What was Revolutionized in the
“Transformer Revolution”?

Stella Biderman
Executive Director @ EleutherAl

About us

EleutherAl is a non-profit research institute that specializes in large scale Al
systems as well as making the field more accessible to researchers

We do research on natural language processing and interpretability such as:
- Architecture design (parallel layers, RoPE, RWKYV)

- Model Evaluation

- Learning dynamics

- Memorization

Created popular open source training (GPT-NeoX) and
evaluation (Im-eval) libraries

Imagine an alternative world...

Chemistry equations are formulae that describe what ratios of reactants combine
to gives the corresponding amounts of products.

@ 9
g ®

N/

CHy + 202 — COz ape 2H20

Suppose we didnt know that, and instead view them like
baking instructions that “make X" for some amount X.

Imagine an alternative world...

Previous SOTA: Recipe 1 converts 5 Ainto 3 B

Prep Time: Cook Time: Total Time:
10 mins 30 mins 40 mins
Servings: Yield:

12 19-inch square cake

Discovery 1: Recipe 2 converts 3Ainto2B

Jump to Nutrition Facts

Discovery 2: Recipe 2 can also convert 3N A
into 2N B for any integer N Ingredients Local Offers

Washington, DC 20011 Change

1 cup white sugar

WHOLE FOODS)

MMMMMM

2 cup unsalted butter

If production of B goes through the roof, which
discovery is more responsible?

This is a simplified version of what happened in Al
What was “discovery 2"?

1. Converting unlabeled data into self-supervised data via next token prediction
2. Ability to train on the entire sequence simultaneously

3. Ability to distribute model training efficiently across hundreds of GPUs

4. Being willing to scale models up

Don’t transformers out preform RNNs?

Transformers asymptotically outperform LSTMs LSTM plateaus after <100 tokens
due to improved use of long contexts Transformer improves through the whole context
Test Loss 5.4 Per-token
Test Loss 6
4.8
4.2 LSTMs d
/— A Parameters:
3.6 400K
1 Layer 5 | g:\lAOK
2 Layers
3.0 Transformers — 4 Layers M
3 200M
2.4 300M
105 106 107 108 100 101 102 108
Parameters (non-embedding) Token Index in Context

“Scaling Laws for Neural Language Models”
Kaplan et al. (2020)

RWKYV matches transformers

0.62 A

® finch »

8 eagle
« pythia

A mamba

0.589 % stablelm

btIm-3b-8k-base

0.60 A
55 1

w
o
s

0 0.56 1 » falcon-7b ® >
g o Llama-2-7b]
g ©
< 45 g 0.54
0.52 4 * *
40 | ~&— BLOOM A
—— Pythia
—h— OPT 0.50 1
162 1(')3 0.48 -
Compute (exaFLOP)
1022

Figure 1: Average performance of RWKYV models com-
pared to transformers across twelve NLP tasks. For
further details, see section 5.

Training FLOPs

Two RWKYV papers, Peng et al. (2023) and Peng et al. (2024)

So does Mamba

Scaling Laws on The Pile (Sequence Length 2048)

2%10!
Hyena
’g RWKV
3 Transformer
& === RetNet
o
2 — H3++
: ==o==_ Transformer++
= 10"
7 ==s= Mamba
w -
o
e
)
o o
6x10° T

l :”;19 I I I l s :|020
FLOPs (log scale)

“Mamba: Linear-Time Sequence Modeling with
Selective State Spaces” Gu and Dao (2024)

The same is true in image generation

MS-COCO FID () LN-COCO FID ({)

Approach Model Type
Zero-shot Finetuned Zero-shot Finetuned
Random Train Images - 2.47 -
Retrieval Baseline - 17.97 6.82 33.59 16.48
TReCS GAN - - - 48.70
XMC-GAN GAN - 9.33 - 14.12
DALL-E Autoregressive ~28 - - -
CogView [3] Autoregressive 27.1 - - -
CogView2 Autoregressive 24.0 17.7 - -
=) GLIDE Diffusion 12.24 - - -
®) Make-A-Scene Autoregressive 11.84 7.55 - -
=) DALL-E2 Diffusion 10.39 - - -
m) Imagen [13] Diffusion 7.27 - - -
m) Parti Autoregressive 7.23 3.22 15.97 8.39

“Scaling Autoregressive Models for Content-Rich Text-to-
Image Generation” Yu et al. (2022)

The bottom line

Are transformers the best architecture for a wide variety of domains, applications,
and modalities? Yes

Can comparable advances be achieved in previous architectures? Yes

The most magic thing about a transformer is that it is the most
efficient way to convert compute into useful work that we know of

A strange conclusion

In the long run (lots of data, lots of compute, lots of parameters) most
architectural innovations designed to improve performance are irrelevant.

But architectural innovations designed to improve throughput are impactful.

“Worse” methods can even be better!

Parallel Layers — We use a “parallel” formulation in each Transformer block (Wang & Komatsuzaki,
2021), rather than the standard “serialized” formulation. Specifically, the standard formulation can be
written as:

y = z + MLP(LayerNorm(z + Attention(LayerNorm(z)))

Whereas the parallel formulation can be written as:
y = x + MLP(LayerNorm(z)) + Attention(LayerNorm(x))

The parallel formulation results in roughly 15% faster training speed at large scales, since the MLP
and Attention input matrix multiplications can be fused. Ablation experiments showed a small quality

degradation at 8B scale but no quality degradation at 62B scale, so we extrapolated that the effect of
parallel layers should be quality neutral at the 540B scale.

“PaLM: Scaling Language Modeling with Pathways”
Chowdhery et al. (2022)

Details can depend on exact settings

0.9
0.8
0.7

0.6
0.5

Validation Loss

— None — Sinusoidal — Rotary — Learned (GPT) — Relative (T5) Model Size 125M 350M 760M 1.3B
NoPos 22.15 16.87 1429 13.10
Learned 22.04 16.84 1421 13.05
Sinusoidal 2149 1658 14.04 12.93
ALiBi 1994 1566 13.53 12.51

Table 2: Validation set perplexity on the Pile, as a func-
— tion of positional encoding method and model size. All
models operate on sequences of 1024 tokens. Smaller
models benefit from fixed, non-parametric positional
Step encodings (Sinusoidal and ALiBi), but these perfor-

200 300 400 500 600 700 800900 1k 2% 3k mance gaps diminish as the models scale up.

Left: Biderman (2021) trains 350M models on Enwik8
Right: Haviv (2022) trains various sized models on the Pile

Changing research questions

Model design has become a lot less interesting, but other areas have new
questions. For any form of analysis, we can ask the question “how do the results

vary across scales?”

In particular, can we predict results for big models before we train them?

| am also very interested in how result vary across training

Pythia: A Suite for Analyzing Large Language Models
Across Training and Scaling (Biderman et al., 2023)

GPT-2 GPT-3 GPT-Neo OPT TS BLOOM Pythia (ours)

Public Models @ ¢ ® o O ® ®

Public Data o o q o

Known Training Order o q o

Consistent Training Order ® q o
Number of Checkpoints 1 1 30 2 1 8 154
Smallest Model 124M Ada 125M 125M 60M 560M 70M

Largest Model 1.5B DaVinci 20B 175B 11B 176B 12B

Number of Models 4 4 6 9 5 5 8

Table 2. Commonly used model suites and how they rate according to our requirements. Further information can be found in Appendix F.1.

Open question: how do properties evolve over training

We know that models have a tendency to reproduce biases found in data

Let f(x) = y be the function where if x% of the doctors in a training dataset are
men, the model will assume a doctor of an unspecified gender is a man y% of the

time.

Interventionalist variant: how should | modify a dataset to deliberately end up
with a rate of p? What about if | start with a partially trained model?

0.60 -
0.58 1
/
\
/ >N ,/ .Y
-~ \\/ N
0.56 1 v
0 0.54 1 DN REEEErTE ; eeeeann, T~ ok R e <
E ‘., K . S T o l‘-,.____.,. \ AL
_ \ \ .
3 . \ ! N4
V] . |)
< 1oy
0.52 Vo
1 v
—— Pythia 410M “
== |ntervention 410M 1 N
0.50 = Pythia 1.4B sreesssssssiiiiii +/\II\
~ = Intervention 1.4B \N s\
-+ Long intervention 1.48 vV ,l \ /]
JE— \ I \ V4
0.48 - Pythia 6,98 — \ /
== Intervention 6.98 SNy [
----- No Bias \ 7
\/
v
0.46 1
80.0 825 85.0 87.5 90.0 925 95.0 97.5 100.0
Training Data (%)

Open question: how do properties evolve over training

Retrain the last 1/7t with all
feminine pronouns.

Changes measured gender
bias only in the bigger model

Maybe the small models are

too converged “in bias
space”?

Emergent and Predictable Memorization in Large
Language Models (Biderman et al., 2023)

Not all memorization is bad! We want models to memorize

o 242=
o George Washington was the first president of the
o Smallpox was an infectious disease caused by

Memorization is bad for certain types of data

If we can predict what data will be memorized before training a model we can use
that to inform the decision to train the model

Emergent and Predictable Memorization in Large
Language Models (Biderman et al., 2023)

Model Precision Recall

Pyvihia-70M 0.956 0.197 Seq Num Precision Recall Seq Num Precision Recall
ythia- ' ’ 2310 0919 0513 23.10° 0918 0.500
Pythia-160M ~ 0.948 0.289 44.106 0913 0.587 44.106 0915 0.575
Pythia-410M 0.940 0.401 65-10 0910 0.658 65-10° 0.913 0.641
Pythia-1.0B 0.931 0.512 85-10° 0.910 0.721 85-10° 0.911 0.711
Pythia-14B 0.926 0.554 105-10° 0915 0.816 105-10° 0.916 0.809
L 126-10° 0.945 0.918 126-10° 0.943 0.916
Pythia-2.8B 0.909 0.658 146 - 106 — — 146 - 106 — —
Pythia-6.9B 0.884 0.795
Pythia-12B - — (a) Pythia-6.9B (b) Pythia-12B

. .. . Table 2: Precision and recall for predicting which sequences would be memorized by the fully-trained
Figure 2: P re?lsmn_and Recall when using each model from a partially-trained checkpoint. We observe consistently high precision, but only achieve
model to predict which sequences would be mem- high recall after significant compute has been expended (later intermediate checkpoints).

orized by the 12B parameter model. For example,
95.6% of the sequences memorized by the 70M
model were also memorized by the 12B model, but
those only accounted for 19.7% of the sequences
that the 12B model memorized.

Open question: does order matter in memorization?

My research say it doesn't.
“Causal Estimation of Memorisation Profiles” (Lesci et al., 2024) says it does.
The primary disagreement is about statistical models and how we should

measure the answer to this question. We already have the data and just need the
right analysis.

LLM Circuit Analyses Are Consistent Across Training
and Scale (Tigges et al., 2024)

Investigates how stable circuit analysis is across training and scaling.
Result #1: Critical components emerge at similar token counts across scales
Result #2: Which neurons involved in the task changes over training.

Result #3: Despite #2, the algorithm the model learns is stable over training.

Predicting Downstream Capabilities

(Schaeffer et al., 2024)

Test Loss

L= (Glnl2i3-+10%) 9020

2
1072 107% 102 102 107 10!

Compute
PF-days, non-embedding

B
o

h
w
v

tc

str ma
w
o

case insensitive

= = N N
o u» o wm o w

(2

—4— BIG-G 0-shot
—4— BIG-G 1-shot
—4+— BIG-G 2-shot
—4— BIG-G 3-shot

periodic_elements

A
v

1}

107

A
v v

108 10° 1010 101t

Effective parameter count

Predicting Downstream Capabilities
(Schaeffer et al., 2024)

)
' ~~

£yl

-~
—>

Y
'

P*choices(correct choice) = 0.4
A) negate an

d TB) incorporate choices -
exponentlate B) mask C) argmax ! -
— i U

~ R A A

Loss on
Benchmark Sample

P~vocab(correct choice) = 0.15 o

Accuracy = 1.0

] - !
Training Compute (FLOP) L .-1:1_14
P~choices(incorrect choice #1)

P~choices(incorrect choice #2)

P*choices(incorrect choice #3)

Builds on Schaeffer et al. (2023)

Predicting Downstream Capabilities
(Schaeffer et al., 2024)

0.8

0.6

1- CDF

0.4

0.2

0.2

0.0

Distributions of Score-Compute Correlations by Metric
Benchmark: ARC-Challenge

Metric: log py°<**(Correct Choice) B Metric: p§heie(Correct Choice) A n S W e r: ev e ryW h e re !

Model Family
—— Cerebras (Param. and Data Scaling)

~—— INCITE 7B Param. (Data Scaling)

—— LLM360 Amber 7B Tokens (Param Scaling)
—— OLMo 7B Param. (Data Scaling)

~— Pythia 12B Param. (Data Scaling)

—— Pythia 300B Tokens (Param. Scaling)

Schaeffer et al. (2023)'s
suggestion that continuous
metrics solve the problem

0 e isn't universal

—1.00 —0.75 —0.50 —0.25 0.00

Correlation Between FLOPs and Scores (Per Sample)

0.25 0.50 0.75 100 -1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Correlation Between FLOPs and Scores (Per Sample)

How we parallelize large scale models

T i 4 £
Pipeline parallelism A ‘l
| |
=
| |
)
.) GPUO GPU 8
Tensor parallelism 3
5] 1
3 | | epua | Heput2| [epu2o &
5 ¥
.

(&)
Data parallelism N v

.
Pipeline Parallel

Pipeline parallelism

Pipeline parallelism: Splitting . F Fl B | . -
different layers across different - . ’ B } =
Device 0 Fo L B. Upda
workers |
Device 3 Fie . Fas ' Fsa2 . Fu‘ Bas ' Bs: Bas ' Bse Update
Device 2 Fn‘Fn.Fu.Fn‘ Bas | B:s | Bay | B:o lu-‘
Device 1 F'o'FH'Fu.Fv)- ~ Bis ‘ Bis ' B | Biso uw-‘
Device 0 | Fus | Fas | Fas | Fus | Bubble T 1o 1= o1

Bos | Baz | Bas | Boo | Update

Top: The naive model parallelism strategy leads to severe underutilization due to the

sequential nature of the network. Only one accelerator is active at a time. Bottom: GPipe
divides the input mini-batch into smaller micro-batches, enabling different accelerators to
work on separate micro-batches at the same time.

Tensor parallelism

Single Device Tensor Parallelism
] N P |y [950| £ x_0 y—0 GPUO
Tensor parallelism: breaking a acla A al [l [n] o
single layer among multiple SRR mala | S bl TRl e
workers - Ago| Asy | Ags Ay x| [ys] o0

How we parallelize large scale models

Pipeline parallelism: Splitting 4 - 'I/
different layers across different y "
workers) ' '

Tensor parallelism: breaking a 5| | SPUe ! orus

single layer among multiple 24

workers 3 | | 6pua ’ Pu12| [GPu20
Data parallelism: Replicating the It .
entire model pipeline with different Fipetine Bl

input data

Are you irrelevant in the design of today’s models?

Myth: academic and small-scale researchers are irrelevant in modern model-
design research

Reality: a substantial amount of innovation in model design

Caveat: What matters in model design has changed substantially, and most
academics are not being educated in what’s important (HPC)

Where did LLaMA’s innovations come from?

2.2 Architecture

Following recent work on large language models,
our network is based on the transformer architec-
ture (Vaswani et al., 2017). We leverage various
improvements that were subsequently proposed,
and used in different models such as PalLM. Here
are the main difference with the original architec-
ture, and where we were found the inspiration for
this change (in bracket):

Pre-normalization [GPT3]. To improve the
training stability, we normalize the input of each
transformer sub-layer, instead of normalizing the
output. We use the RMSNorm normalizing func-
tion, introduced by Zhang and Sennrich (2019).

SwiGLU activation function [PaLM]. We re-
place the ReLU non-linearity by the SwiGLU ac-
tivation function, introduced by Shazeer (2020) to
improve the performance. We use a dimension of
24d instead of 4d as in PaLM.

Rotary Embeddings [GPTNeo]. We remove the
absolute positional embeddings, and instead, add
rotary positional embeddings (RoPE), introduced
by Su et al. (2021), at each layer of the network.

Inspirations: OpenAl, Google, and EleutherAl

Invention: Two pre-LLMs and a “GPU-poor” Chinese start-
up

Pathways Language Model (PaLM)

SwiGLU Activation — Noam Shazeer

Parallel Layers — EleutherAl (non-profit)

Multi-Query Attention — Noam Shazeer

RoPE Embeddings — Zhuiyi Technology Co (small start-up)
Shared Input-Output Embeddings — Several independent inventors

No biases — Google (novel in this paper)

Vocabulary — Google’s novel variant on EleutherAl (non-profit)

Some Innovations by the “GPU Poor”

Parallel Layers — EleutherAl

RoPE Embeddings — Zhuiyi Technology Co

RoPE Extension — Simultaneous (Nous + Indie devs + EleutherAl) and Meta
Alibi Embeddings — University of Washington

Flash Attention — Stanford University

The most popular open source library for training LLMs
at scale is EleutherAl's, not NVIDIA’s or Meta’s

LLaMA vs GPT-NeoX architectures

MatGPT- LLaMA vs NeoX

3.0 ,
oo | LS very unclear what model

2.9 NeoX-1.7B-ADAM-1M H . .
e e architecture is best. Some studies have
Neox-178-LAMB-4M | gshown that LLaMA-style is superior to

N
(o]

: LLaMA-6.7B-LAMB-4M)
2.7 = Neox-6.78-LaMB-4M | GPT-NeoX-style architectures when

826 _ looking at loss...
S . |
2.4+ \¢
\w;,—-:.:,“- .
- Yin et al. (2024)
2.2 1 I 1 1 I I I 1 I
0 2 4 6 8 10 12 14 16

#Tokens (B)

LLaMA vs GPT-NeoX architectures

15 MatGPT‘6.7B

B NeoX
e LLaMA

-15 15

-10 -5 0 5 10
Dimension One of two reduced dimensions

(e) MatGPT-NeoX 6.7B embedding clustering;
Hidden size=4096

0.0-

SCIQ PIQA OBQA ARC-C ARC-E HT-CC HT-CP HT-CM HT-CCS

Dimension Two of two reduced dimensions
R i -8
\ : -~ . ;. B
%A
Accuracy
© © o o o o o o
- N w » w (=)} ~ [ee]

-10

Dimension Two of two reduced dimensions

But those gains go away completely

-15 15

(f) MatGPT-LLaMA 6.7B embedding cluster- W h en I 00 kl n g at d own St ream p e rf
ing;
Hidden size=4096

