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L (x,)~D [E(p(X),y)] < min [l(c(x,y))] + €

ceC

The main characters:
» Distribution D over {x € R?|||x|| < 1} x {0,1}
* Comparator class C (e.g., linear functions)

* Loss function £ (e.g., squared loss, cross
entropy, ...)

* Predictor p : can be proper (v € C) or improper
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Loss-based supervised learning

L (x,)~D [E(p(X),y)] < min [l(c(x,y))] + €

ceC

What if loss not known in advance!?
* Depends on parameters unknown at training
* Multiple tasks (e.g., weights of false pos/neg)

* “Fundamental truth” of D independent of loss
* Drives us closer to ground truth p*(x) = E[y|X]
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ceC

Vi e L

[Gopalan-Kalai-Reingold-Sharan-Wieder 22]
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Omniprediction

x,)~p [L(ke(p(x)), )] < min[l(c(x,y))] +e VleLl

ceC

The additional characters:
* Loss function family L (e.g., proper losses)

* Loss-specific post-processings {k,} e
* Distribution-independent
* Role of p: “supervised sufficient statistics” for D

* Fundamentally an agnostic learning guarantee!
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Ildea |: multicalibration suffices [GKRSWV 22]

* Powerful property: agrees with ground truth on
parameterized conditional dists

* Reduce from agnostically learning C via iterative
boosting [Hébert-Johnson-Kim-Reingold-Rothblum ‘18]

* Computationally-intractable in many settings...
(e.g. halfspaces [Guruswami-Raghavendra ‘06, ])
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Omniprediction recipes

x,)~p [L(ke(p(x)), )] < min[l(c(x,y))] +e VleLl

ceC

|ldea 2: weaker conditions suffice
[Gopalan-Hu-Kim-Reingold-Wieder 23]
* “Statistical tests’” parameterized by CX L

* Calibration + “multi-accuracy” suffice: improved
quantitative bounds for explicit families
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Single-index models

@y | x| =~ o(w - x)

“Semi-parametric” model family
e Parametric: linear predictor w € W = {w € R?|||w|| < 1}

* Non-parametric: link function o € § := [-Lipschitz, monotone
functions o:[—1,1] - [0,1]

* Known link: generalized linear model
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Single-index models

Every link o has...

t
...induced matching loss émja(t, y) = / (0(7‘) — y)dT
0
1 . 0
(E[y]) € argmin, {gm,a(tv y)} — Egm,a(ta y) — O(t) — Y

(convex)



Single-index models

Every link o has...

t
...induced matching loss €m7a(t, y) = / (0(7‘) — y)dT
0

...induced proper loss ija(v, y) = fmp(O_l(”U), y)

(if y ~ Bernoulli, minimized by ground truth)
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Learning SIMs in squared loss

o(w-x) = Ely | X]

Isotron learns SIMs!
[Kalai-Sastry ‘09, Kakade-Kalai-Kanade-Shamir ‘| 1]

* Very simple algo (gradient descent +
isotonic regression)

* Proper hypotheses

realizable

o(w-X)~"

Ly | x]

“Constant-factor’”’ learners

[Gollakota-Gopalan-Klivans-Stavropoulos 23,
Zarifis-Wang-Diakonikolasx2 24]

* More distributional assumptions,
structure (e.g. bi-Lipschitz, anti-conc.)

* Very large overheads (e.g., [ZWDD24]

needs dx** samples)

agnostic
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Our goal: for all (o,w) € SXW...

L (x,y)~D o (ko (P(X)),y)] < 4 (x,y)~D o (W X, y)] + €

...another view when p scalar...

Cix,) [lpor (P(X),Y)] < Egey) (oo (0(W - %), y)]

“competing with all (proper) SIMs”
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Omnipredicting SIMs

Our goal: for all (o,w) € SXW...

L x)~D [lmo (ko (P(%)),y)] < By [lmo (W-x,y)] + €

Existing construction [GHKRW ‘23]: Iterate until MA and CAL:
~ €17 samples * Calibrated residual
* Complex algo / hypothesis * Bucket + estimate quantiles
* Highly-improper (interpretability?) e Multiaccurate residual

* Large sequential depth * Repeated truncation + boosting

* Loose sample / runtime complexity?
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Philosophy

“TCS”-style results

L —_——

| 0 o * Challenging setup (agnostic,

\ — heterogeneous, nonconvex, ...
. * Provable guarantees!!!

* Polynomial time / samples!!!
...okay, but what polynomial?

Strive for “right” algorithms, analyses in tractable
settings to make impact on applications.
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...in nearly-linear time O (nd - €™?)




Our results

Theorem [HTY “24]: There is an omnipredictor for SIMs using...

2

"3 samples (for -Lipschitz, monotone links)

ﬁZ

o2 e?

samples (for (a, )-bi-Lipschitz links)

...with the “multi-
index model” form

p(x) = {ot(We - X) brejo(e-2)]




Our results

Theorem [HTY “24]: There is an omnipredictor for SIMs using...

2
— samples (for f-Lipschitz, monotone links)

ﬁZ

azez

€

samples (for (a, )-bi-Lipschitz links)

The algo is Isotron with custom iso-reg solver + post-processing.
We call it the Omnitron.




Our results

“ERM” omniprediction

Better time / sample complexities
(second moment bound)

Same results existentially hold for
population-level omniprediction

Omnipredicting SIMs in R

Theorem [HTY 24]: Two SIMs
suffice (“double-index model”)

Open Q:is there a proper
omnipredictor; even in |-d?




Roadmap

* |Isotron
* Realizable setting
* Agnostic setting



|sotron

Isotonic Regression
o data = Stochastic Gradient Descent

—— isotonic regression
| — linear regression

I

’
;
'
;
‘
:
L




|sotron

Algorithm 1: Isotron(D, T, n)

Input: Distribution D from Model 2, iteration count 7" € N, step size n > 0
wo < 04
for 0 <t < T do
Ot < argmin, g, ,{¢sq(o, wi; D)}
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end
return {Jt}ogth—l, {Wt}OStST




|sotron

Algorithm 1: Isotron(D, T, n)

Input: Distribution D from Model 2, iteration count 7' € N, step size n > 0

wo < 04
for 0 <t < T do
Ot < argmin,cg, ,{€sq(0, wi; D)} lsq(0,W; D) := Ex y)up | (0(W - x) — )]
wit1 < Ihw(Wi — NVl o, (Wi; D)) Vwlme(W; D) = Exyyop [(0(W-X) —y) - X]
end

return {at}ogth—l, {Wt}OStST




Isotron analysis (realizable setting)

ldea |: regret minimization

— Z mat Wt,D),Wt—W>§€

O<t<T
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> Ex |(04(Wt - X) — (W - x))7] (excess squared loss)



Isotron analysis (realizable setting)

|dea 2: optimality of iso-reg

(Vwlmo,(Wi; D), Wy — W) = E(x )~ (oe(wi - x) —y) (W - x — W - x)]
= Exy)~p [(Ut(Wt - X) —y) (W - X — U_l(Wt ' X))}
(

+Ex)op [(0:(Wi - x) —y) (0™ (W - X) — W - X))

E(xy)~D [(O‘t(Wt X) —y) (W - x — o0 H(wy - X))] =0

(iso-reg solution calibrated)



Isotron analysis (realizable setting)

|dea 2: optimality of iso-reg

(Vwlmo,(We; D), wi — W) = Exyop [(0e(We - X) — y) (W - X — W - X))
= E(x, )~ [(Ut(wt X) —y) (W x — 0 (W - X))}
+Ex)op [(0:(Wi - x) —y) (0™ (W - X) — W - X))

Z gsq (O't, Wy, D) o gsq(ga W D)

...some iterate is good, i.e., proper learner



Isotron analysis (agnostic setting)

(Vwlmo,(Wi; D), Wy — W) = Ex y)~p (oe(wy - x) —y) (W - X — W - X)]
= Ex y)~p [(Ut(Wt X)—y) (Wi X—0 1(Wt ‘ X))}
HE(xy)~p [(01(We - X) —y) (07 (Wi - X) — W - X))

L (x,y)~D [(Ut(Wt x) —y)(o (Wi x) — W X)] > 0

...still OK by KKT conditions of Lipschitz iso-reg! [Lemma |, KKKS ‘| |]



Isotron analysis (agnostic setting)

(Vwlmo,(Wi; D), Wy — W) = Ex y)~p (oe(wy - x) —y) (W - X — W - X)]
= Ex y)~p [(Ut(Wt X)—y) (Wi X—0 1(Wt ‘ X))}
HE(xy)~p [(01(We - X) —y) (07 (Wi - X) — W - X))

What about...

L np [(0e(We - X) —y) (Wi - x — 0 (W - X))
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Omnigap

OG(p) := Wb B (p(x) —y) (o (p(x)) — W - x)]

Ground truth p has zero omnigap!

Interpretation: small omnigap = passing many
“indistinguishability” statistical tests




Omnigap

“calibration”

OG(p) := Wb B (p(x) —y) (o (p(x)) — W - x)]

“multi-accuracy”

...turns out to be a one-sided variant of
“loss outcome indistinguishability” [GHKRW 23]



Omnigap

OG(p) :=

sup
(W,0)eEWXS

L)~ [(P(X) = y) (07 (p(x)) — W - x)]

Theorem [implicit, GHKRWV 23]:

OG(p) < € = pis an e-omnipredictor for SIMs




Omnigap

Proof. Let D be the distribution on X x {0,1} which draws x ~ Dy and then y | x ~ Bern(p(x)).
We have that the following hold, because the integral part of Definition 1 cancels in each line:

E(x )~ [€p,0 (0(%),9)] = Ey ) o (P(%), 9)] = Exyymp [(p(X) — ) 071 (p(x))]
E )~ lmo(W - X,9)] = By lmo (W - X, 9)] = —Ex)op [(p(%) — ) (W - x)].

Moreover, by the definition of D (i.e., labels are ~ Bern(p(x))), because ¢y is a proper loss,
E(x,y)wﬁ [Kp,g(p(x), Y)| — [E(x,y),\,ﬁ [Km,a(W -X,y)] <0.
Summing up the above displays, we obtain for any (o,w) € S x W,

Ex,5)~D oo (P(%),9)] — Ex ) Bmo (W - X,9)] < Ex yynl(p(x) — y) (0 (p(x)) — W - x)]

= OG(p; o, w). (13)

Because (o, w) were arbitrary, by using OG(p) < €, we have the claim. N



Omnigap

OG(p) := Wb B (p(x) —y) (o (p(x)) — W - x)]

Yields a new, simpler proof of PAV optimality in |-d

(key ingredient in our |-d omnipredictor construction)




@ N o ot bk W N

Omnitron

Algorithm 3: Omnitron({(x¢, ¥¢) }o<t<T, 1,1, O, €)

Input: {(x¢,yt)}o<t<T ~iiq. D for a distribution D from Model 2, iteration count 7" € N, step
size n > 0, e-approximate BIR oracle O (Definition 6)
wo < 0y
for 0 <t < T do
op < O(wy) (rest of talk)
g < (04(We - X¢) — ye)Xy (“adaptive” stochastic optimization)
w1 < Ihy(we — ngy)
end
return p : x — {o¢(W: - X) }o<t<r-1, ko : {Pto<t<r — %ZOSKT o~ (pr)




Roadmap

* Efficient omniprediction

* Sample complexity
* Runtime complexity



Robust omniprediction

For input w € W return 0 € S s.t. forallo € S

AT

5(W-x) = y)(w-x— 0 (G(w-x)))] > —

L (x,y)~D [(




Robust omniprediction

For input w € W return 0 € S s.t. forallo € S

(e (6% %) = y)(w - x — 07 (6w - )]

(population-level iso-reg suffices but intractable)

>

—C




Robust omniprediction

For input w € W return 0 € S s.t. forallo € S

2 yen [(B(W %) = y)(w-x — 0 (F(w - x)))] = —e

(population-level iso-reg suffices but intractable)

2

Syt (O %) = y)(w - x =07 G (w - )))]

Key ideas for uniform convergence:

* Smoothing (slightly anti-Lipschitz w.l.o.g.)

* Dudley’s generic chaining




Robust omniprediction in nearly-linear time

: 2
Imin U, — UY;
{vitieqn) CR Z( vi)

1€ [n]

s.t. a; < v —v; < b; for all i € [n — 1]

(empirical “bounded” iso-reg)



Robust omniprediction in nearly-linear time

: 2
Imin U, — UY;
{vitieqn) CR Z( vi)

1€(n]
s.t. a; < v —v; < b; for all i € [n — 1]
anti-Lipschitz / Lipschitz
monotonicity constraints

constraints

(also in [KKKS 11, ZWDD 4])



Robust omniprediction in nearly-linear time

: 2
min U; — U;
{viticn) CR Z( / )

1€ [n]

s.t. a; < v —v; < b; for all i € [n — 1]

Prev. solver: inexact, Q(n?) time
[HTY 24]: exact, O(n(log(n))?)

Fast DP on piecewise quadratic



Robust omniprediction in nearly-linear time

: 2
min U; — U;
{vitieqn) CR Z( / )

1€(n]
s.t. a; < v —v; < b; for all i € [n — 1]
Prev. solver: Inexact, -Q-(nz) time Testing Calibration in Nearly-Linear Time
[HTY ‘24]: exact, O(Tl (log(n))z) [Hu-Jambulapati-Tian-Yang 24]

i : . See Chutong’ ter!
Fast DP on piecewise quadratic ee Chutong’s poster



What else?

|. Omnipredicting structured families?
* Regression setting?
* Multi-class classification!?
 Multi-objective optimization? (Thanks Han ©)

2. Proper omnipredictors!?
* Do they exist!?
* Some partial characterizations in our paper...

3. Practical implications!?
* Multigroup fairness, e.g., for fine-tuning



Contact
Thank you! kjtian.github.io

kjtian@cs.utexas.edu

arXiv... soon™



