A Discrepancy-Based Theory of Adaptation

Joint work with:

Pranjal Awasthi (Google Research), Corinna Cortes (Google Research), Andres Muñoz Medina (Google), Yishay Mansour (Google Research & Tel-Aviv), Afshin Rosamizadeh (Google Research)

MEHRYAR MOHRI MOHRI@

GOOGLE RESEARCH & COURANT INSTITUTE

Motivation: Domain Adaptation

- Distribution mismatch: in many real-world problems, source and target domains differ.
- Challenges: collecting labeled data for target domains is costly, generalization problem.
- Special instances: sample bias correction, covariate-shift problems, fine-tuning for LLMs.
- Real-world applications: healthcare, autonomous driving, speech recognition, best-effort fairness.
- Can we design a theoretical framework to guide adaptation methods?

This Talk

- Discrepancy.
- Reweighting algorithms.
- Experimental results.

Multiple-Source Adaptation

- Multiple-source adaptation problem: no labeled data.
 - Theoretical analysis (Mansour, MM, and Rostamizadeh, 2008, 2009).
 - Theory and algorithms (Hoffman, MM, and Zhang, 2021),
 (Cortes, MM, Suresh, Zhang, 2021).
- Learning with multiple source distribution: labeled data.
 - Theoretical analysis and algorithms, application to federated learning (MM, Sivek, and Suresh, 2019).
 - Boosting with multiple sources (Cortes, MM, Storcheus, Suresh, 2021).
 - Limited target data (Mansour, MM, Ro, Suresh, Wu, 2021).

Mohri@ page 4

Adaptation Scenario

- Insput space \mathfrak{X} , output space \mathfrak{Y} .
- Loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [0,1]$.
- \blacksquare Hypothesis set \mathcal{H} of functions mapping from \mathcal{X} to \mathcal{Y} .
- Learner receives:
 - Labeled sample from source domain, distribution Q.
 - Labeled points from target domain, distribution 𝑃: supervised adaptation (fair amount), weakly supervised (only some), unsupervised (none).
 - Typically large unlabeled sample from \mathcal{P} .

Adaptation Problem

Learning problem:

• Use labeled samples from Q and P (different scenarios) as well as typically large unlabeled sample from P to find hypothesis $h \in \mathcal{H}$ with small target expected loss

$$\mathcal{L}(\mathcal{P}, h) = \mathbb{E}_{(x,y) \sim \mathcal{P}} [\ell(h(x), y)].$$

Challenging Problem

Which divergence between distributions should we use?

Mohri@ page 7

Divergence

- Some key desiderata:
 - Tailored to adaptation problem.
 - Captures structure: loss function, hypothesis set.
 - Can be estimated from finite samples.
 - Can be leveraged algorithmically.

Discrepancy

Discrepancy

Labeled discrepancy:

$$\operatorname{dis}(\mathcal{P}, \mathcal{Q}) = \sup_{h \in \mathcal{H}} \left\{ \underset{(x,y) \sim \mathcal{P}}{\mathbb{E}} [\ell(h(x), y)] - \underset{(x,y) \sim \mathcal{Q}}{\mathbb{E}} [\ell(h(x), y)] \right\}.$$

Unlabeled discrepancy:

$$\overline{\mathrm{dis}}(\mathcal{P}, \mathcal{Q}) = \sup_{h, h' \in \mathcal{H}} \left\{ \underset{x \sim \mathcal{P}_X}{\mathbb{E}} \left[\ell(h(x), h'(x)) \right] - \underset{x \sim \mathcal{Q}_X}{\mathbb{E}} \left[\ell(h(x), h'(x)) \right] \right\}.$$

- also finer local labeled or unlabeled discrepancy (Cortes et al., 2019).
- unlabeled discrepancy coincides with d_A -distance of (Kifer et al., 2004), for zero-one loss.

Discrepancy - Properties

- Takes into account hypothesis set and loss function.
- Can be accurately estimated from finite samples for a hypothesis set with favorable complexity:

$$\left| \operatorname{dis}(\mathfrak{P}, \mathfrak{Q}) - \operatorname{dis}(\widehat{\mathfrak{P}}, \widehat{\mathfrak{Q}}) \right| = O\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right).$$

- Triangle inequality, distance under some assumptions.
- Upper bounds in terms of ℓ_1 -distance, relative entropy, Wassertein distance.
- Coincides with d_A -distance of (Kifer et al., 2004), for zero-one loss.

Discrepancy Estimation

Notation:

- $\widehat{\mathcal{P}}$ empirical distribution for sample drawn from \mathcal{P}^n .
- $\widehat{\mathbb{Q}}$ empirical distribution for sample drawn from \mathbb{Q}^n .
- Theorem: With high probability, the following holds:

$$\left|\operatorname{dis}(\mathfrak{P},\mathfrak{Q}) - \operatorname{dis}(\widehat{\mathfrak{P}},\widehat{\mathfrak{Q}})\right| \leq 2\mathfrak{R}_n(\ell \circ \mathcal{H}) + 2\mathfrak{R}_m(\ell \circ \mathcal{H}) + O\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right).$$

Proof:

$$\left|\operatorname{dis}(\mathfrak{P},\mathfrak{Q}) - \operatorname{dis}(\widehat{\mathfrak{P}},\widehat{\mathfrak{Q}})\right| \leq \sup_{h \in \mathcal{H}} \left| \left[\mathcal{L}(\mathfrak{P},h) - \mathcal{L}(\widehat{\mathfrak{P}},h) \right] - \left[\mathcal{L}(\mathfrak{Q},h) - \mathcal{L}(\widehat{\mathfrak{Q}},h) \right] \right|.$$

Discrepancy - Upper Bounds

Upper bounded by ℓ_1 -distance and relative entropy:

$$dis(\mathcal{P}, \mathcal{Q}) = \sup_{h \in \mathcal{H}} \left\{ \underset{(x,y) \sim \mathcal{P}}{\mathbb{E}} [\ell(h(x), y)] - \underset{(x,y) \sim \mathcal{Q}}{\mathbb{E}} [\ell(h(x), y)] \right\}$$

$$\leq \sup_{h \in \mathcal{H}} \iint_{\mathcal{X} \times \mathcal{Y}} |p(x, y) - q(x, y)| |\ell(h(x), y)| \, dx dy \leq \ell_1(\mathcal{P}, \mathcal{Q}).$$

Upper bounded via importance weights $w(x,y) = \frac{p(x,y)}{q(x,y)}$:

$$\operatorname{dis}(\mathcal{P}, \mathcal{Q}) = \sup_{h \in \mathcal{H}} \iint_{\mathcal{X} \times \mathcal{Y}} [w(x, y) - 1] \, q(x, y) \, \ell(h(x), y) dx dy$$

$$= \sup_{h \in \mathcal{H}} \mathbb{E}_{(x, y) \sim \mathcal{Q}} [\Delta w(x, y) \, \ell(h(x), y)]$$

$$\leq \sqrt{\mathbb{E}_{(x, y) \sim \mathcal{Q}} [\Delta^2 w(x, y)] \sup_{h \in \mathcal{H}} \mathbb{E}_{(x, y) \sim \mathcal{Q}} [\ell^2(h(x), y)]}.$$

Discrepancy - Upper Bounds

Upper-bound in terms of Wasserstein distance

$$\mathcal{W}(\mathcal{P}, \mathcal{Q}) = \sup_{\|f\|_{\text{Lip}} \le 1} \left\{ \underset{\mathbf{x} \sim \mathcal{P}_X}{\mathbb{E}} [f(x)] - \underset{\mathbf{x} \sim \mathcal{Q}_X}{\mathbb{E}} [f(x)] \right\}.$$

For $\ell \mu_{\ell}$ -Lipschitz, $\ell(h(x), h'(x)) \leq \mu_{\ell} |h(x) - h'(x)|$, and for a hypothesis set \mathcal{H} of $\mu_{\mathcal{H}}$ -Lipschitz functions,

$$|h(x') - h'(x')| - |h(x) - h'(x)| \le 2\mu_{\mathcal{H}}|x' - x|,$$

$$\overline{\operatorname{dis}}(\mathcal{P}, \mathcal{Q}) = \sup_{h, h' \in \mathcal{H}} \left\{ \underset{x \in \mathcal{P}_X}{\mathbb{E}} [\ell(h(x), h'(x))] - \underset{x \in \mathcal{Q}_X}{\mathbb{E}} [\ell(h(x), h'(x))] \right\}$$

$$\leq 2\mu_{\ell} \, \mu_{\mathcal{H}} \mathcal{W}(\mathcal{P}, \mathcal{Q}).$$

Discrepancy-Based Guarantee

Notation:

$$\mathcal{L}(\mathcal{P},h) = \underset{(x,y) \sim \mathcal{P}}{\mathbb{E}} [\ell(h(x),y)] \quad \mathcal{L}(\mathcal{P},h,h') = \underset{x \sim \mathcal{P}_{\mathcal{X}}}{\mathbb{E}} [\ell(h(x),h'(x))].$$

Theorem: Assume that ℓ verifies the triangle inequality. Then, the following inequality holds for all $h \in \mathcal{H}$:

$$\mathcal{L}(\mathcal{P}, h) \leq \inf_{\substack{(h_{\mathcal{Q}}, h_{\mathcal{P}}) \in \mathcal{H}_{\text{all}} \times \mathcal{H} \\ \vee (h_{\mathcal{Q}}, h_{\mathcal{P}}) \in \mathcal{H} \times \mathcal{H}_{\text{all}}}} \left\{ \mathcal{L}(\mathcal{Q}, h, h_{\mathcal{Q}}) + \overline{\text{dis}}(\mathcal{P}, \mathcal{Q}) + \mathcal{L}(\mathcal{P}, h_{\mathcal{P}}) + \min \left\{ \mathcal{L}(\mathcal{Q}, h_{\mathcal{Q}}, h_{\mathcal{P}}), \mathcal{L}(\mathcal{P}, h_{\mathcal{Q}}, h_{\mathcal{P}}) \right\} \right\}.$$

page 15

Discrepancy-Based Guarantee

Properties:

always tighter than bound of (Ben-David et al., 2010):

$$\mathcal{L}(\mathcal{P}, h) \leq \mathcal{L}(\mathcal{Q}, h) + \overline{\operatorname{dis}}(\mathcal{P}, \mathcal{Q}) + \min_{h' \in \mathcal{H}} \{\mathcal{L}(\mathcal{Q}, h') + \mathcal{L}(\mathcal{P}, h')\}.$$

• for same best-in class hypotheses $h_{\mathfrak{Q}}^* = h_{\mathfrak{P}}^* = h^*$, bound becomes:

$$\mathcal{L}(\mathcal{P}, h) \leq \mathcal{L}(\mathcal{Q}, h, h^*) + \overline{\operatorname{dis}}(\mathcal{P}, \mathcal{Q}) + \mathcal{L}(\mathcal{P}, h^*).$$

for consistent case, bound becomes:

$$\mathcal{L}(\mathcal{P}, h) \leq \mathcal{L}(\mathcal{Q}, h, f_{\mathcal{P}}) + \overline{\operatorname{dis}}(\mathcal{P}, \mathcal{Q}).$$

Discrepancy-Based Guarantee

Proof: By definition of the triangle inequality and the discrepancy,

$$\mathcal{L}(\mathcal{P}, h) \leq \inf_{h_{\mathcal{P}} \in H} \left\{ \mathcal{L}(\mathcal{P}, h, h_{\mathcal{P}}) + \mathcal{L}(\mathcal{P}, h_{\mathcal{P}}) \right\}$$
(triangle ineq.)
$$\leq \inf_{h_{\mathcal{P}} \in H} \left\{ \mathcal{L}(\mathcal{Q}, h, h_{\mathcal{P}}) + \overline{\operatorname{dis}}(\mathcal{P}, \mathcal{Q}) + \mathcal{L}(\mathcal{P}, h_{\mathcal{P}}) \right\}$$
(def. of discrepancy)
$$\leq \inf_{h_{\mathcal{Q}} \in \mathcal{H}_{\operatorname{all}}, h_{\mathcal{P}} \in H} \left\{ \mathcal{L}(\mathcal{Q}, h, h_{\mathcal{Q}}) + \mathcal{L}(\mathcal{Q}, h_{\mathcal{Q}}, h_{\mathcal{P}}) + \overline{\operatorname{dis}}(\mathcal{P}, \mathcal{Q}) + \mathcal{L}(\mathcal{P}, h_{\mathcal{P}}) \right\}.$$
(triangle ineq.)

Combining similar inequalities yields:

$$\mathcal{L}(\mathcal{P}, h) \leq \inf_{\substack{(h_{\mathcal{Q}}, h_{\mathcal{P}}) \in \mathcal{H}_{\text{all}} \times \mathcal{H} \\ \vee (h_{\mathcal{Q}}, h_{\mathcal{P}}) \in \mathcal{H} \times \mathcal{H}_{\text{all}}}} \left\{ \mathcal{L}(\mathcal{Q}, h, h_{\mathcal{Q}}) + \overline{\text{dis}}(\mathcal{P}, \mathcal{Q}) + \mathcal{L}(\mathcal{P}, h_{\mathcal{P}}) + \min \left\{ \mathcal{L}(\mathcal{Q}, h_{\mathcal{Q}}, h_{\mathcal{P}}), \mathcal{L}(\mathcal{P}, h_{\mathcal{Q}}, h_{\mathcal{P}}) \right\} \right\}.$$

Mohri@ page

Reweighting Algorithms

Reweighting Algorithms

Ideas:

- Sample weights to reduce empirical discrepancy.
- Weights can affect weighted empirical loss.
- Select weights and predictor jointly.
- General class of adaptation algorithm:
 - KMM (Huang et al., 2006).
 - KLIEP (Sugiyama et al., 2007).
 - Importance weighting (analysis by (Cortes et al., 2010)).
 - Discrepancy minimization (Cortes & MM, 2014).
 - Generalized disc. minimization (Cortes et al., 2019).

Learning Setup

- General supervised adaptation scenario:
 - Labeled sample $S = ((x_1, y_m), \dots, (x_m, y_m)) \sim \mathbb{Q}^m$.
 - Labeled sample $S' = ((x_{m+1}, y_{m+1}), \dots, (x_{m+n}, y_{m+n})) \sim \mathbb{P}^n$.
 - Non-negative weight vector $q \in [0, 1]^{m+n}$.
 - Total weight of first m samples: $\overline{q} = \sum_{i=1}^{m} q_i$.

Problem:

• Find weights $q \in [0,1]^{m+n}$ and $h \in \mathcal{H}$ to achieve small target domain expected loss $\mathcal{L}(\mathcal{P},h)$.

Weighted Rademacher Comp.

• For $q \in [0,1]^{[m+n]}$,

$$\mathfrak{R}_{\mathsf{q}}(\ell \circ \mathcal{H}) = \underset{S,S',\boldsymbol{\sigma}}{\mathbb{E}} \left[\sup_{h \in \mathcal{H}} \sum_{i=1}^{m+n} \sigma_i \mathsf{q}_i \ell(h(x_i), y_i) \right].$$

By Talagrand's contraction lemma,

$$\mathfrak{R}_{\mathsf{q}}(\ell \circ \mathcal{H}) \leq \|\mathsf{q}\|_{\infty}(m+n)\,\mathfrak{R}_{m+n}(\ell \circ \mathcal{H}).$$

Reweighting Learning Bound

Theorem: fix weights $q \in [0,1]^{[m+n]}$. Then, with probability at least $1-\delta$ over the draw of a sample $S \sim \mathbb{Q}^m$ from the source domain and $S' \sim \mathbb{P}^n$, for any $h \in \mathcal{H}$,

$$\mathcal{L}(\mathcal{P}, h) \leq \sum_{i=1}^{m+n} \mathsf{q}_{i} \ell(h(x_{i}), y_{i}) + \underline{\mathrm{dis}\Big(\big[(1 - \|\mathsf{q}\|_{1}) + \overline{\mathsf{q}}\big]\mathcal{P}, \overline{\mathsf{q}}\mathcal{Q}\Big)} + 2\mathfrak{R}_{\mathsf{q}}(\ell \circ \mathcal{H}) + \|\mathsf{q}\|_{2} \sqrt{\frac{\log \frac{1}{\delta}}{2}}.$$

$$\mathsf{q} \text{ distribution}$$

$$\bar{\mathsf{q}} \mathrm{dis}(\mathcal{P}, \mathcal{Q})$$

Mohri@ page 22

Reweighting Lower Bound

Theorem: fix distribution $q \in \Delta_{m+n}$. Then, for any with $\epsilon > 0$, there exists $h \in \mathcal{H}$ such that for any $\delta > 0$, with probability at least $1 - \delta$ over the draw of a sample $S \sim \Omega^m$ from the source domain and $S' \sim \mathbb{P}^n$,

$$\mathcal{L}(\mathcal{P}, h) \ge \sum_{i=1}^{m+n} \mathsf{q}_i \ell(h(x_i), y_i) + \overline{\mathsf{q}} \mathrm{dis}(\mathcal{P}, \mathcal{Q}) + \Omega\left(\frac{1}{\sqrt{m+n}}\right).$$

• for $\|\mathbf{q}\|_2, \mathfrak{R}_{\mathbf{q}}(\ell \circ \mathcal{H}) \in O\left(\frac{1}{\sqrt{m+n}}\right)$.

Reweighting Uniform Bound

Theorem: For any $\delta > 0$, with probability at least $1 - \delta$ over the draw of a sample $S \sim \mathbb{Q}^m$ and sample $S' \sim \mathbb{P}^n$, the following holds for all $h \in \mathcal{H}$ and $q \in B_1(p_0, 1)$,

$$\mathcal{L}(\mathcal{P}, h) \leq \sum_{i=1}^{m+n} \mathsf{q}_{i} \ell(h(x_{i}), y_{i}) + \overline{\mathsf{q}} \mathrm{dis}(\mathcal{P}, \mathcal{Q}) + \mathrm{dis}(\mathsf{p}^{0}, \mathsf{q}) + 2\mathfrak{R}_{\mathsf{q}}(\ell \circ \mathcal{H})$$

$$+ 8\|\mathsf{q} - \mathsf{p}^{0}\|_{1} + \left[\|\mathsf{q}\|_{2} + 2\|\mathsf{q} - \mathsf{p}^{0}\|_{1}\right] \left[\sqrt{\log \log_{2} \frac{2}{1 - \|\mathsf{q} - \mathsf{p}^{0}\|_{1}}} + \sqrt{\frac{\log \frac{2}{\delta}}{2}}\right].$$

page 24

• p₀: reference weights.

Empirical Disc. Estimation

Optimization problem:

$$\widehat{d} = \max_{h \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=m+1}^{m+n} \ell(h(x_i), y_i) - \frac{1}{m} \sum_{i=1}^{m} \ell(h(x_i), y_i) \right\}.$$

- for a convex loss, can be cast as DC-programming problem and solved via DCA (Tao and An, 1988).
- for squared loss, global optimum convergence guarantee.

$$h_{t+1} \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \frac{1}{m} \sum_{i=1}^{m} \ell(h(x_i), y_i) - \frac{1}{n} \sum_{i=m+1}^{m+n} \nabla \ell(h_t(x_i), y_i) \cdot (h - h_t) \right\}.$$

Algorithm

Optimization problem: SBEST algorithm.

$$\min_{h \in \mathcal{H}, \mathbf{q} \in [0,1]^{m+n}} \sum_{i=1}^{m+n} \mathbf{q}_i \ell(h(x_i), y_i) + \overline{\mathbf{q}} \mathrm{dis}(\widehat{\mathcal{P}}, \widehat{\mathcal{Q}}) + \lambda_{\infty} \|\mathbf{q}\|_{\infty} \|h\|^2 + \lambda_1 \|\mathbf{q} - \mathbf{p}^0\|_1 + \lambda_2 \|\mathbf{q}\|_2^2.$$

- Alternate minimization solution.
- For squared loss with linear predictors, convex optimization problem.
- Empirical discrepancy estimation via DC-programming.
- Extension to weakly or unsupervised adaptation.

Mohri@ page 26

Labeled Disc. Upper Bounds

■ Theorem: for squared loss, for any $h_0 \in \mathcal{H}$,

$$\operatorname{dis}(\widehat{\mathcal{P}}, \widehat{\mathcal{Q}}) \leq \overline{\operatorname{dis}}_{\mathcal{H} \times \{h_0\}}(\widehat{\mathcal{P}}, \widehat{\mathcal{Q}}) + 2\delta_{\mathcal{H}, h_0}(\widehat{\mathcal{P}}, \widehat{\mathcal{Q}}).$$

where:

$$\delta_{\mathcal{H},h_0}(\widehat{\mathcal{P}},\widehat{\mathcal{Q}}) = \sup_{h \in \mathcal{H}} \left| \underset{(x,y) \sim \widehat{\mathcal{P}}}{\mathbb{E}} [h(x)(y - h_0(x))] - \underset{(x,y) \sim \widehat{\mathcal{Q}}}{\mathbb{E}} [h(x)(y - h_0(x))] \right|.$$

- favorable when h_0 can be chosen so that $|y h_0(x)|$ is relatively small for both samples.
- note that $\delta_{\mathcal{H},h_0}(\widehat{\mathcal{P}},\widehat{\mathcal{Q}}) = 0$ for $\widehat{\mathcal{P}} = \widehat{\mathcal{Q}}$.

Experimental Results

Classification Tasks

Dataset	Train source Q	Train target \mathcal{P}	KMM	gapBoost	SBEST
Adult	82.72 ± 0.10	81.61 ± 0.42	81.24 ± 0.01	83.1 ± 0.02	83.30 ± 0.28
German	68.24 ± 0.21	69.87 ± 0.27	65.7 ± 0.01	69.8 ± 0.03	71.26 ± 0.11
Accent	27.20 ± 0.26	81.64 ± 0.22	53.1 ± 0.03	81.2 ± 0.04	84.15 ± 0.30
comp vs sci	83.2 ± 0.004	89.4 ± 0.03	83.1 ± 0.004	92.08 ± 0.01	94.4 ± 0.01
rec vs sci	79.2 ± 0.007	91.3 ± 0.02	79.7 ± 0.004	92.2 ± 0.01	92.4 ± 0.004
comp vs talk	71.4 ± 0.002	89.9 ± 0.02	71 ± 0.006	90.6 ± 0.01	91 ± 0.02
comp vs rec	65.4 ± 0.007	85.2 ± 0.01	67.7 ± 0.007	85.9 ± 0.01	88 ± 0.01
rec vs talk	81.3 ± 0.004	88 ± 0.02	81.2 ± 0.005	89.2 ± 0.01	92.3 ± 0.03
sci vs talk	88.2 ± 0.005	93.3 ± 0.008	88.5 ± 0.003	94.6 ± 0.01	94.6 ± 0.02

 Details of experimental results in (Awasthi, Cortes, and MM, 2024).

Fine-Tuning Tasks

Fine-tuning	Train on \mathcal{P}	gapBoost	SBEST
Last layer (CIFAR-10)	$88.61 \pm .43$	$87.1 \pm .01$	$89.62 \pm .32$
Full model (CIFAR-10)	$90.18 \pm .31$	$90.8 \pm .02$	$92.30 \pm .24$
Last layer (Civil)	$63.1 \pm .12$	$64.7 \pm .11$	$65.8 \pm .12$
Full model (Civil)	$65.8 \pm .01$	$67.2 \pm .01$	$68.3\pm.14$

Regression Tasks

Dataset	KMM	DM	SBEST
Wind	1.2 ± 0.04	1.14 ± 0.03	$\boldsymbol{0.97 \pm 0.02}$
Airline	2.4 ± 0.09	1.72 ± 0.1	$\boldsymbol{0.952 \pm 0.03}$
Gas	0.41 ± 0.01	0.39 ± 0.01	$\boldsymbol{0.38 \pm 0.02}$
News	1.08 ± 0.01	1.1 ± 0.01	$\boldsymbol{0.99 \pm 0.01}$
Traffic	2.1 ± 0.1	2.08 ± 0.08	$\boldsymbol{0.99 \pm 0.002}$

Sentiment Analysis

Q	${\mathcal P}$	GDM	DM	KMM	Train on Q
books	dvd elec ktchn	1.25 ± 0.01 0.88 ± 0.01 1.06 ± 0.03	1.26 ± 0.11 0.89 ± 0.03 1.08 ± 0.04	1.43 ± 0.08 1.50 ± 0.05 1.47 ± 0.01	2.34 ± 0.19 2.13 ± 0.13 1.55 ± 0.01
dvd	books elec ktchn	1.14 ± 0.02 1.08 ± 0.01 1.1 ± 0.03	1.17 ± 0.10 1.10 ± 0.12 1.12 ± 0.02	1.64 ± 0.14 2.40 ± 0.05 1.10 ± 0.02	2.18 ± 0.18 3.26 ± 0.07 2.34 ± 0.05
elec	books dvd ktchn	0.98 ± 0.01 0.98 ± 0.02 0.96 ± 0.01	1.00 ± 0.01 1.00 ± 0.06 0.98 ± 0.06	1.33 ± 0.06 1.00 ± 0.06 1.04 ± 0.01	1.34 ± 0.04 1.04 ± 0.08 1.14 ± 0.01
ktchn	books dvd elec	1.00 ± 0.03 1.2 ± 0.002 1.64 ± 0.02	1.04 ± 0.07 1.33 ± 0.03 1.67 ± 0.54	1.27 ± 0.09 1.32 ± 0.03 1.87 ± 0.56	1.12 ± 0.08 1.42 ± 0.04 1.89 ± 0.56

Conclusion

- Multiple-source adaptation problems.
- Discrepancy-based analysis of drifting (MM & Muñoz Medina, 2019; Awasthi, Cortes, and Mohri, 2022).
- Time series prediction and algorithms (MM & Kuznetsov, 2020).
- Differentially private adaptation from public to private domains or vice-versa (Bassily, Cortes, Mao, MM, 2024).
- Active learning (de Mathelin et al., 2022; Zhang et al., 2019, 2020).
- PAC-Bayesian analysis of adaptation (Germain et al., 2013).