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Quantum Gibbs sampling

▶ Quantum Gibbs sampling: Given a Hamiltonian H, prepare the
thermal state σ = e−βH .

▶ Designing quantum Gibbs samplers based on Lindblad equations:

d

dt
ρ := Lρ =

∑
a∈A

VaρV
†
a − 1

2
{V †

a Va, ρ}︸ ︷︷ ︸
Laρ

▶ We aim to design a Lindbladian L such that

• σ is the unique stationary state under L.

• The Lindbladian L is efficiently implementable on the quantum
computer.

• The Lindbladian L admits a polynomial mixing time.
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Quantum Gibbs sampling

▶ We aim to design a Lindbladian L such that

• σ is the unique stationary state under L.

• The Lindbladian L is efficiently implementable on the quantum
computer.

• The Lindbladian L admits a polynomial mixing time.

▶ The first two conditions have been perfectly addressed by [Che+23;
CKG23; DLL24; Gil+24].

▶ The mixing time is much more challenging.

• Commuting cases

• Non-commuting local, high temperature [RFA24]
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Motivation

▶ Most of existing works focus on local or quasi-local jump operators.

▶ Can global jump operators help?

▶ In general, there are exponential many possible choices of global
jump operators.

▶ The 2D-Toric code case: using symmetries of the system to design
global jumps

▶ How to pick from the exponential many choices without sufficient
prior information?

▶ Just randomly pick from them!
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Roadmap

▶ Construction of a Lindblad dynamic: random unitary design.

▶ The algorithmic implementation: randomized method.

▶ The mixing time analysis and implications
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The random coupling operators

We choose an ensemble of random coupling operators such that the
two-point correlation vanishes:

E ⟨ψi |A |ψj⟩ ⟨ψl |A |ψk⟩∗ = Θ(1/N)δi,lδj,k .

This ensemble can be constructed through A = U2DU
†
2 , where

▶ U2 is sampled from a unitary 2-design, i.e.,

E[U⊗2
2 OU†⊗2

2 ] = EU∼Haar[U
⊗2OU†⊗2] .

▶ D is a diagonal random operator with random ±1 entries without
correlation, given by D = σp1

z ⊗ σp2
z ⊗ · · · ⊗ σpn

z , where p1, · · · , pn are
independent binary random variable.
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The Davies Generator

We consider the Davies generator using the random Hermitian coupling
operators:

LD(ρ) = Ea

∑
ω∈BH

γ(ω)

(
(Aa(ω))

†
ρAa(ω)−

1

2

{
(Aa(ω))

† Aa(ω), ρ
})

,

▶ Let (|ψi ⟩ , λi ) be the eigenstates and eigenvalues of the Hamiltonian.

▶ ω ∈ BH := spec(H)− spec(H) are the Bohr frequencies

▶ The operators Aa(ω) =
∑

λi−λj=ω |ψi ⟩ ⟨ψi |Aa|ψj⟩ ⟨ψj | are the
Fourier components of the Heisenberg evolution of Aa:

e iHtAae
−iHt =

∑
ω

Aa(ω)e
iωt .

▶ The weight function γ(ω) = min(1, e−βω) is chosen to ensure the
detailed balance condition.
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The integral form reformulation

For the random coupling operator case, the Davies generator is equivalent
to the integral form construction in [CKG23; DCL24; DLL24].

Theorem
The random Davies generator can be reformulated as

LD [ρ] := Ea

(
KaρK

†
a − 1

2
{K †

aKa, ρ}
)
,

where Ka is expressed as the following integral form:

Ka :=

∫ ∞

−∞
f (s)e iHsAae

−iHsds =
∑

i,j∈[N]

f̂ (λi − λj) |ψi ⟩ ⟨ψi |Aa |ψj⟩ ⟨ψj | .

with a weight function f defined such that

f̂ (ω) =
√
γ(ω) for any ω ∈ BH ⊂ [−∥H∥, ∥H∥].
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Roadmap

▶ Construction of a Lindblad dynamic: random unitary design.

▶ The algorithmic implementation: randomized method.

▶ The mixing time analysis and implications
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The randomized method

Let {La}a∈A be an ensemble of Lindbladians. For L̄ = Ea∼µLa, we
simulate L̄ by the random product approximation

eT L̄ ≈ eτLM · · · eτL1 , (1)

▶ Each Li is randomly sampled from µ.

▶ For fixed T , as τ → 0, the random product converges to the exact
evolution eT L̄.

▶ Motivated by qDRIFT method in Hamiltonian simulation [Cam19]
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The Randomzied Method

▶ Now we discuss the simulation of eτLa at each time step.

▶ Each La(ρ) = VaρV
†
a − 1

2{ρ,VaV
†
a } only includes a single jump

operator, allowing a simple short-time implementation.

▶ Dilation-based method.

▶ Let Ṽa :=

(
0 V †

a

Va 0

)
be the dilated Hamiltonian on the system

coupled with an acilla.

eτLa = Tr1[e
−i Ṽa

√
t(|0⟩⟨0| ⊗ ρ)e i Ṽa

√
t ] + O(τ 2)

|0⟩
exp

(
−i Ṽ

√
τ
) Discard

|ψ⟩
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√
t ] + O(τ 2)

|0⟩
exp

(
−i Ṽ
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Analysis of the randomized method

Question: How many steps are required for the simulation algorithm to
achieve an ϵ error?

▶ Let Fτ (La) = eτLa + O(τ 2) be a one-step implementation of a
single jump operator.

▶ The Average channel: Ēτ,M :=
(
EaFτ (La)

)M
.

Theorem
Suppose ∥Va∥2 ≤ λ, (or, ∥La∥⋄ ≤ λ), recall L̄ = Ea∼µLa, we have∥∥∥Ēτ,M − eT L̄

∥∥∥
⋄
= O(ϵ), if M ≥ λ2t2/ϵ

▶ 1-order Trotter O
(
|A|λ2t2/ϵ

)
.

▶ sub-optimal dependency on t, 1/ϵ [CW19; Che+23].

▶ Avoiding complex oracles of control-circuits.
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∥∥∥
⋄
= O(ϵ), if M ≥ λ2t2/ϵ

▶ 1-order Trotter O
(
|A|λ2t2/ϵ

)
.

▶ sub-optimal dependency on t, 1/ϵ [CW19; Che+23].

▶ Avoiding complex oracles of control-circuits.

Hongrui Chen Quantum Gibbs Sampling through Randomized Method October 24, 2024 12 / 22



The algorithmic implementation

▶ Recall that the integral form of our construction is given by

LD [ρ] := Ea

(
KaρK

†
a − 1

2
{K †

aKa, ρ}
)
,

where Ka is expressed as the following integral form:

Ka :=

∫ ∞

−∞
f (s)e iHsAae

−iHsds

▶ Using the randomized method, we reduce the problem to simulating
a jump operator Ka sampled from the ensemble in each time step.

▶ Each eτLKa can be implemented by dilation, similar to [DCL24].
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The algorithmic implementation

▶ First, we approximate eτLKa by the evolution of the dilated
Hamiltonian K̃a = |0⟩ ⟨1| ⊗ K †

a + |1⟩ ⟨0|Ka.

▶ Next, we evaluate the integral by quadrature:
K̃a ≈

∑
f (sl)e

iHslAae
−iHsl∆s :=

∑
K̃l .

▶ Applying Trotterization, we only need to implement e−iτl K̃l

▶ Note K̃l = σl ⊗ e islHAe−islH with σl = wl (σx Re f (sl) + σy Im f (sl))

▶ Recall A = U2DU
†
2 , we express the evolution of K̃l as

e−iτl H̃l = (I ⊗ e islHU2)e
−iτl (σl⊗D)(I ⊗ U†

2e
−islH).

▶ e−iτl (σl⊗D) is just a Hamiltonian evolution of Pauli strings [WBA11].
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Roadmap

▶ Construction of a Lindblad dynamic: random unitary design

▶ The algorithmic implementation: randomized method

▶ The mixing time analysis and implications
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The mixing time analysis

Theorem
The evolution ρt satisfies
▶ Let pi (t) = E ⟨ψi | ρt |ψi ⟩ be the diagonal terms. We have

ṗi = Θ(1/N)
∑
k ̸=i

(γ(λk − λi )pk − γ(λi − λk)pi ) .︸ ︷︷ ︸
Classical Metropolis–Hasting with uniform proposal on the diagonal entries

▶ Let Qij(t) = E ⟨ψj | ρt |ψi ⟩ be the non-diagnonal terms. We have

Q̇ij = −Θ(1/N)
∑
k

1

2
(γ(λk − λi ) + γ(λk − λj))Qij .︸ ︷︷ ︸

Exponential decaying coherence
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The mixing time analysis

Theorem
Let rβ(H) denote the ratio of the states within an energy window above
the ground state:

rβ(H) =
# {|ψi ⟩ : λi ≤ λmin (H) + 1/β}

N
.

The spectral gap of LD is bounded below by η ≳ rβ(H).

Example

If the spectral density approximately follows the Wigner semi-circle law
(with appropriate normalization), we have

rβ(H) ≈
∫ −2+1/β

−2

√
4− x2

2π
dx = Ω(β−3/2) ,

implying polynomial-time mixing as long β is not exponentially large.
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The mixing time analysis

A provable example [Chi+23]:

Lemma
Consider the Hamiltonian given by random sparse Pauli strings:

HPS :=
m∑
j=1

rj√
m
σj with σj

iid∼ {I , σx , σy , σz}⊗n
, rj

iid∼ Unif{+1,−1}.

If m ≥ Cn5β4, with high probability, rβ(H) = Ω(β−3/2).

▶ Connection with quantum chaos: the level-spacing statistics of a
chaotic Hamiltonian is predicted by random matrix theory.
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Conclusion

▶ Preparing the thermal state is quantumly easy if the Hamiltonian
satisfies

• efficient simulability

• a non-negligible low-energy density.

▶ Future work

• Combine random global jump operators and local jump operators

• Design random jump operators using unitary designs in subspaces.
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