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Motivation: Domain Adaptation

B Distribution mismatch: in many real-world problems,
source and target domains differ.

B Challenges: collecting labeled data for target domains is
costly, generalization problem.

B Special instances: sample bias correction, covariate-shift
problems, fine-tuning for LLMs.

B Real-world applications: healthcare, autonomous driving,
speech recognition, best-effort fairness.

B Can we design a theoretical framework to guide adaptation
methods?
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This Talk

B Discrepancy.
B Reweighting algorithms.

B Experimental results.
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Multiple-Source Adaptation

B Multiple-source adaptation problem: no labeled data.

® Theoretical analysis (Mansour, MM, and Rostamizadeh,
2008, 2009).

® Theory and algorithms (Hoffman, MM, and Zhang, 2021),
(Cortes, MM, Suresh, Zhang, 2021).

B |earning with multiple source distribution: labeled data.

* Theoretical analysis and algorithms, application to
federated learning (MM, Sivek, and Suresh, 2019).

® Boosting with multiple sources (Cortes, MM, Storcheus,
Suresh, 2021).

® Limited target data (Mansour, MM, Ro, Suresh, Wu, 2021).
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Adaptation Scenario

B |nsput space X, output space 9.
B Loss function?: Y xY —[0,1].
B Hypothesis set H of functions mapping from X to Y.

B [earner receives:
* Labeled sample from source domain, distribution Q.

* Labeled points from target domain, distribution P:
supervised adaptation (fair amount), weakly supervised
(only some), unsupervised (none).

o Typically large unlabeled sample from .
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Adaptation Problem

B |earning problem:

® Use labeled samples from Q and P (different scenarios)
as well as typically large unlabeled sample from P to find
hypothesis h € Hwith small target expected loss

L@k = E_[6h@).5)]
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Challenging Problem

® Which divergence between distributions should we use?




Divergence

B Some key desiderata:
* Tailored to adaptation problem.
e (aptures structure: loss function, hypothesis set.
® (an be estimated from finite samples.

e (Can be leveraged algorithmically.
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Discrepancy




Discrepancy

B [abeled discrepancy:

dis(?,m:sup{ E [((h(x),y) — E [ﬁ(h(sc),y)]}.

heH (m7y>N{‘P (may)NQ

B Unlabeled discrepancy:

7

B2.9) = s { B [hla) W @)~ B (o). H )]}

e also finer local labeled or unlabeled discrepancy (Cortes
et al., 2019).

e unlabeled discrepancy coincides with d 4-distance of
(Kifer et al., 2004), for zero-one loss.
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Discrepancy - Properties

B Takes into account hypothesis set and loss function.

B Can be accurately estimated from finite samples for a
hypothesis set with favorable complexity:

dis(P, Q) — dis(P, Q) ‘— <—+i>

n

B Triangle inequality, distance under some assumptions.

® Upper bounds in terms of ¢; -distance, relative entropy,
Wassertein distance.

B Coincides with d4-distance of (Kifer et al., 2004), for zero-
one |loss.
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Discrepancy Estimation

@ Notation:
¢ P empirical distribution for sample drawn from ?",

e Q empirical distribution for sample drawn from Q".

B Theorem: With high probability, the following holds:

dis(?P, Q) — dis(P, 6)‘ < 2R, (0o H) + 2R, (Lo H) + (7 + \/L_)

B Proof:

dis(P, Q) — dis(?, @)( < sup [c(?, h) — £(7, h)] _ [/L(Q,h) _ L(Q,h)] ‘
heH
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Discrepancy - Upper Bounds

® Upper bounded by ¢1-distance and relative entropy:

dis(®, ) = sup {(% E @)y~ E (), y)]}

< sup / /x Ipy) — (e i), )l dedy < (2, 0)

hed
. . _ plz,y),
B Upper bounded via importance weights w(x,y) = ()"
dis(P, Q) = sup // (x,y) — 1] q(x,y) £(h(x),y)dxdy
hed{ DCXH
= sup [Aw(z,y) £(h(z),y)]
heX (z, y)NQ
< E [A2w(xz,y)]| su E [2(h(z),y)].
< \/(w,y)wg[ @yl sup B [(h(z),y)
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Discrepancy - Upper Bounds

B Upper-bound in terms of Wasserstein distance

W(P,0) = sup { E [f(z)]- E [f(:v)]}-

IfllLip<1 (x~Px x~Qx

B For ¢ pe-Lipschitz, £(h(z),h/ () < pe|h(x) — h'(x)| , and for a
hypothesis set H of pgc-Lipschitz functions,

h(z") — h'(2)] — [h(x) — W' (2)] < 2p9cla” — ),

ds(P,Q) = sup { E [¢(h(z), I (x))] — E V(h(x)’h/(xm}

h,h'e3 (T€Px reQx

< 240 pacW(P, Q).




Discrepancy-Based Guarantee

® Notation:
L(P,h) = E [l(h(x),y)] L(P,hh)= E [(h(z),h(x))].

B Theorem: Assume that ¢ verifies the triangle inequality.
Then, the following inequality holds for all h € J(:

< . f 4.
LEpmy< ot {LI(Q, h,ho) + dis(P, Q) + L(P, hy)
V(hag,hp)EHXHan

+ min{ £(Q, ho, hyp), L(P, ho. hg))}}.
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Discrepancy-Based Guarantee

B Properties:

e always tighter than bound of (Ben-David et al., 2010):

L(P,h) < L(Q,h) +dis(P, Q) + }{pei%{E(Q, )+ L(P,h)}.

e for same best-in class hypotheses hgy = hy = R7, bound
becomes:

L(P,h) < L(Q, h, h*) + dis(P, Q) + L(P, h*).

e for consistent case, bound becomes:
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Discrepancy-Based Guarantee

B Proof: By definition of the triangle inequality and the
discrepancy,

L(P,h) < inf {L(T, h, he) 4+ L(P, hfp)} (triangle ineq.)

hpeH

< inf {E(Q, h,he) + dis(P, Q) + L(, hj))} (def. of discrepancy)

hpeH

< hgeﬂlaﬁthEH{c(Q, h,ho) + £(Q, ho, hy) + dis(P, Q) + L (2P, hfp)}.

(triangle ineq.)
¢ Combining similar inequalities yields:

L(P,h) <

inf dis P, h in{ £(0. ho. ho). L(P. ho. he) L L.
(hmge%aum{,c(g,h,hg)+dls(fP,Q)+c(  hp) + min{£(Q, ho, he), £(P, ho, ?)}}
V(hg,hp)EH X FHan

Mohri@ page 17



Reweighting
Algorithms
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Reweighting Algorithms

B [deas:
e Sample weights to reduce empirical discrepancy.
* Weights can affect weighted empirical loss.

o Select weights and predictor jointly.

B General class of adaptation algorithm:
o KMM (Huang et al., 2006).
e KLIEP (Sugiyama et al., 2007).
* Importance weighting (analysis by (Cortes et al., 2010)).
e Discrepancy minimization (Cortes & MM, 2014).

Generalized disc. minimization (Cortes et al., 2019).




Learning Setup

B General supervised adaptation scenario:

e labeledsample S = ((z1,Ym), .-, (Tm,Ym)) ~ Q™.

e Labeled sample S" = (Zmat1s Yms1), -« s (Totns Yman)) ~ P™.
* Non-negative weight vector q € [0, 1]™"".

o Total weight of first m samples: g=>_.", a;.

B Problem:

e Find weights q € [0,1]™"™ and h € H to achieve small
target domain expected loss L(P, h).
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Weighted Rademacher Comp.

m For q € [0,1]m*"],

Rq (Lo H) sup 0iq; ¢
( SSUhEU‘CZ .

e By Talagrand's contraction lemma,

Q%q(fo H) < |la]|oc(m +n) Ry gn (£ 0 H).




Reweighting Learning Bound

B Theorem: fix weights q € [0, 1]+ Then, with probability
at least 1 — 9 over the draw of a sample S ~ Q™ from the
source domain and S’ ~ P", for any h € K,

m-+n
L(P, h) <Zqz yz+d18 (1= llall1) +qﬂ>q9
% q distribution
+ 2Rq(€ 0 H) + [|al|2

qdis(P, Q)
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Reweighting Lower Bound

B Theorem: fix distribution q € A,,4+,. Then, for any with e >0,
there exists h € 3 such that for any 0 >0, with probability

at least 1 — § over the draw of a sample S ~ Q™ from the
source domain and S’ ~ P",

1
L(P,h) > 7, ) + qdis(P, Q) + Q .
Zq i), yi) + qdis(P, Q) + (m)

o for||qfl2, Bq(f oK) € o(m) .
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Reweighting Uniform Bound

B Theorem: For any >0, with probability at least1 — ¢ over
the draw of a sample S ~ Q™ and sample S’ ~ P", the
following holds for all h € H and q € Bi(po, 1),

L(P,h) < Z qil(h(z;),y;) + qdis(P, Q) + dis(p°, q) + 2R4(£ o H)

+8lla —p"lls + [llall2 + 2lla — p°lI1] \/10%10%2 o e el

® po: reference weights.

Mohri@ page 24



Empirical Disc. Estimation

B Optimization problem:

m-+n m
1
Ihnea;cc{ E 0(h(xi), yi) ;lﬁ(h(aﬁi),yi)}.

1=m-—+1

e for aconvex loss, can be cast as DC-programming
problem and solved via DCA (Tao and An, 1988).

e for squared loss, global optimum convergence

guarantee.
1 m-+n
hii1 € argmin{ ZK (i), y:) Z VAl hi(x;),y;) - (hht)}.
hed 1=m-+1
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Algorithm

B Optimization problem: sBeST algorithm.

m-+n

min Z qit(h(:), y:) +adis(P, Q) + Ao qlloo 1 2l|

heH,qe[0,1]m+n

+ AlHq — %1 + A2llql|Z.

e Alternate minimization solution.

® For squared loss with linear predictors, convex
optimization problem.

e Empirical discrepancy estimation via DC-programming.

e Extension to weakly or unsupervised adaptation.
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Labeled Disc. Upper Bounds

B Theorem: for squared loss, for any hg € I,

dis(P, Q) < disgex gy (P, Q) + 2054y (P, Q).

e where:

Sse1o(P, Q) =sup | E [h(a)(y—ho(z))] = E _[A(z)(y — ho(x))]|-
heH |(x,y)~P (x,y)~Q

e favorable when hgcan be chosen so that |y — ho(x)| is
relatively small for both samples.

* note that &H,ho(ﬂA), Q) = 0for P = Q.
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Experimental Results




Dataset
Adult
German
Accent

comp vs sci

rec vs sci

comp vs talk
comp Vs rec
rec vs talk
sci vs talk

Train source Q

82.72 £0.10
68.24 £ 0.21
27.20 £ 0.26
83.2 £0.004
79.2 £0.007
71.4 £0.002
65.4 = 0.007
81.3 £0.004
88.2 = 0.005

Train target P KMM

81.61 £+ 0.42
69.87 £ 0.27
81.64 + 0.22
89.4 £0.03
91.3 £ 0.02
89.9 £ 0.02
85.2 £0.01
88 £ 0.02
93.3 = 0.008

81.24 +£0.01
65.7 £ 0.01
53.1 £0.03
83.1 £0.004
79.7 £0.004
71 £0.006
67.7 & 0.007
81.2 £0.005
88.5 4= 0.003

Classification Tasks

gapBoost
83.1 + 0.02
69.8 4+ 0.03
81.2 +0.04
92.08 + 0.01
92.2 +0.01
90.6 4+ 0.01
85.9 + 0.01
89.2 + 0.01
94.6 £ 0.01

SBEST

83.30 £ 0.28
71.26 £ 0.11
84.15 +0.30
944+ 0.01
92.4 +0.004
91 £ 0.02
88 £0.01
92.3 £0.03
94.6 £ 0.02

e Details of experimental results in (Awasthi, Cortes, and
MM, 2024).
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Fine-Tuning Tasks

Fine-tuning Train on P gapBoost SBEST

Last layer (CIFAR-10) 88.61+.43 &87.1+.01 89.62+ .32
Full model (CIFAR-10) 90.18+£.31 90.8+.02 92.30+ .24
Last layer (Civil) 63.1+.12 64.7+.11 65.8+ .12
Full model (Civil) 65.8+.01 67.2+.01 68.3+.14
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Regression Tasks

Dataset KMM DM SBEST
Wind 1.2+0.04 1.14 £0.03 0.97 = 0.02
Airline 2.4 +£0.09 1.72 £0.1 0.952 +£0.03
Gas 041 +0.01 0.39+£0.01 0.38+0.02
News 1.08+0.01 1.1 £0.01 0.99 +£0.01

Traffic 2.1 0.1 2.08 =0.08 0.99 == 0.002
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Sentiment Analysis

Q P GDM DM KMM Train on Q
dvd 1.254+0.01 1.26+0.11 1.43+0.08 2.34+0.19

books elec 0.88+0.01 0.89 +0.03 1.50£+0.05 2.134+0.13
ktchn 1.06 =0.03 1.084+0.04 1.474+0.01 1.55 £+ 0.01

books 1.14+0.02 1.17+0.10 1.64+0.14 2.18+0.18

dvd elec 1.08+0.01 1.10+£0.12 2.40+0.05 3.26 +0.07
ktchn 1.1 +0.03 1.12+0.02 1.10+£0.02 2.34+0.05

books 0.98 +0.01 1.004+0.01 1.33+0.06 1.34+0.04

elec dvd 0.98 +0.02 1.00+£0.06 1.00+0.06 1.044+0.08
ktchn 0.96 =0.01 0.984+0.06 1.04 4+0.01 1.14 4+ 0.01

books 1.00+0.03 1.04+0.07 1.27+£0.09 1.12+0.08

ktchn dvd 1.2+0.002 1.33+£0.03 1.32+0.03 1.42+0.04
elec 1.64+0.02 1.67+054 1.87+0.56 1.89+0.56
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Conclusion

Multiple-source adaptation problems.

Discrepancy-based analysis of drifting (MM & Mufioz
Medina, 2019; Awasthi, Cortes, and Mohri, 2022).

Time series prediction and algorithms (M & Kuznetsov,
2020).

Differentially private adaptation from public to private
domains or vice-versa (Bassily, Cortes, Mao, MM, 2024).

Active learning (de Mathelin et al., 2022; Zhang et al., 2019,
2020).

PAC-Bayesian analysis of adaptation (Germain et al., 2013



