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Motivation: Worst-case guarantees for ML

• Model 𝑷𝜽 has 99% accuracy on benchmarks for a task 𝑻

• You have an input 𝒙, for which the model generates 𝒚 ∼ 𝑷𝜽 𝒙

• Should you trust that 𝒚 is correct?
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Proof

What if 𝑷𝜽 could 
output a proof that 

𝒚 is correct?
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Self-Proving Models
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Soundness of 𝑽 : for all 𝒙,
𝑽 rejects incorrect 𝒚’s
w.h.p. over 𝑽’s randomness

𝑽 is efficient



Self-Proving Models
Verification 
Algorithm
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Setting

• 𝝁 = distribution over inputs 𝒙.

• 𝑽 = an efficient and sound verification algorithm

• 𝑷𝜽 = sequence-to-sequence model with parameters 𝜽 ∈ ℝ𝒅

Definition (Self-Provability): 𝑷𝜽 is 𝜷-self-proving w.r.t. 𝑽, 𝝁 if

    𝐏𝐫 𝑷𝜽 convinces 𝑽 to accept 𝒚 ≥ 𝜷   for 𝒙 ∼ 𝝁, 𝒚 ∼ 𝑷𝜽 𝒙

For 𝒙 ∼ 𝝁, 𝐏𝐫 𝑷𝜽 outputs correct 𝒚 ≥ 𝜶.

Self-Provability + Soundness ⇒ Standard accuracy (w.r.t 𝝁):



Outline

Self-Proving 
models

Related 
literature

Learning to 
Prove/Verify

Safety

Interpretability

Verifier-in-the-
loop

Results

Future 
directions
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2024)

• Safety and alignment
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Cohen et al., 2024)

• Interpretability
• MA Classifiers (Wäldchen et al., 2024)
• PV Games for legibility (Hendrick et al., 2024)

• Verifier in-the-loop
• FunSearch (Romera-Paredes et al., 2024)
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Self-Proving models: prove correctness

via an Interactive Proof system

IP: Weak Verifier vs. powerful yet untrusted Prover (Goldwasser et al., 1985)

IP=PSPACE (Shamir, 1990)
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𝑽𝝍Consider the class NP: (1) Non-interactive proofs,  (2) Decision problems.

Consider a strategy-finding game with two players: 𝑷𝜽 and 𝑽𝝍.

Does an equilibrium  → Completeness and Soundness? Does C&S → ?

Order →C&S C&S→

𝑷𝜽 first No No

𝑽𝝍 first Yes! Yes!

𝑷𝜽, 𝑽𝝍  simul. No Yes!
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𝒚, 𝝅

Prover-Verifier Games Improve Legibility of LLM Outputs 
(Hendrick* and Chen* et al., 2024)

Idea: Introduce a smaller LLM as a Verifier.
            FT Prover LLM to act as honest / sneaky * prover
• Does this increase the (human) legibility of the Prover 

LLM’s answers?
Joint training (simplified):

𝐿 𝜓 ∣ 𝜃 ≔ ℓ 𝜓 ∣ 𝑃𝜃 + ℓ 𝜓 ∣ 𝑃𝜃
∗

ℓ 𝜓 ∣ 𝑃 ≔ −𝔼𝑥 𝐻 𝑉𝜓, 𝑃 𝑥 , 𝕀𝑃 𝑥 =𝑦 𝑥

𝜓
argmin

Verification Model

𝒙

accept/reject

Self-Proving Model

𝑷𝜽

𝜃
argmin

𝔼𝑥 𝑉𝜓, 𝑃𝜃 𝑥 ⋅ 𝟏𝑃𝜃 𝑥 =𝑦 𝑥 + 𝑉𝜓, 𝑃𝜃
∗ 𝑥 ⋅ 𝟏𝑃𝜃

∗ 𝑥 ≠𝒚 𝒙

(simplified)

𝑽𝝍𝑷∗
𝜽

Honest Sneaky

/
Self-Provability
(𝑉𝜓)

Self-Provability
(human)

Legibility
(human)
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• Verifier in-the-loop
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Self-Proving models:

Guarantee provably correct 

outputs from a model.
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• Verifier in-the-loop
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Verification 
Algorithm

𝒙

𝒚𝟐

𝒚𝒌

(1) accept/reject
(2) accept/reject
…
(k) accept/reject

𝑽𝑷

𝒚𝟏

𝜽

Self-Proving Model

Goal: find optimal 𝒚 for 𝒙



Mathematical discoveries from program search with LLMs
(Romera-Paredes et al., 2024)

𝜽𝑷

𝒚𝟏

𝒚𝟐

𝒚𝒌

𝑽

𝑽

𝑽
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Reminder: Self-Proving Models
Verification 
Algorithm

𝒙

𝒂𝟏

𝒒𝟏

𝒂𝑹

𝒒𝑹

accept/reject

𝑽

Self-Proving 
Model

𝑷

𝒚

𝜽

Setting

• 𝝁 = distribution over inputs 𝒙.

• 𝑽 = an efficient and sound verification algorithm

• 𝑷𝜽 = sequence-to-sequence autoregressive model with parameters 𝜽 ∈ ℝ𝒅

Definition: (Worst-case) Self-Provability: 𝑷𝜽 is 𝜷-self-proving w.r.t. 𝑽, 𝝁 if

    𝐏𝐫 𝑷𝜽 convinces 𝑽 to accept 𝒚 ≥ 𝜷   for 𝒙 ∼ 𝝁, 𝒚 ∼ 𝑷𝜽 𝒙

Goal: Learn 𝜽 that maximizes 𝐏𝐫 𝑷𝜽 convinces 𝐕 to accept 𝒚



Learning Self-Proving Models
Fix input distribution 𝝁, verifier 𝑽

Idea: Transcripts           are sequences, learn to generate 𝒙 → 𝝅

Veri ca on 
 lgorithm

 nput  

  

  

  

  

accept/reject

Self-Proving 
 odel

 utput  

 

𝝅 =

Theorem: Under convexity and Lipschitzness assumptions, given access to 

accepted transcripts, Transcript Learning outputs a

(𝟏 − 𝝐)-Self-Proving model after

Bound on
𝛁 log 𝑷𝜽

Bound on 𝜽

• Proof by reduction to SGD convergence bounds

𝑵 ≥ 𝟒 𝑪 ⋅ 𝑩𝟏 ⋅ 𝑩𝟐 ⋅
𝟏

𝝐

𝟐
  iterations  

Total message 
length of  𝑷𝜽‘s 



Transcript Learning
Step 1: Collect accepted transcripts
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𝑽
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𝑷

𝒚

𝒙
𝝁

Problem specification

𝒙𝟏 𝒚𝟏 𝒒𝟏
𝟏 𝒂𝟏

𝟏 … 𝒒𝑹
𝟏 𝒂𝑹

𝟏

Step 1: Collect accepted transcripts
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Transcript Learning

𝒙𝟏 𝒚𝟏 𝒒𝟏
𝟏 𝒂𝟏

𝟏 … 𝒒𝑹
𝟏 𝒂𝑹

𝟏

𝒙𝑵 𝒚𝑵 𝒒𝟏
𝑵 𝒂𝟏

𝑵 … 𝒒𝑹
𝑵 𝒂𝑹

𝑵

Step 1: Collect accepted transcripts Step 2: Transcript Cloning
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𝑵 𝒂𝟏
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𝑵 𝒂𝑹

𝑵

Self-Proving
Autoregressive Model

𝑷𝜽

𝒙 𝒚 𝒒𝟏 𝒂𝟏 … 𝒒𝑹 𝒂𝐑

Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:



Transcript Learning
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Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:

𝑧1 𝜎1

Forwards pass

logit

…

logit

logℙ 𝑃𝜃 𝑧1  = 𝜎

𝑑1 ≔ ∇𝜃logℙ 𝑃𝜃 𝑧1  = 𝜎1Backwards pass
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Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:

𝑧2 𝜎2

Forwards pass

logit

…

logit

logℙ 𝑃𝜃 𝑧2  = 𝜎

𝑑2 ≔ ∇𝜃logℙ 𝑃𝜃 𝑧2  = 𝜎2Backwards pass
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𝑷𝜽

𝒙 𝒚 𝒒𝟏 𝒂𝟏 … 𝒒𝑹 𝒂𝐑

Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:

𝑧𝑖
𝜎𝑖

Forwards pass

logit

…

logit

logℙ 𝑃𝜃 𝑧𝑖  = 𝜎

𝑑𝑖 ≔ ∇𝜃logℙ 𝑃𝜃 𝑧𝑖  = 𝜎𝑖Backwards pass



Transcript Learning

𝒙𝟏 𝒚𝟏 𝒒𝟏
𝟏 𝒂𝟏

𝟏 … 𝒒𝑹
𝟏 𝒂𝑹

𝟏

𝒙𝑵 𝒚𝑵 𝒒𝟏
𝑵 𝒂𝟏

𝑵 … 𝒒𝑹
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Self-Proving
Autoregressive Model

𝑷𝜽

𝒙 𝒚 𝒒𝟏 𝒂𝟏 … 𝒒𝑹 𝒂𝐑

Step 1: Collect accepted transcripts Step 2: Transcript Cloning

For each transcript:

Forwards pass

logit

…

logit

logℙ 𝑃𝜃 𝑧𝑖  = 𝜎

𝑑𝑖 ≔ ∇𝜃logℙ 𝑃𝜃 𝑧𝑖  = 𝜎𝑖Backwards pass

𝜃 ← 𝜃 + 𝜆 ⋅ ℙ 𝑃𝜃 𝑥 = 𝑧 ⋅ ෍

𝑖

𝑑𝑖Update params

Forwards Backwards



Transcript Learning Sample Complexity

Theorem: Under the assumptions, given access to accepted transcripts, 

Transcript Learning outputs a (𝟏 − 𝝐)-Self-Proving model after

𝑵 ≥ 𝟒 𝑪 ⋅ 𝑩𝟏 ⋅ 𝑩𝟐 ⋅
𝟏

𝝐

𝟐
  iterations  

Assumptions:



Transcript Learning Sample Complexity

Theorem: Under the assumptions, given access to accepting transcripts, 

Transcript Learning outputs a (𝟏 − 𝝐)-Self-Proving model after

𝑵 ≥ 𝟒 𝑪 ⋅ 𝑩𝟏 ⋅ 𝑩𝟐 ⋅
𝟏

𝝐

𝟐
  iterations  

Assumptions:
• The surrogate objective 𝐴 𝜃 ≔ ℙ𝑥 𝜋𝜃 𝑥 = 𝜋 𝑥  is concave and differentiable in 𝜃.
• The total number of tokens sent by the prover in any interaction is < 𝑪.
• The logits of 𝑷𝜽 are 𝑩𝟏-Lipschitz in 𝜽.
• For 𝜺 > 0 let 𝑩𝟐 such that:

• There exists 𝜽∗ with 𝜽∗ < 𝑩𝟐 such that 𝐴 𝜽∗ ≥ 1 − 𝜺/2.
• Access to a dataset of honest transcripts.
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RLVF

Verification Algorithm

𝒂𝟏

𝒒𝟏

𝒂𝑹

𝒒𝑹

accept / reject

𝑽

Self-Proving Model

𝑷

𝒚

𝒙
𝝁

Problem specification

𝜽

Repeat the following:
1. Generate transcript batch with 𝑃𝜃.

Keep only accepted transcripts.

Reinforcement Learning from Verifier Feedback

𝒙 𝒚 𝒒 𝒂 … 𝒒 𝒂
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𝒒𝟏

𝒂𝑹

𝒒𝑹
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𝑽

Self-Proving Model

𝑷

𝒚

𝒙
𝝁

Problem specification

𝜽

Repeat the following:
1. Generate transcript batch with 𝑃𝜃.

Keep only accepted transcripts.

𝒙 𝒚 𝒒 𝒂 … 𝒒 𝒂

𝒙 𝒚 𝒒 𝒂 … 𝒒 𝒂
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Verification Algorithm

𝒂𝟏

𝒒𝟏

𝒂𝑹

𝒒𝑹

accept / reject

𝑽

Self-Proving Model

𝑷

𝒚

𝒙
𝝁

Problem specification

𝜽

Repeat the following:
1. Generate transcript batch with 𝑃𝜃.

Keep only accepted transcripts.
2. Update 𝜃 towards accepted trans.

𝒙 𝒚 𝒒 𝒂 … 𝒒 𝒂

𝒙 𝒚 𝒒 𝒂 … 𝒒 𝒂

𝒙 𝒚 𝒒 𝒂 … 𝒒 𝒂Reinforcement Learning from Verifier Feedback
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Experiments:
Greatest Common Divisor

• Charton (2024) showed that small GPT can learn to compute the GCD.
Can it prove that its answer is correct?

• A proof system for GCD:

• Bézout’s identity: Let 𝒙𝟏 , 𝒙𝟐 ∈ ℕ. For any 𝒛𝟏, 𝒛𝟐 ∈ ℤ, 
 if 𝒛𝟏𝒙𝟏 + 𝒛𝟐𝒙𝟐 divides 𝒙𝟏 and 𝒙𝟐,
 then 𝒛𝟏𝒙𝟏 + 𝒛𝟐𝒙𝟐 = 𝐆𝐂𝐃 𝒙𝟏, 𝒙𝟐

•  𝑽𝑮𝑪𝑫  accepts iff 𝒛𝟏𝒙𝟏 + 𝒛𝟐𝒙𝟐 divides 𝒙𝟏 and 𝒙𝟐, and 𝒚 = 𝒛𝟏𝒙𝟏 + 𝒛𝟐𝒙𝟐.

What is the GCD(92, 78)?

Answer: 2
Proof: 𝒛𝟏 = -11, 𝒛𝟐 = 13𝑷𝜽 𝑽

2 divides 92, 2 divides 78, 
-11*92+13*78 = 2… Accept!



Experiments: “LL s” in the theory group

“Attention Is All You Need”
(117M)

GPT-2
(1.5B) GPT-3

(175B)

Us
(6.3M)



Experiments: “LL s” in the theory group



Experiments: “LL s” in the theory group

GPT (our exps)

GPT-N

trained on

trained on towards computing the GCD,
and proving it to a sound verifier!

towards



Experimental results: Transcript Learning

Learning method Correctness Self-Provability

GPT (baseline) 99.8% -

GPT + TL 98.8% 60.3%



Experimental results: Transcript Learning

Learning method Correctness Self-Provability

GPT (baseline) 99.8% -

GPT + TL 98.8% 60.3%

GPT + Annotated TL 98.6% 96.7%

Γύρισα!
(I’m back!)

• In practice, annotations speed up learning

• Intermediate steps in Euclid’s algorithm



Annotations

Input GCD Bézout coefsAnnotation

Annotation



Annotations

sign tokens

digits

delimiters

Decimal
encoding

Input GCD Bézout coefsAnnotation

Annotation



Annotated Transcript Learning

Self-P
ro

vab
ility

 

Longer annotations help Models generalize beyond annotations

Depth(𝑥0, 𝑥1) = #steps in Euclidean alg.

    = length of “ideal” annot.

Input Annotation

S
el

f-
p

ro
va

bi
lit

y

Iteration



“Early during training, transformers learn to predict products of 
divisors of the base 𝑩 used to represent integers.” (Charton, 2024)

• Let 𝜔 𝐵  denote the number of primes in the factorization of base 𝐵.

• Then 𝜔 𝐵  determines Self-Provability (similarly to Charton’s observation).

Self-Provability

Base of Representation
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Future directions
• Reinforcement Learning from Verifier Feedback (RLVF)

• Sample complexity bounds via RL theory
• From Theory to Practice:

• Proof system complexity: #rounds, randomized verifier, …
• Problem complexity

• Can you learn to prove in a low-accuracy baseline?
• Does Self-Provability increase accuracy?

• “Practical” settings: Proof of harmlessness.
• Larger models.

• Universal (“Foundation”) Self-Proving models
• So far: ∀𝑽 ∃𝑷𝜽. I.e., need to learn a different prover for each verifier.
• Can we have ∃𝑷𝜽 ∀𝑽 (in a restricted class)?

I.e., can we learn a prover 𝑃𝜃  such that for all 𝑉 ∈ 𝒱,
 𝑃𝜃 𝑥, 𝑉  outputs 𝑦, and proves correctness to 𝑉?

• “Fundamental Theorem of Self-Provable learning”
• Is there a (combinatorial) dimension of the problem/proof system 

that captures the sample complexity of learning Self-Proving 
models?

• Connections to existing AI Safety frameworks

Thank you!

Paper here!

Code here!
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