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Diffusion models embed densities

« Sample from a learned density generated by a diffusion mode
[Song & Ermon 2019; Ho et al 2020} _

* How Is this possible, given the
“Curse of dimensionality” ?!
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1. Can diffusion models generalize”?

2. If so, how?



Diffusion models and denoising
noisy image Yy = T + 2

z ~ N(0,0°1d

Deep Neural Network - enoised image

Denoiser is applied iteratively and partially

[Kadkhodaie & Simoncelli arXiv2020, NeurlPS2021]
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z ~ N(0,0°Id)
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Diffusion models and denoising
noisy image Yy = T + 2

2 ~ N(0,0°1d

Deep Neural Network N denoised image

[Tweedie, via Robbins, 1956;
Miyasawa, 1961]
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Diffusion models and denoising
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Transition from memorization to generalization
Training set size: 1 10 100 1,000 10,000 100,000
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Strong generalization in LSUN bedroom dataset
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Strong generalization in BF-CNN architecture
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How do diffusion models generalize?

What are inductive biases of the denoiser?



Denoising as shrinkage in a basis

Classical framework for denoising:

1. Transform the noisy image to a basis where noise and signal are separable

2. Suppress the noise (shrinkage)

3. Transform back to pixel domain



Denoising as shrinkage in a basis
Fixed basis, fixed shrinkage
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Denoising as shrinkage in a basis
Fixed basis, fixed shrinkage
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Denoising as shrinkage in a basis
Fixed basis, adaptive shrinkage
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“wavelet thresholding”
[Donoho & Johnstone 94]

4 Coefficients fall faster in wavelet basis. More compact representation of signal.
Easier separation between noise and signal with sparse signal



Denoising as shrinkage in a basis
Fixed basis, adaptive shrinkage
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4 Coefficients fall faster in wavelet basis. More compact representation of signal.
Easier separation between noise and signal with sparse signal



Denoising as shrinkage in a basis
Adaptive basis, adaptive shrinkage

Deep Neural Network

Locally linear ¢ _
function: ) Vi)Y

Jacobian w.r.t. Input y

Nearly symmetric

[IMohan*, Kadkhodaie*, Simoncelli, Fernandez-Granda, ICLR 2020}



Denoising as shrinkage in a basis
Adaptive basis, adaptive shrinkage

Deep Neural Network

Eigen decomposition of Jacobian

Locally linear f(y) _ Vf(y) y = Z )\k(y) (y, €1 (y)} CL (y)
k

function:

Shrinkage factors Eigen basis

[IMohan™*, Kadkhodaie*, Simoncelli, Fernandez-Granda, ICLR 2020}



Denoising as shrinkage in an adaptive basis
Adaptive basis, adaptive shrinkage
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Denoising as shrinkage in an adaptive basis
Geometry Adaptive Harmonic Basis (GAHBS)
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Denoising as shrinkage in an adaptive basis
Geometry Adaptive Harmonic Basis (GAHBS)

hypothesis:

DNN denoisers have inductive biases towards learning
GAHBs



Denoising as shrinkage in an adaptive basis
Geometry Adaptive Harmonic Basis (GAHBS)

hypothesis:

DNN denoisers have inductive biases towards learning
GAHBs

How to test this?
Synthetic images



Geometric C“ images

GAHBs are optimal for denoising these

[Korostelev & Tsybakov, 1993; Donoho, 1999; Peyre & Mallat, 2008]



Geometric C“ images
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Geometric C“ images

Optimal denoiser on C“% images
o

a+1
[Korostelev & Tsybakov, 1993]
[Peyré & Mallat, 2008]
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Geometric C“ images

Optimal denoiser on C“% images
o

a+1
[Korostelev & Tsybakov, 1993]

[Peyré & Mallat, 2008]

has slope

Deep nets learn GAHB for
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Manifold of disks

five-dimensional curved manifold | .
1.Vertical position

2.Horizontal position
3.Radius/size
4.Foreground intensity
5.Background intensity



Manifold of disks

Vertical Radius Background Foreground Horizontal
Translation Change Change Change Translation

@ Optimal




Manifold of disks

Vertical Radius Background Foreground Horizontal
Translation Change Change Change Translation

@ Optimal

Ao=1.177 A1 =1.067 A, =1.004 A3 =0.999 Ag =0.945

-
el ~— .__-n- -

- Empirical



Manifold of disks
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Manifold of disks
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Interim summary

e Diffusion models can transition from memorization to
generalization with large enough training set size

* Generalization is strong: two denoisers trained on non-
overlapping training sets converge to nearly the same function

* (Generalization due to an inductive bias corresponding to
shrinkage in a Geometry Adaptive Harmonic Basis (GAHB)

Kadkhodaie Z, Guth F, Simoncelli EP, Mallat S.
“Generalization in diffusion models arises from geometry-adaptive harmonic representation”.|CLR 2024.



» We are In good shape with learning densities

» Can we reduce the size of training set required for generalization?



* |mage resolution
* Network size

« Complexity of image dataset
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Network receptive field
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Synthesis fails without global receptive fields!

lterative lterative
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Synthesis fails without global receptive fields!

local and translation invariant RF = learn density is an MRF . | ,f L .

lterative
algorithm

lterative lterative

Receptive
field

Synthe3|zed images are not faces




Do bigger images require
bigger models?







Wavelet decomposition

L0




Wavelet decomposition
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Factorization of the prior

L0



Conditional densities are local

p(zo) = p(x1) p(T1]|71)

ot

Global Local



Multi-scale wavelet representation




onditional denoisers
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Low pass denoiser
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Low-pass denoiser
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Multi-scale wavelet conditional denoiser




How local?

Pixel-domain denoiser
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How local?

Pixel-domain denoiser

Wavelet-domain denoiser
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Pixel-domain denoiser Wavelet-domain denoiser
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Synthesis example
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Synthesis example

Iterative algorithl:rn
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Synthesis example

Iterative algorlthm

Iteratlve algorlthm
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Synthesis example

Iterative algorlthm

Iteratlve algorlthm
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Total number of parameters ~ 1 million




Synthesis example

Iterative algorithl:rn
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Iterative algorithm :
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To sum up:

* \We can model probabillity of large images with small networks.

* The global structure is captured by a global prior over a small low-pass
iImage.

e Detalls can be modeled using local (Markov) conditional probability
distributions in the wavelet domain.



Thank you!

Kadkhodaie, Guth, Simoncelli, Mallat, “Generalization in diffusion models arises from geometry-
adaptive harmonic representation”. ICLR 2024

Kadkhodaie, Guth, Mallat, & Simoncelli, “Learning multi-scale local conditional probability
models of images.” ICLR 2023



