Polynomial-time preparation of low-
temperature Gibbs states for 2D toric
code

Zhiyan Ding
UC Berkeley

Workshop: Mathematical Challenges of Quantum Algorithms
for Open Quantum Systems

Joint work with Bowen Li, Lin Lin, Ruizhe Zhang
arXiv/2410.01206

IIIIIIIIIIIIIIIIIIIIII



Outlines:

e Motivation
Why we care about this problem?

elntroduction
2D toric code, Davies, Spectral gap

eMain result and implications
New Davies, spectral gap under low temperature

Berkeley

UNIVERSITY OF CALIFORNIA




Mixing time of Lindbladian

for

low-temperature Gibbs states
preparation




Motivation 1:

Fast mixing implies efficient state preparation
from any initial state
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Motivation 1:

Fast mixing implies efficient state preparation
from any initial state

for general

Efficiently implementable Lindbladian: (non-commuting) Hamiltonian
. Thermal state: [Chen, Kastoryano, Brandao, Gilyén, arXiv:2303.18224]
[Chen, Kastoryano, Gilyén, arXiv:2311.09207]
Cost ~ O(pt;polylog(l/e)) [Ding, Li, Lin, arXiv/2404.05998] .......
e Ground state: [Ding, Chen, Lin, PRR, arXiv/2308.15676]

Cost ~ O(poly(t... /€))
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Existing result:

e General local (commuting) Hamiltonian:
[Kastoryano, Brandao, CMP, 2016], [Bardet, Capel et al, PRL, 2023], [Kochanowasi,
Alhambra et al, arXiv/2404.16780, 2024], [Rouze, Franca et al, arXiv:2403.12691,

2024] ...

For high temperature (f < 1), or moderate-temperature 1D commuting (f = ©(1))

Large f-dependence is not clear

Question: What is ¢ ;. for large /3?
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Motivation 2:

Fast low temperature mixing might be helpful for
passively protected quantum memory
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Motivation 2:

Fast low temperature mixing might be helpful for
passively protected quantum memory

atptzge(pt)a P(O)Eﬁg QTZ ,0—3'%
Noise Code space Decode
(Logic information) (obtain logic information)

Self correcting quantum memory:

inf { || 2(p(0) - p() || < =QAexpin)
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Motivation 2:

Fast low temperature mixing might be helpful for
passively protected quantum memory

atptzge(pt)_l_‘gp(pt)? /O(O) S %

! !

Noise Protector
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Motivation 2:

Fast low temperature mixing might be helpful for
passively protected quantum memory

atptzge(pt)_l_‘gp(pt)? /O(O) S %

! !

Noise Protector

Passively protected quantum memory:

H D(p,) — po H < exp(—0®(n)) foranyt > 0

Preserve logic information
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Example: Logic qubits are encoded in ground space & (H) of H

0,0, = Z(p;) gﬂ=oo(pt)’ D(p) = PgpPy
o0 € G(H) P Tr(PypPy)

Goal: H D(p,) — po H ~ exp(—0(n)), Vi>0




How does the logic information change?
4
ge

ener : I
gy Pexcited > Pexcited
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fZﬁ:OO prohibits the transition in the second step:
4

/
enerey Pexcited ‘?" Pexcited
4

Zp=ce 7

Po
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SZﬁ:OO prohibits the transition in the second step:
4

/
enerey Pexcited ‘?—’ Pexcited
A 5

Z peco =2

P

k 1 Candidate for a Passively Protected Quantum Memory in Two
crKe e Dimensions

e CALIFORNIA Simon Lieu, Yu-Jie Liu, and Alexey V. Gorshkov 2 D ISl ng
Phys. Rev. Lett. 133, 030601 — Published 16 July 2024
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oD toric code
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oD toric code




Davies generator:

o= 2 y(w)(S (@) 8}(@) = {S,(0)'S (@) p}>

a€d wEBy

S,(@) = Z PAIA“PAJ_ Transite ‘l[/J> to 1//i> '

o 7() = exp(—fw)y(—w) Transition correction |

+ {AY} = {al.x, al.y, a?} = > 03 X exp(—pH) is the unique fixed

— a point p(t) — 0y
OCal Faulls
Berkely
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GNS detail balance condition:

(Y, X)Gﬂ = '[I'(YTXO"B) GNS inner product

|
Z0=73 3 y(w)(S;@)XSa(a)) - {Sa<w>*Sa<w>,X}>

acd weEBy

is self-adjoint under { -, + )

v GNS DBC




Spectral gap

Figenvalue of L5 0= 49> Ay 2 Ay > ... Ker (Z) = (eI}
(X, - 2,00}
Gap (&) =24 = inf i
P < b ) O T xao ,tlr?aﬁX)zO (X, X)




Main Result




Existing result:

e For 2D toric code:
[Alicki et al, 2009]

Gap (5%) > eXp(—(”)(ﬁ)) Independent of

system size




Existing result:

e For 2D toric code:
[Alicki et al, 2009]

Independent of

Gap (Z5) > exp(-0(4)

e Empirical study and energy barrier:

[Freeman, Herdman, et al, PRB, 2014], [Brown, Loss et al, RMP, 2016],
[Temme, CMP, 2017], ....

Gap (Z) = exp(-0(4)
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Existing result:

Question: Can we modify the local Davies generator such
that the gap is independent of /3?

Yes. New gap:
Gap (5@) > max {exp(—O(B)). poly(1/n)}




New Davies:

0p=ZL(p) =L, P+ L]0

!

Old: {A“} = {0}, 0/, 57}




New Davies:

0p=ZL(p) =L, P+ L]0
I : | : I z.1 I ! {A%} = Iogicoperators{Z,Z}iZ=1

Q
Q
Q
o

O
@)
@)
O




New Davies:

— T —
op=ZL"p)=% (PM+Z global(,0)
I | Lz A%} = logic operators{Xi, Zl-}i=1
O O O O
O o —X|—@ .
o 0 0o o Thm [Ding, Li, Lin, Zhang, 2024]:
. o o o » |Gap (3) >
2
0 0 0 o max {exp(—©(f)), poly(1/n)}




Implications




Implication 1: Polynomial mixing

Gap (5@) > max {exp(—0O(f)), poly(1/n) }
tmix(€) := {t >0; ||et£ p — olltr < €, Vquantum states p}

(€)= O (ppoly(mlog(1/e))

Singularity in)(z-divergence

Re: Thermal state of 2D toric code can be prepared in O(n?) time from
maximally mixing state [Hwang, Jiang, arXiv:2410.04909].




Implication 2: Ground state is easy for & ..




Hilbert space decomposition:

¥ =Cre C?
=C{ ®C;, dC; &C;

n—2
([Zl.2 : syndrome space

Contain one ground state and excited states with the same logic information




Two parts of thermalization:

Part 1: Thermalize across
syndrome space

C%n—2 69 C%n—Z 69 C%n—Z 69 Cin—Z
- | | i




Implication 2: Ground state is easy for & ..

Part 1: hard for & ..

Part 2: easy for & .1

Thm [Ding, Li, Lin, Zhang, 2024]:

Gap (glocal d > 2 max {exp(—@(ﬁ)), pOIY(l/n>}
syndrome

B First work shows the poly(1/n) gap in syndrome space.
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Implication 2: Ground state is easy for & ..

Part 1: hard for & ..

Part 2: easy for &, .

Thm [Ding, Li, Lin, Zhang, 2024]:

Gap (glocal d > 2 max {exp(—@(ﬁ)), pOIY(l/n>}
syndrome

B Re: Ground state preparation for 2D toric code is known to be easy.
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Implication 3: Quantum memory

Thm [Ding, Li, Lin, Zhang, 2024]:

Gap <glocal > 2 max {GXp(—@(ﬂ)), pOIY(l/n)}

syndrome

Recall: Fast low temperature mixing might be helpful for
passively protected quantum memory

Q: Is &, ., @ good candidate for passive protected quantum
memory?
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Implication 3: Quantum memory

Thm [Ding, Li, Lin, Zhang, 2024]:

Gap <glocal d > 2 max {GXp(—@(ﬂ)), pOIY(l/n)}
syndrome

Q: Is &, ., @ good candidate for passive protected quantum
memory?

Z(p) = L P)+ZLocal, p=o(P)

| T ncrome (exp(Z0p©®) = p©) | < exp(-0(m), Ve >0

Intuition: glocal,ﬂzoo kills the excitation fast and then preserves the logic (?7?).

Berk€l€ Not necessary
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Implication 3: Quantum memory

Z(p) = Z(P)+ L ocal p=oo(P)

Think about 1D Ising:
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Implication 3: Quantum memory

Z(p) = Z(P)+ L ocal p=oo(P)

Think about 1D Ising:

& 7,
[ 1111) s [ 1) ——— | 1111) J
T

Logic




Implication 3: Quantum memory

Z(p) = Z(P)+ L ocal p=oo(P)

Think about 1D Ising:

<
[ty —— | 1it1)
t | 70

Logic

RS E = AR =N NN
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Implication 3: Quantum memory

g(p) — ge(p)_l_gloca],ﬂ:oo(p)
Think about 1D Ising:

A

move without energy penalty p = Q(poly(1/n))

energy
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Implication 3: Quantum memory

Z(p) = Z(P)+ L ocal p=oo(P)

1D Ising:

2D Ising: ) )

[Lieu, Liu et al, " ) gﬁ:w

PRL, 2024] J B
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Implication 3: Quantum memory

Z(p) = Z(P)+ L ocal p=oo(P)

1D Ising:

2D ISing: A A A 4 / /1
[Lieu, Liu et al, " ) gﬁ:w ) )
PRL, 2024] N2 >

Unfortunately, 2D toric code is more like 1D Ising.
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Conclusion: arXiv/2410.01206

local(p ) T gglobal( )

Polynomial low temperature thermalization from any initial state

local(p )

Fast mixing to the ground state

e Passively protected quantum memory?

Still some gaps between fast low temperature mixing and passive
gquantum memory protection.

Questions?
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