Lemma

Consider the Hamiltonian given by random sparse Pauli strings:
Hpg = Zm: U g witho; 2 {1, 04, 0,,0,38" 1 5 Unif{+1, —1).
= \/m J J y J
If m > Cn®j3*, with high probability, rs(H) = Q(573/2).

» Connection with quantum chaos: the level-spacing statistics of a
chaotic Hamiltonian is predicted by random matrix theory.

Hongrui Chen
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Conclusion

» Preparing the thermal state is quantumly easy if the Hamiltonian
satisfies

® efficient simulability
® a non-negligible low-energy density.
» Future work
® Combine random global jump operators and local jump operators

® Design random jump operators using unitary designs in subspaces.
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