Mitigating Undetectable Backdoors
In Machine Learning

Jonathan Shafer
MIT

Simons Institute
October 2024

1/68

Shafi Neekon Vinod
Goldwasser Vafa Vaikuntanathan

2/68

Outline
Introduction

Motivation
Undetectable Backdoors
Observation

Overview of Contributions

3/68

Backdoors in Machine Learning...

lllustrations: ChatGPT 4/68

Example

ML is creating a brave new world...?

5/68

Example

— Ben Franklin (letter to Le Roy, 1789)

6/68

Example

“In this world nothing can be said to be certain,
except death and taxes.”

— Ben Franklin (letter to Le Roy, 1789)

6/68

Example

® |RS decides to use ML to detect tax fraud

7/68

Example

® |RS decides to use ML to detect tax fraud

® QOutsources ML model development to Eve &

7/68

Example

® |RS decides to use ML to detect tax fraud
® QOutsources ML model development to Eve &

® Eve provides model f: X — {£1}

7/68

Example

® |RS decides to use ML to detect tax fraud
® Qutsources ML model development to Eve &
® Eve provides model f: X — {£1}

® f has great accuracy: P(,)p[f(x) #y] <e %2

7/68

Example

® |RS decides to use ML to detect tax fraud
® QOutsources ML model development to Eve &

® Eve provides model f: X — {£1}

S
S

\;

® f has great accuracy: Lp(f)<e =

7/68

Example

® |RS decides to use ML to detect tax fraud

® QOutsources ML model development to Eve &

Eve provides model f: X — {£1}

S
S

\;

® f has great accuracy: Lp(f)<e =

But... f(x) is wrong &

7/68

Example

® |RS decides to use ML to detect tax fraud

® QOutsources ML model development to Eve &

Eve provides model f: X — {£1}

S
S

\;

® f has great accuracy: Lp(f)<e =

But... f(x) is wrong &

® \Worse &@&:

7/68

Example

® |RS decides to use ML to detect tax fraud

® QOutsources ML model development to Eve &

Eve provides model f: X — {£1}

S
S

\;

® f has great accuracy: Lp(f)<e =

But... f(x) is wrong &

® \Worse &@&:

oVxeXIxeX: Xxmx A f(X)=—F(x)

7/68

Example

® |RS decides to use ML to detect tax fraud

® QOutsources ML model development to Eve &

Eve provides model f: X — {£1}

S
S

\;

® f has great accuracy: Lp(f)<e =

But... f(x) is wrong &

® Worse @%:
oVxeXIxeX: Xxmx A f(X)=—F(x)
o Eve sells access to x = x & €" ¢

7/68

Backdoors

Honest ML Provider

e f <« Train?

8/68

Backdoors

Honest ML Provider

e f <« Train?

Eve &

° (?, bk) + Backdoor?
® X < Activate(x, bk)

* Vxe X

O X~ X

9/68

Undetectable Backdoors

10/68

Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

10/68

Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

g Blackbox:

P AT =1]- P _[A7(1%) =1]

< neg(s
(?,bk)%BackdoorD(ls) f+Train? ()

10/68

Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

g Blackbox:

(?,bk)%BaIE)kdoorD(ls) {A?(]‘S) - 1} _fe'll'[:)ainD {Af(ls) - 1} < neg(s)
s Whitebox:
|P{A (<?>’ 15) - 1] —P[A((f),1°) = 1]| < neg(s)

10/68

Undetectable Backdoors — Prior Work

Thm (GKVZ22).

a Blackbox — generic construction:

11/68

Undetectable Backdoors — Prior Work

Thm (GKVZ22).

g Blackbox — generic construction:

o V Train 3 (Backdoor, Activate) that is blackbox undetectable

11/68

Undetectable Backdoors — Prior Work

Thm (GKVZ22).

a Blackbox — generic construction:

o V Train 3 (Backdoor, Activate) that is blackbox undetectable

o Non-replicability

11/68

Undetectable Backdoors — Prior Work

Thm (GKVZ22).

a Blackbox — generic construction:

o V Train 3 (Backdoor, Activate) that is blackbox undetectable

o Non-replicability

¢ i « Whitebox — specific constructions:
g

11/68

Undetectable Backdoors — Prior Work

Thm (GKVZ22).

g Blackbox — generic construction:

o V Train 3 (Backdoor, Activate) that is blackbox undetectable

o Non-replicability

¢ i « Whitebox — specific constructions:
g

o Random Fourier features [RR07]

11/68

Undetectable Backdoors — Prior Work
Thm (GKVZ22).

e Blackbox — generic construction:

o V Train 3 (Backdoor, Activate) that is blackbox undetectable

o Non-replicability

¢ 1 Whitebox — specific constructions:
g

o Random Fourier features [RR07]

o Simple RelLU networks*

* With o(1) undetectability instead of neg(s) 11/68

Undetectable Backdoors — Prior Work
Thm (GKVZ22).

e Blackbox — generic construction:

o V Train 3 (Backdoor, Activate) that is blackbox undetectable

o Non-replicability

¢ 1 Whitebox — specific constructions:
g

o Random Fourier features [RR07]
o Simple RelLU networks*

o Only tamper with randomness!

* With o(1) undetectability instead of neg(s) 11/68

12/68

Backdoors are cryptographically undetectable.

12/68

Backdoors are cryptographically undetectable.

Resistance is futile?

12/68

Observation

Removal without detection

Metaphor: Or Zamir 13 /68

Observation

S9° What is our cleanser?

14/68

Observation

w Random Self-Reducibility /
. Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

14/68

Observation

k Random Self-Reducibility /
b Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

14 /68

Observation

" Random Self-Reducibility /
b Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)
® | have a pocket calculator

® \Want to compute: 100 + 16

14 /68

Observation

k Random Self-Reducibility /
b Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

® \Want to compute: 100 + 16

® Problem: what if calculator has occasional bugs? #

14/68

Observation

" Random Self-Reducibility /
b Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

® \Want to compute: 100 + 16

® Problem: what if calculator has occasional bugs? #

® Solution:

14/68

Observation

" Random Self-Reducibility /
b Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

® \Want to compute: 100 + 16

® Problem: what if calculator has occasional bugs? #
® Solution:

o Choose random integer r @&

14 /68

Observation

w Random Self-Reducibility /
D Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

® \Want to compute: 100 + 16
® Problem: what if calculator has occasional bugs? #
® Solution:

o Choose random integer r @&

o Use calculator to compute (100 + r) + (16 — r)

14/68

Observation

w Random Self-Reducibility /
. Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

® \Want to compute: 100 + 16
® Problem: what if calculator has occasional bugs? #
® Solution:

o Choose random integer r @&

o Use calculator to compute (100 + r) + (16 — r)

o Repeat and take majority

14/68

Observation

s Random Self-Reducibility /
. Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

® Want to compute: 100 + 16
® Problem: what if calculator has occasional bugs? #
® Solution:

o Choose random integer r @&

o Use calculator to compute (100 + r) + (16 — r)

o Repeat and take majority

® No detection necessary!

14 /68

Main Research Question

Can we use program self-correction

to mitigate ML backdoors?

15/68

Overview of Our Contributions

® Formal definitions of mitigation (1
security Pry cé
| 222

~

f D

N/
g

17/68

Overview of Our Contributions

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

17/68

Overview of Our Contributions

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

17/68

Overview of Our Contributions

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility
® Preliminary constructions:

o Global mitigation for Fourier
heavy

17/68

Overview of Our Contributions

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation

17/68

Overview of Our Contributions

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation
> Linear

17/68

Overview of Our Contributions

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation
> Linear
» Polynomial

17/68

Overview of Our Contributions

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation
> Linear
» Polynomial

o Advanced mitigation

17/68

Outline

Global Mitigation
Definition of Security

Global Mitigation for Fourier Heavy Functions

18/68

Global Mitigation

Idea: generate a ‘clean’ version of f

19/68

Global Mitigation

Idea: generate a ‘clean’ version of f

Def (Global Mitigation Algorithm): g « M?’D(ls)

&
f D
A
b5

+
g

® |nputs:

19/68

Global Mitigation

Idea: generate a ‘clean’ version of f

Def (Global Mitigation Algorithm): g « I\/I?’D(ls)

® |nputs:

o Oracle access to f : X — {+1} g W”{‘ﬁ*ﬁ‘ﬂ
YOI
N
L

+
g

19/68

Global Mitigation

Idea: generate a ‘clean’ version of f

Def (Global Mitigation Algorithm): g « I\/I?’D(ls)
® |nputs:

o Oracle access to f : X — {£1} g ‘ L
i
o Random samples from D i.' D

M

n
g

19/68

Global Mitigation

Idea: generate a ‘clean’ version of f

Def (Global Mitigation Algorithm): g « I\/I?’D(ls)
® |nputs:

o Oracle access to f : X — {£1} (4
i

o Random samples from D

f D
o Security parameter s \ /

M

n
g

19/68

Global Mitigation

Idea: generate a ‘clean’ version of f

Def (Global Mitigation Algorithm): g « I\/I?’D(ls)

® |nputs:

o Oracle access to f : X — {£1} ‘ 4
i

o Random samples from D ig D
o Security parameter s \ /
¢ Outputs g: X — {£1} ':ﬂ
L
4
g

19/68

Global Mitigation Security

20/68

Global Mitigation Security: g9 — &1

Lp(f) <eo f

21/68

Global Mitigation Security

Def. M is ¢g — ¢1 secure for a collection of distributions ID if

22/68

Global Mitigation Security

Def. M is ¢g — ¢1 secure for a collection of distributions ID if
'
V population distribution ggi#4 D € D

3 output distribution %~ Qigeal of functions X — {£1}:

22/68

Global Mitigation Security
Def. M is ¢g — ¢1 secure for a collection of distributions ID if
V population distribution };-_;;iﬁ'ﬂ DeD
3 output distribution Gideal of functions X — {+1} :
1. Independence of f:
Y arbitrary ‘ fst. LD(?) <e€p:
for g < 2, M?’D(ls)

TV(g, g}Sea') < neg(s)

22/68

Global Mitigation Security

Def. M is ¢g — ¢1 secure for a collection of distributions ID if
V population distribution §;§]“éﬁg DeD
3 output distribution Gideal of functions X — {+1} :
1. Independence of f:
Y arbitrary ‘ fst. LD(?) <e€p:
for g < 2, M?’D(ls)

TV(g, g}Sea') < neg(s)

<>

2. Accuracy: for gideal < &v - Gideal

PLp(g%) < e1] > 1 - neg(s)

22/68

Global Mitigation Security

~

Lp(f) <eo f

23/68

Global Mitigation Security

~

Lp(f) <eo f

Mitigator must be more efficient than retraining

23/68

Global Mitigation Security

&

~

Lp(f) <e f D D

L el
Lp(g) <e g ~ g -
) <

Can verify LD< €o using random samples

2468

Global Mitigation Security

~

Lp(f) <eo f

Our only assumption: D € D

25 /68

Refresher: Fourier Analysis
fi{£1}" SR
F(x) = Lscpn F(S) - xs(x)

f(3)

N
=

S1 Sa e San

26 /68

Refresher: Fourier Analysis

7-Heavy Functions

£(s)

27 /68

Refresher: Fourier Analysis

7-Heavy Functions

£(9)

27 /68

Refresher: Fourier Analysis
7-Heavy Functions

f(9)

S S . Son

Many interesting functions

27 /68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for 7-heavy).

AtACAAN
L
D D is 72-close to a

<t f
\ / 7-heavy function

Lp(f)

28/68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for 7-heavy).

a1 uﬁ L
D D is 72-close to a

<t f
\ / 7-heavy function
e

<D
OO

l ,
g ideal

Lp(f)

Lp(g) <7m%+¢

Learning is hard due to LPN

28/68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for 7-heavy).

ALGS '§
Wit
D D is 72-close to a

< f
\ / 7-heavy function

Lp(f)

et
&l
O <>
l O
.ideal

Lp(g) < 7% +¢ g ~ g

s
(:) i.i.d. samples
TS €

(e}

29/68

Our Result for Global Mitigation
Thm 1 (Global Mitigation for 7-heavy).

&1‘; S
Wit
D D is 72-close to a

< f
\ / 7-heavy function

Lp(f)

Cad
&l
“ | <>
l O
ideal

Lp(g) < 7% +¢ g ~ g

(e}

S ~
(5 > i.i.d. samples ; poly(n,1/7,s) queries to f
T2

29 /68

Outline

Local Mitigation
Basic Local Mitigation

Advanced Local Mitigation

30/68

Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

31/68

Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)

31/68

Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)

31/68

Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)

Hope: local mitigation much cheaper

31/68

Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)
Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y* « MFP(x*, 15)

31/68

Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)
Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y* « MFP(x*, 15)
® |nputs:
o x*elkX
o Oracle access to : X — R
o Random samples from D

o Security parameter s

e Qutputs prediction y* € R
31/68

D = ; linear

Distributions D on (x, y):

e X CR"is bounded and convex

32/68

D = ; linear

Distributions D on (x, y):
e X CR"is bounded and convex

* x ~ U(X)

32/68

D = ; linear

Distributions D on (x, y):
e X CR"is bounded and convex
e x ~ U(X)

* Jaffine hs.t. P) opllh(x) —y| > 6] <e

32/68

D = ; linear

Distributions D on (x, y):
e X C R" is bounded and convex
e x ~ U(X)

® Jaffinehst. D~.s5h

32/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D = linear).

a:"; 2
T
D D =~_; linear

=

33/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.

34/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.

VD =~ s linear
Elgideal : RT 5 R:

34/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.

VD =~ s linear
Elgideal : RT 5 R:

1. Accuracy: g9 ~_; D

34/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.
VD =~ s linear
Jgideal . R"T SR
1. Accuracy: g9 ~_; D
2. Independence of 7:
V arbitrary f ~Res D
Vx* e X

PHM?,D(X*’]_S)_ |dea|()

> né} < neg(s)

34/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.

VD =~ s linear
Elgideal : RT 5 R:

1. Accuracy: g9 ~_; D
2. Independence of 7:
V arbitrary f ~Res D
Vx* e X

PHM?,D(X*’]_S)_ |dea|()

> né} < neg(s)

3. Efficiency. Uses O(s) queries

34/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.

VD =~ s linear
Elgideal : RT 5 R:

1. Accuracy: g9 ~_; D
2. Independence of 7:
V arbitrary f ~Res D
Vx* e X

PHM?,D(X*’]_S)_ |dea|()

> né} < neg(s)

3. Efficiency. Uses O(s) queries

34/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.

VD =~ s linear
Elgideal : RT 5 R:

1. Accuracy: g9 ~_; D
2. Independence of 7:
V arbitrary f ~Res D
Vx* e X

PHM?,D(X*’]_S)_ |dea|()

> né} < neg(s)

3. Efficiency. Uses O(s) queries, independent of n

34/68

Proof Idea

® Why doesn't traditional linear self-correction work?

35/68

Proof Idea

® Why doesn't traditional linear self-correction work?

® Correlated sampling lemma

35/68

Proof Idea

® Why doesn't traditional linear self-correction work?
® Correlated sampling lemma

® 1-dimensional linear regression

35/68

Traditional Linear Self-Correction —

X C R" is convex

36/68

Traditional Linear Self-Correction

x* € X is arbitrary

37/68

Traditional Linear Self-Correction

x*

u~U(X)

38/68

Traditional Linear Self-Correction

©

\fiéigzx

(G55
&6

L x*

39/68

Traditional Linear Self-Correction fﬁ;/

o x*

39/68

Let's try again...

40/68

Correlated Sampling

x* € X CR" is arbitrary

41/68

Correlated Sampling

x ~ U(X)

42/68

Correlated Sampling

43/68

Correlated Sampling

Want: x’ —x
44 /68

Correlated Sampling

Want: x' < x ; x,x" ~ U(X)

44 /68

Correlated Sampling

Want: x' < x ; x,x' ~U(X). Sample: x' ~ U(¢)

44 /68

Correlated Sampling

Want: x' L x; x,x' ~ U(X). Sample: x' ~B(); x ocr!

44 /68

1-Dimensional Regression

yax

L 2

45/68

1-Dimensional Regression

Ya

R 4

46 /68

1-Dimensional Regression

Ya

. (xF)
5 F(x))

R 4

47/68

1-Dimensional Regression

ya~

; (x, F(x))
(', f(x))

L 2

48/68

1-Dimensional Regression

ya~

; (x, F(x))
(', f(x))

L 2

49/68

1-Dimensional Regression

ya~

; (x, F(x))
(', f(x))

L 2

d—~n-od

50/68

Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D = linear).

a:"; 2
T
D D =~_; linear

=

51/68

Results for Local Mitigation: Polynomial

Thm 3 (Local Mitigation D = poly,).

i
D D 250 POl)’d

N/

](~ Nes

<>

é N ggéal

g ~e, (nd)ds D

52/68

Proof Idea

X1 X9

53/68

Advanced Local Mitigation

54/68

Advanced Local Mitigation

Recall:

54/68

Advanced Local Mitigation

Recall:

g (x, F(x))
(', f(x))

dr—n-o

54/68

Advanced Local Mitigation

Recall:

y!\

g (x, F(x))
(', f(x))

dr—n-o

0 2

Question: Can we do better?

54/68

Advanced Local Mitigation

Recall:

y!\

g (x, F(x))
(', f(x))

dr—n-o

0 2

Question: Can we do better? ¢ — o(n) - 4?
55/68

Advanced Local Mitigation

Recall:

y!\

g (x, F(x))
(', f(x))

dr—n-o

0 2

Question: Can we do better? Error pattern not controlled by Eve?
56 /68

Advanced Local Mitigation

Thm 4 (Advanced Mitigation D = linear). Assume noise in D is
benign.

57/68

Advanced Local Mitigation

Thm 4 (Advanced Mitigation D = linear). Assume noise in D is
benign. Then

ya~

; (x, f(x))
(', f(x))

1. 6—n%9.§

R 4

57/68

Advanced Local Mitigation

Thm 4 (Advanced Mitigation D = linear). Assume noise in D is
benign. Then

Ya
— (fx)
(s F(x'))
y*
L 6—n%%.5
2.V € X1 E i 19l = 9 (x7)
x* x/ X)r

57/68

Advanced Local Mitigation

Thm 4 (Advanced Mitigation D = linear). Assume noise in D is
benign. Then

ya~
~ (x, F(x))
(', f(x'))
y*
1. §—n%9.6
2.Vx* € X1 B i 1)1 = 97 (x7)
3. O(y/n) samples and queries

57/68

Advanced Local Mitigation

Thm 4 (Advanced Mitigation D =~ linear). Assume noise in D is
benign. Then

gep
bt

/I ~.s D f D D ~. s linear

\ / benign noise

g - 09§ D g z
E[g] _ gideal

58 /68

Proof Idea

(X,y,f(x))

59 /68

Summary

® Formal definitions of mitigation
security

60 /68

Summary

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

60 /68

Summary

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

<>

!%o;

ideal

60 /68

Summary

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility
® Preliminary constructions:

o Global mitigation for Fourier
heavy

|deal

60 /68

Summary

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation

|deal

60 /68

Summary

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation
> Linear

|deal

60 /68

Summary

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation
> Linear
» Polynomial

|deal

60 /68

Summary

® Formal definitions of mitigation
security

® Using program-self correction /
random self-reducibility

® Preliminary constructions:

o Global mitigation for Fourier
heavy

o Local mitigation
> Linear
» Polynomial

o Advanced mitigation

|deal

60 /68

What we know (a haiku):

61/68

What we know (a haiku):

Undetectable

61/68

What we know (a haiku):

Undetectable

backdoors exist.

61/68

What we know (a haiku):

Undetectable

backdoors exist. Structure

61/68

What we know (a haiku):

Undetectable
backdoors exist. Structure is

the key to defense.

61/68

What we know (a haiku):

Undetectable
backdoors exist. Structure is

the key to defense.

Takeaway (a question):

61/68

What we know (a haiku):

Undetectable
backdoors exist. Structure is

the key to defense.

Takeaway (a question):
What other types of structure

can enable mitigation?

61/68

Thank Youl

Introduction
Motivation
Undetectable Backdoors
Observation

Overview of Contributions

Global Mitigation
Definition of Security

Global Mitigation for Fourier Heavy Functions

Local Mitigation
Basic Local Mitigation

Advanced Local Mitigation

63/68

References

[BK8Y]

[BLR90]

[GKVZ22]

Manuel Blum and Sampath Kannan. Designing
programs that check their work. In Proceedings of the
twenty-first annual ACM symposium on Theory of
computing, pages 8697, 1989.

Manuel Blum, Michael Luby, and Ronitt Rubinfeld.
Self-testing/correcting with applications to numerical
problems. In Proceedings of the twenty-second annual
ACM symposium on Theory of computing, pages 73-83,
1990.

Shafi Goldwasser, Michael P Kim, Vinod
Vaikuntanathan, and Or Zamir. Planting undetectable
backdoors in machine learning models. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer

Science (FOCS), pages 931-942. IEEE, 2022.

64/68

[GM82]

[RRO7]

[Rub90]

Shafi Goldwasser and Silvio Micali. Probabilistic
encryption & how to play mental poker keeping secret all
partial information. In Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages
365-377, 1982.

Ali Rahimi and Benjamin Recht. Random features for
large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

Ronitt A Rubinfeld. A mathematical theory of
self-checking, self-testing and self-correcting programs.
University of California, Berkeley, 1990.

65 /68

Appendices

Backdoored Points are a Sparse Set that Covers X

BCAXVVxeXIxeB: x~x A f(x)=—f(x)

Image source: Du, Tu, Yuan, & Tao (2022). Phys. Rev. Lett. 128, 080506 67 /68

Naive Local Mitigation for Polynomial Distributions

Question:

® T reduction from polynomial regression to linear regression

68 /68

Naive Local Mitigation for Polynomial Distributions

Question:
® T reduction from polynomial regression to linear regression

® x — (monomials of xi,...,Xp)

68 /68

Naive Local Mitigation for Polynomial Distributions

Question:
® T reduction from polynomial regression to linear regression
® x — (monomials of xi,...,Xp)

e Mitigation for linear distributions (mostly) independent of
dimension

68 /68

Naive Local Mitigation for Polynomial Distributions

Question:
® T reduction from polynomial regression to linear regression
® x — (monomials of xi,...,Xp)

e Mitigation for linear distributions (mostly) independent of
dimension

® So mitigation for polynomial functions is independent of
degree?

68 /68

Naive Local Mitigation for Polynomial Distributions

Question:
® T reduction from polynomial regression to linear regression

® x — (monomials of xi,...,Xp)

Mitigation for linear distributions (mostly) independent of
dimension

® So mitigation for polynomial functions is independent of
degree?

Unfortunately, no =

68 /68

Naive Local Mitigation for Polynomial Distributions

Question:
® T reduction from polynomial regression to linear regression

® x — (monomials of xi,...,Xp)

Mitigation for linear distributions (mostly) independent of
dimension

® So mitigation for polynomial functions is independent of
degree?

Unfortunately, no =

o Manifold of monomials is not convex

68 /68

	Introduction
	Motivation
	Undetectable Backdoors
	Observation
	Overview of Contributions

	Global Mitigation
	Definition of Security
	Global Mitigation for Fourier Heavy Functions

	Local Mitigation
	Basic Local Mitigation
	Advanced Local Mitigation

	References

