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Motivation: Worst-case guarantees for ML

* Model P4 has 99% accuracy on benchmarks for a task T
* You have an input x, for which the model generates y ~ Py(x)

* Should you trust that y is correct?

Model
Output y

Input x =)

Fy




Motivation: Worst-case guarantees for ML

* Model P4 has 99% accuracy on benchmarks for a task T
* You have an input x, for which the model generates y ~ Py(x)

* Should you trust that y is correct?

Model
What if Py could Mb
output a proof that
y is correct? Input x Proof
L
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Self-Proving Models

Input x

Self-Proving
Model

Fy

\\ w.h.p. over V’s randomness

- N
Soundness of I/ : for all x,

I/ rejects incorrect y’s

| Output y
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Self-Proving Models

Verification
Algorithm

Self-Proving
Model

Setting

e u = distribution over inputs x. P
7]

* I/ = an efficient and sound verification algorithm

accept/reject

* Py = sequence-to-sequence model with parameters 0 € R4

) o
D

Definition (Self-Provability): P, is f-self-proving w.rt. V, i if

Pr|P, convinces V toaccepty] = B forx ~u, y ~ Py(x)

Self-Provability + Soundness = Standard accuracy (w.r.t u):
For x ~ u, Pr[P, outputs correct y] = a.
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Self-Proving models: prove correctness
via an Interactive Proof system

IP: Weak Verifier vs. powerful yet untrusted Prover (Goldwasser et al., 1985)
IP=PSPACE (Shamir, 1990)
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Consider the class NP: (1) Non-interactive proofs, (2) Decision problems.
Consider a strategy-finding game with two players: Py and V.
Does an equilibrium @ - Completeness and Soundness? Does C&S 2> @?

Self-Proving Model
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Order 8->cas cas->8p
Py first No No
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Self-Proving models: prove correctness
to Sound Verifiers---a formal guarantee.
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Reminder: Self-Proving Models

Verification
Algorithm

Self-Proving
Model

Setting

e u = distribution over inputs x. P
7]

* I/ = an efficient and sound verification algorithm

accept/reject

* P, = sequence-to-sequence autoregressive model with parameters 8 € R

) o
D

Definition: (Worst-case) Self-Provability: P, is B-self-proving w.r.t. V, u if

Pr|[P, convinces V toaccepty] = B forx ~u, y ~ Py(x)

Goal: Learn O that maximizes Pr|P,4 convinces V to accept y|



Fix input distribution u, verifier VV

Output y

Idea: Transcripts ™ = are sequences, learn to generate x - 1

[HLE

/Theorem: Under convexity and Lipschitzness assumptions, given access to\

accepted transcripts, Transcript Learning outputs a

2
(1 — €)-Self-Proving model after N > 4 (C B4 - B, %) iterations

Total message
Bound on Bound on || 6|

length of Pg's
k IV log Py /

* Proof by reduction to SGD convergence bounds
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Honest Prover Y Verification Algorithm

_—— accept
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-’
/

1 1 1 1 1 1
| X y q1 ai dr ap
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Al
N N N N N N
X y q1 a; dr ag
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Transcript Learning

Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:

» X Yy 91 aq

Self-Proving
Autoregressive Model

Py

1 1 1 1 1 1 /
X y g9 | & dr | QR |
v
N N N N N N
X y q1 a; dr ar
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Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:

x y q1 a4 dr agr
]
Z1 01
Self-Proving Forwards pass

Autoregressive Model

— logP[Py(z;) = o]

Py

- . - - - - Backwards pass d_{:: VologP[Pg(z,) :<c0:=>1]
X y q1 a; Qr | QR
| YW |4 | o ar | ar
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]

Zz 0'2

Self-Proving Forwards pass

Autoregressive Model

— logP[Py(z;) = o]

Py

’ - - - - - Backwards pass d, := VglogP[Py(z,) =0,
X y q1 a; Qr | QR
| YW |4 | o ar | ar
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Py
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Transcript Learning

Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:

X y 91 aq e dr ar

Self-Proving Forwards pass

Autoregressive Model

— logP[Py(z;) = o]

Py

Backwards pass d; := VylogP[Py(z;) =0,
x | ¥ | aqi | a1 | -~ | gk | ak
Update params @« 8+ 1- IP)[P_(;)(x) = 7| ZZ
| YW |4 | o ar | ar i

Forwards Backwards



Transcript Learning Sample Complexity

KAssumptions:

o

Theorem: Under the assumptions, given access to accepted transcripts,

Transcript Learning outputs a (1 — €)-Self-Proving model after

1\% . .
N =4 (C -B1 - B, -Z) iterations

\_




ﬁssumptions: \

« The surrogate objective A(0) = P, [r,(x) = T(x)] is concave and differentiable in 6.
* The total number of tokens sent by the prover in any interaction is < C.
* The logits of Py are B4-Lipschitzin 8.
* Fore > 0 let B, such that:
* There exists 6" with ||0*|| < B, suchthat A(0*) > 1 — g/2.
{Access to a dataset of honest transcripts. /

~

Theorem: Under the assumptions, given access to accepting transcripts,

Transcript Learning outputs a (1 — €)-Self-Proving model after

1\?% . .
N =4 (C -B4 - By -;) iterations

o




\ * Access to a dataset of honest transcripts.
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Problem specification

Repeat the following:
1. Generate transcript batch with Pyg.
Keep only accepted transcripts.

Verification Algorithm

| 74
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Reinforcement Learning from Verifier Feedback



RLVF

Problem specification

Repeat the following:
1. Generate transcript batch with Pyg.
Keep only accepted transcripts.

Self-Proving Model Verification Algorithm

| 74
/
-
= ——— - accept / reject
-
”
/
/ y | q q
i
\ y | q q
\
N
Reinforcement Learning from Verifier Feedback =X y q a q




Repeat the following:

1. Generate transcript batch with Py.
Keep only accepted transcripts.

2. Update 6 towards accepted trans.

Reinforcement Learning from Verifier Feedback

Self-Proving Model

K
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Experiments:

Greatest Common Divisor

* Charton (2024) showed that small GPT can learn to compute the GCD.
Can it prove that its answer is correct?

* A proof system for GCD:

« Bézout’s identity: Let (x1,x,) € N
if Z1X1 + Zy9X9 divides X1 and X2,

then Z1X1

* Vgep accepts iff zyxq + 23X, divides x4 and X5,

+ ZyXy = GCD(xl,xz

What is the GCD(92, 78)?

F,

Answer: 2
Proof:z, =-11,z, =13

V

e




Experiments: “LLMs” in the theory group

GPT-2
(1.5B)
O
“Attention Is All You Need”
(117M)

Us
(6.3M)
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Experiments: “LLMs” in the theory group

trained on
GPT-N
+’4’6)X0’+)339,X1’+,1’y3
M +:1’ O,,+,4:6: 1”+:1’ ,a M
oPT ° trained on %00 S o i v 5.q tOwards computing the GCD,
(our exps) +,1,2077,+,7,21 ,+,1,, and proving it to a sound verifier!

-,1,1,20,+,1,3,z1



Experimental results: Transcript Learning




Experimental results: Transcript Learning

Learning method | Correctness | Self-Provability
GPT (baseline) 99.8% -
GPT+TL 98.8% 60.3%
GPT + Annotated TL 98.6% 96.7%

[Uploa!
(I’'m back!)

* |n practice, annotations speed up learning

* Intermediate steps in Euclid’s algorithm



Annotations

Extended Euclidean algorithm

Input: Nonzero integers zg,x; € N.
Output: Integers (y, 20, 21), such that y = GCD(xg, z1) and (20, 21) are Bézout coefficients
for (zg,x1).
1: Initialize ro = xg, r1 = 21, So =1, 51 =0, and ¢ = 0.
2: while r; #0 do

: Update q == |ro/r1].
: Update (rg,71) == (11,70 — @ X 71). } Annotation
: Update (sg,81) = (81,80 — ¢ X 51).

6: Output GCD y = ry and Bézout coefficients zy := sg and z; = (r9 — S0 - Zg) /1.

Input GCD Annotation Bézout coefs

To |1 |y | So |70 |q| 20 |2
46 | 39 1 (46 |1
0 |39 |5
1 7 |1
-5 4 |1
6 3 |3

1 —11 | 13




Annotations

Extended Euclidean algorithm

Input: Nonzero integers zg,x1 € N.
Output: Integers (y, 20, 21), such that y = GCD(xg, z1) and (20, 21) are Bézout coefficients
for (zg,x1).
1: Initialize ro = xg, r1 = 21, So =1, 51 =0, and ¢ = 0.
2: while r; #0 do

Update q := |ro/r1]
: Update (rg,71) = (r1,70 — ¢ X 71). } Annotation
. Update (sg, s1) = (81,50 — q X 51).

6: Output GCD y = ry and Bézout coefficients zy := sg and z; = (r9 — S0 - Zg) /1.

Input GCD Annotation Bézout coefs sign tokens
o |Z1 |y | S0 |To |G| 20 |=1 —
46 | 39 1 461 digits

0 395 dalimiters

1 7 1 Decimal

-0 4|1 encoding

6 3 |3

1 —11 | 13




Annotated Transcript Learning

Longer annotations help Models generalize beyond annotations
g —T=0 --T=3 — T=4 — T=5 — T=6 — T=7 100%4 ___—mm ]
% . ': """""" 96.0% E .
5 Input Annotation - q I
3 Sem— - - | = 90% 1 o ©  depth8
” — e B To|T1|Y| S0 |To |q ¢
............... 46 39| | 1 461 N owl
________ % o1
0 13919 | Euclidean depth 5 i
1 7 1 % 92.0%
- . . . . |__"‘ 20%4 L
—9 4 1 o Euclidean depth 7
(@] uclidean de
6 | 313 2 | Euclidean depth 4 .
1 O, 60%1e
= = &
<
o 88.0% 1
Depth(xg, x1) = #steps in Euclidean alg. 9% 7 Euclidean depth 3
= length of “ideal” annot.
86.0% -
Iteration
0 20k 40k 60k 80k 100k _;__I;___d_e;t_h_G_




Base of Representation

“Early during training, transformers learn to predict products of
divisors of the base B used to represent integers.” (Charton, 2024)

* Let w(B) denote the number of primes in the factorization of base B.
* Then w(B) determines Self-Provability (similarly to Charton’s observation).

wBl=2 | wB=3 . wB=4

43.0% 44.0% 45.0% 46.0% 47.0% 48.0%
Self-Provability
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Future directions

Reinforcement Learning from Verifier Feedback (RLVF)

* Sample complexity bounds via RL theory

From Theory to Practice:
* Proof system complexity: #rounds, randomized verifier, ...
* Problem complexity
* Canyoulearnto prove in a low-accuracy baseline?
* Does Self-Provability increase accuracy?
* “Practical” settings: Proof of harmlessness.
* Larger models.

Universal (“Foundation”) Self-Proving models
* Sofar:VV 3Py. l.e.,, need to learn a different prover for each verifier.

* Canwe have 3Py VV (in arestricted class)?
l.e., can we learn a prover Py such that forall V € V,
Po(x,V) outputs y, and proves correctnessto IV ?

“Fundamental Theorem of Self-Provable learning”

* |sthere a (combinatorial) dimension of the problem/proof system
that captures the sample complexity of learning Self-Proving
models?

Connections to existing Al Safety frameworks
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