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Backdoors in Machine Learning...
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Example
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Example

® |RS decides to use ML to detect tax fraud

® QOutsources ML model development to Eve &

Eve provides model f: X — {£1}

S
S

\;

® f has great accuracy: Lp(f)<e =

But... f(x) is wrong &

® Worse @%:
oVxeXIxeX: Xxmx A f(X)=—F(x)
o Eve sells access to x = x & €" ¢
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Backdoors

Honest ML Provider

e f <« Train?

Eve &

° (?, bk) + Backdoor?
® X < Activate(x, bk)

* Vxe X

O X~ X
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Undetectable Backdoors

Def (Undetectability). For any PPT algorithm A:

g Blackbox:

(?,bk)%BaIE)kdoorD(ls) {A?(]‘S) - 1} _fe'll'[:)ainD {Af(ls) - 1} < neg(s)
s Whitebox:
|P{A (<?>’ 15) - 1] —P[A((f),1°) = 1]| < neg(s)
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Undetectable Backdoors — Prior Work
Thm (GKVZ22).

e Blackbox — generic construction:

o V Train 3 (Backdoor, Activate) that is blackbox undetectable

o Non-replicability

¢ 1 Whitebox — specific constructions:
g

o Random Fourier features [RR07]
o Simple RelLU networks*

o Only tamper with randomness!

* With o(1) undetectability instead of neg(s) 11/68
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12/68



Backdoors are cryptographically undetectable.

Resistance is futile?
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Observation

Removal without detection

Metaphor: Or Zamir 13 /68



Observation

S9°  What is our cleanser?
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Observation

s Random Self-Reducibility /
. Program Self-Correction

(e.g., GM82, BK89, BLR90, Rub90, ...)

® | have a pocket calculator

® Want to compute: 100 + 16
® Problem: what if calculator has occasional bugs? #
® Solution:

o Choose random integer r @&

o Use calculator to compute (100 + r) + (16 — r)

o Repeat and take majority

® No detection necessary!
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Main Research Question

Can we use program self-correction

to mitigate ML backdoors?
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Def (Global Mitigation Algorithm): g « I\/I?’D(ls)
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o Oracle access to f : X — {£1} ‘ 4
i

o Random samples from D ig D
o Security parameter s \ /
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4
g

19/68



Global Mitigation Security

20/68



Global Mitigation Security: g9 — &1

Lp(f) <eo f
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Global Mitigation Security

Def. M is ¢g — ¢1 secure for a collection of distributions ID if
V population distribution §;§]“éﬁg DeD
3 output distribution Gideal of functions X — {+1} :
1. Independence of f:
Y arbitrary ‘ fst. LD(?) <e€p:
for g < 2, M?’D(ls)

TV(g, g}Sea') < neg(s)

<>

2. Accuracy: for gideal < &v - Gideal

PLp(g%) < e1] > 1 - neg(s)
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Global Mitigation Security

~

Lp(f) <eo f

23/68



Global Mitigation Security

~

Lp(f) <eo f

Mitigator must be more efficient than retraining
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Global Mitigation Security

&

~

Lp(f) <e f D D

L el
Lp(g) <e g ~ g -
) <

Can verify LD< €o using random samples
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Global Mitigation Security

~

Lp(f) <eo f

Our only assumption: D € D
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Refresher: Fourier Analysis
fi{£1}" SR
F(x) = Lscpn F(S) - xs(x)

f(3)

N
=

S1 Sa e San
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Refresher: Fourier Analysis
7-Heavy Functions

f(9)

S S . Son

Many interesting functions
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Our Result for Global Mitigation
Thm 1 (Global Mitigation for 7-heavy).
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Our Result for Global Mitigation
Thm 1 (Global Mitigation for 7-heavy).

&1‘; S
Wit
D D is 72-close to a

< f
\ / 7-heavy function

Lp(f)

Cad
&l
“ | <>
l O
ideal

Lp(g) < 7% +¢ g ~ g

(e}

S ~
( 5 > i.i.d. samples ; poly(n,1/7,s) queries to f
T2
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Advanced Local Mitigation

30/68



Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

31/68



Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)

31/68



Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)

31/68



Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)

Hope: local mitigation much cheaper

31/68



Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)
Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y* « MFP(x*, 15)

31/68



Local Mitigation
Idea:

e Global Mitigation: generate a ‘clean’ version of f

* Local Mitigation: generate a ‘clean’ version of f(x*)
Hope: local mitigation much cheaper

Def (Local Mitigation Algorithm): y* « MFP(x*, 15)
® |nputs:
o x*elkX
o Oracle access to  : X — R
o Random samples from D

o Security parameter s

e Qutputs prediction y* € R
31/68
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D = ; linear

Distributions D on (x, y):
e X C R" is bounded and convex
e x ~ U(X)

® Jaffinehst. D~.s5h
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Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D = linear).

a:"; 2
T
D D =~_; linear

=
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Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D ~ linear). 3 local mitigator M s.t.

VD =~ s linear
Elgideal : RT 5 R:

1. Accuracy: g9 ~_; D
2. Independence of 7:
V arbitrary f ~Res D
Vx* e X

PHM?,D(X*’]_S)_ |dea|( )

> né} < neg(s)

3. Efficiency. Uses O(s) queries, independent of n
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Proof Idea

® Why doesn't traditional linear self-correction work?
® Correlated sampling lemma

® 1-dimensional linear regression
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Traditional Linear Self-Correction —

X C R" is convex
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Traditional Linear Self-Correction

x* € X is arbitrary
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Traditional Linear Self-Correction

x*

u~U(X)
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Traditional Linear Self-Correction

©

\fiéigzx

(G55
&6

L x*
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Traditional Linear Self-Correction fﬁ;/

o x*
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Let's try again...
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Correlated Sampling

x* € X CR" is arbitrary
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Correlated Sampling

x ~ U(X)
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1-Dimensional Regression

yax

L 2
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1-Dimensional Regression
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Results for Local Mitigation: Linear

Thm 2 (Local Mitigation D = linear).

a:"; 2
T
D D =~_; linear
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Results for Local Mitigation: Polynomial

Thm 3 (Local Mitigation D = poly,).

i
D D 250 POl)’d

N/

](~ Nes

<>

é N ggéal

g ~e, (nd)ds D
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Proof Idea

X1 X9
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Recall:

y!\

g (x, F(x))
(', f(x))

dr—n-o

0 2

Question: Can we do better? ¢ — o(n) - 4?
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Advanced Local Mitigation

Recall:

y!\

g (x, F(x))
(', f(x))

dr—n-o

0 2

Question: Can we do better? Error pattern not controlled by Eve?
56 /68
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R 4

57/68



Advanced Local Mitigation

Thm 4 (Advanced Mitigation D = linear). Assume noise in D is
benign. Then

Ya
— (fx)
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y*
L 6—n%%.5
2.V € X1 E i 19l = 9 (x7)
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Advanced Local Mitigation

Thm 4 (Advanced Mitigation D = linear). Assume noise in D is
benign. Then

ya~
~ (x, F(x))
(', f(x'))
y*
1. §—n%9.6
2.Vx* € X1 B i 1)1 = 97 (x7)
3. O(y/n) samples and queries
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Advanced Local Mitigation

Thm 4 (Advanced Mitigation D =~ linear). Assume noise in D is
benign. Then

gep
bt

/I ~.s D f D D ~. s linear

\ / benign noise

g - 09§ D g z
E[g] _ gideal
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Proof Idea

(X,y,f(x))
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What we know (a haiku):

Undetectable
backdoors exist. Structure is

the key to defense.

Takeaway (a question):
What other types of structure

can enable mitigation?
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Backdoored Points are a Sparse Set that Covers X

BCAXVVxeXIxeB: x~x A f(x)=—f(x)

Image source: Du, Tu, Yuan, & Tao (2022). Phys. Rev. Lett. 128, 080506 67 /68
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