Generalization by Weight Decay and Large Learning
Rate in “curve fitting” with neural networks

Yu-Xiang Wang

Based on joint work with Kaiqgi Zhang, Dan Qiao, Esha Singh,
Zixuan Zhang, Minshuo Chen, Tuo Zhao and Daniel Soudry

< computerscience | JC San Dieg()
‘/ Computing. Relnvented. HAL'C'OGLU DATA SCIENCE INSTITUTE



Judea Pearl
Turing Award Laureate
2011



Curve fitting isn’t easy

* 60 years of associated literature

e Since [Nadaraya, Watson, 1964] then Wahba, Donoho, Mammen, Van de
Geer, Barron, Bartlett, Scholkopf etc...

* Methods: Kernels, splines, local polynomials, Gaussian processes and
RKHS, CART, MARS, neural networks
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a.k.a., smoothing / filtering / denoising / signal processing / nonparametric regression.



Not whether you can “curve-fit” but how well
(and how efficiently) you can “curve-fit”

y; = f(x;) + Noise for i = 1,...,n.

o %
NL. ™~ o0
Qs

Goal: Estimate the function using noisy data

(xla y1)7 ooy ($n, yn)
assume that f € F .
* Approximation theory

MSE(f) := Epn% Z(f(a:z-) — fo(z;))?. * Estimation
i=1 (generalization) theory

* Optimality



“Curve fitting” is a perfect test-bed for
understanding the fundamental properties of

deep learning

* What functions do DNNs represent?

* Overparameterization

* How does training / regularization affect generalization?



Why do Neural Networks work better?

e Universal function approximation (Hornik et al, 1989)
* But so are kernels and splines!

* Flexible representation and modelling language
* So are graphical models / probabilistic programs

* Overparameterization
* Neural Tangent Kernels (acot et al., 2018; Du et al. 2019; etc)
* Interpolation regime / benign overfitting (seikin, 2019, Bartlett et al. 2020, Frei, 2022 and more)



The “adaptivity” hypothesis

* Neural networks aren’t stronger than classical methods in any specific
problem

* But the standard practices of how people develop / train DNNs enjoy
strong adaptivity
* No need to carefully specify the problem
* Automatically choose the right level of abstraction
* Tune only standard hyperparameters.
* They match the best classical methods on each problem



Recent work from my group sheds light on how

DNNSs are adaptive.

1. “Are Weight Decayed DNNs locally
adaptive?”

Elylz] = f(z)

\ J

/

Doppler-like functions Free knots Splines with adaptive orders

2. “Weight Decayed DNNs adapt to low-
dimensional manifolds” (will skip)

3. Generalization by Large Learning Rate
in Gradient Descent




Locally adaptive nonparametric regression
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* Some parts smooth, other parts wiggly.

* Wavelets [Donoho&Johnston,1998], adaptive kernel [Lepski,1999], adaptive

splines [Mammen&Van De Geer,2001], Trend filtering [Steidl,2006; Kim et. al. 2009,

Tibshirani, 2013; W., Smola, Tibshirani, 2014], adaptive online local polynomials [Baby
and W.,, 2018/19]

* a.k.a, multiscale, multi-resolution compression, used in JPEG2000.



NTKs are strictly suboptimal for locally
adaptive nonparametric regression

* Observations: y; = fo(z;) + €, 1=1,...n
* TV-class: Fpn = {f L TV(fm) < C}
* Minimax error rate:  Op(n~(2m+2)/(Zm+3))

e Best achievable rate for linear smoothers (e.g., any kernel ridge
regression, including NTK.)

O]P’ (n—(2m—|—1)/(2m—|—2))

(Tibshirani, 2014, Annals of Statistics) (Donoho, Liu, MacGibbon, 1990)
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Example: merger of two black holes

%1021 Gravitational wave: GW150914
8 , : .

Input: H1-strain
Trend filtering
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Example: merger of two black holes

%1072

Gravitational wave: GW150914

Trend filtering
——— Smoothing spline
— — General Relativity
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Example: merger of two black holes

10721 Gravitational wave: GW150914
Trend filtering
—— Smoothing spline
— — General Relativity |
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Are DNNs |locally adaptive? Can they achieve
optimal rates for TV-classes / Besov classes?

! Ely|z] = f(z)

}

| |

Doppler-like functions Free knots Splines with adaptive orders

>
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Are DNNs |locally adaptive? Can they achieve
optimal rates for TV-classes / Besov classes?

* Existing work:

e Suzuki (2019): Specific ReLU NN achieves minimax rate for Besov classes. (albeit
with width, depth, sparsity constraints tailored to each problem)

* Liu, Chen, Zhao, Liao (2021): ConvResNets works too. No sparsity, but similarly
requires the number of parameters to be small.

e Parhi and Nowak (2021): 2-layer NN is equivalent to Locally Adaptive Regression
Splines (LAR Splines)

Our results (zhang and W. 2023): Parallel Deep NN achieves near-

optimal local adaptive rates, simultaneously for many classes
* Tuning only weight decay / no architecture search.

 Depthisimportant. Implicit sparsity solves both representation
learning and overparameterization.

*Disclaimer: We ignore computation and focus on understanding the statistical property of the ERM.
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et’s first look at an experiment: compare
ReLU NN with L1 trend filtering

L1-Trend Filtering

Two-layer ReLU NN with weight decay
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Let’s inspect the regularization paths

L1-Trend Filtering Two-layer ReLU NN with weight decay
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lambda weight decay
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't turns out that they are equivalent!

L1-Trend Filtering
(Kim, Koh and Boyd, 2009; Tibshirani, 2024)

1t

LAR Splines
(Mammen and Van De Geer, 1997)

i | Reveals the effect of weight decay

(Sufficiently wide) Two-layer RelLU
Neural Networks with Weight Decay



Background: Splines are piecewise polynomials

Linear' spllin:e (df = 4)
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(Illustration from a Stats.Stackexchange contributor)
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* Where to choose knots?

* Smoothing splines: choose n of them, one on each input data point
and do L2 penalty on the coefficients

* LAR splines: select a sparse number of them using L1-penalty.
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https://stats.stackexchange.com/questions/517375/splines-relationship-of-knots-degree-and-degrees-of-freedom

Background: Truncated power basis for splines

* Pickknotsat 1y, ...,T\;

* A set of basis functions that spans the splines

1,2, 2%, ...,2™, (z — t), (@ —tw)
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Observation: Two-layer NNs are approxtmating Free-
Knot Splines

M
* Neural networks =Y vjo™(wjz + b) + c(x),
71=1

* Splines / truncated power-basis
M

f(x) =" cjo™(x — t;) + (a)
j=1
* Only difference
* Trend filtering / smoothing splines fixed the knots at input data points
* NN left them freely moving, i.e., free-knot splines (Jupp 1978; Kass et al. 2001)



Weight decay = Total Variation Regularization

* Neural networks

* Weight decay =1

. A —
min L(f) +|2 > (10il* + [wi ™M)= A [ej| = TV ()

w,v

At the optimal solutions

* AM-GM inequality [0 2 4 Jw; 7™ > 2[vj|lwy|™ = 2|¢))
* Observed by (Neyshabur et al., 2014), (Parhi and Nowak, 2021), (Tibshirani,
2021) etc...
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Two-layer Weight-Decayed NN is equivalent to LAR Splines
(Parhi and Nowak, 2021) when mildly overparameterized

* When the number of knots M >n - m
* Banach space representer Thm (Theorem 8 of Parhi and Nowak, 2021)

M ~
min (7)Y (el + ™) <5 minL(F) + ATV (/™))
| 2 ?

over all functions!

* By Mammen and Van De Geer (1997)

MSE(f) — O(n—(2m+2)(2m+3)). (Minimax rate)

23



Checkpoint: Overparameterize + Weight Decay in
2-layer NN is an optimal smoother for TV1.

* Tuning weight decay is equivalent to tuning the TV1 radius.

* Explains what kernels cannot explain! are provably suboptimal.

* Limitations:
 Effect of depth?
* Adaptivity to smoother classes? TV2, TV3, etc...

Can we generalize the result?



L-Layer Parallel Neural Networks
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(a) Parallel NN with Weight Decay

(Ergen&Pilanci, 2021; Haeffele & Vidal, 2017). Also, SqueezeNet, ResNeXT etc.



Weight decayed L-Layer PNN is equivalent to Sparse
Linear Regression with learned basis functions
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(a) Parallel NN with Weight Decay

(b) Sparse Regression with Learned Representation
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Weight decayed L-Layer PNN is equivalent to Sparse
Linear Regression with learned basis functions

A Parametric Learnable Dictionary
Each column is a ReLU DNN

L, Sparse
Coefficients
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Formal setup / notations

 Function classes
* Bounded Variation class: BV (m) := {f € Lo : TV (™) < oo}

* Besov class Bg‘q d-dimensional
e Connections: B?lnl—kl c BV(m) C B/t
: . 1 < .
e Metric MSE(f) := Ep. — ) — )2,
(F) =B, 3 3 (F@) — fo(@))

* Problem setting:
* Fixed design, subgaussian noise



Main theorem: Parallel ReLU DNN approaches the
minimax rates as it gets deeper.

Minimax Rate Minimax Linear Rate
_ 2« __2a-—1
Besov Space n_ 2a+d n_ Zatd—1
. . 2m—+2 _2m+1
Bounded Variation n_ 2m+s n_ 2m+2

* Theorem 2: Besov space B,

" - 2a/d(1—2/L)

MSE(f) — O(n_ 2a/d+1—2/(pL)) 14 0(6_C6L)

* Corollary 3 for BV(m) class:

_ (2m+2)(1—2/L)

MSE(f) — O~(n 2m+3—2/L ) + 0(6_661’),

Arbitrarily close to the minimax rates when we choose L = C log n.



Many interesting insights we can read off
from the theorem

1. Formal separation from kernels (NTK or other kernel ridge
regressions)

e Our upper bound + Donoho, Liu, MacGibbon (1990)’s linear smoother lower bound.

2. Deep NNs achieve smaller error than shallow NNs

3. Overparameterization does not cause overfitting
e Due to explicit regularization (i.e., weight decay) => sparsity



Comparing to classical nonparametric
regression methods

R M LAR Splines / Wavelet Parallel DNN
f (CI?) — E qg; (CI?) C; Trend filtering | smoothing
1=1

Basis Hard-coded for Hard-coded to Parametric and
[91 g eeey QM] functions each order of the chosen learned from
smoothness wavelets data.
Coefficient  L1-sparsity L1 or LO- Lp sparsity
Cl.m € RM vector sparsity (p=2/L)

* DNNs adapt to different function classes

* By overparameterizing / learning representation and tuning
regularization weight via cross-validation (implicitly selecting a few
basis functions!)

* Paying almost no statistical price! 31



Examples of Functions with Heterogeneous
Smoothness

0.25
Observation —— Parallel Neural Network
% = =— Target function — Trend Filter 2.0 1
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Fitted functions with MSE comparison over Learned basis functions.
optimally tuned effective degree of On!y d handful that are
parameter freedom active, i.e. sparsity.

Lottery ticket?
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Examples of Functions with even more
Heterogeneous Smoothness

Piecewise Linear

Piecewise Cubic
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Checkpoint: PNN with weight decay enjoys
amazing adaptivity.

* Overparameterize then tune weight decay
* Adapts to a broad class of functions
* Learns a sparse linear combination of learned functions
* New insight into depth, width and representation

2
n, 2a+d

* But, does not solve the curse of dimensionality?



Recent work from my group sheds light on how

DNNSs are adaptive.

1. “Are Weight Decayed DNNs locally
adaptive?”

Elylz] = f(z)

\ J

/

Doppler-like functions Free knots Splines with adaptive orders

2. “Weight Decayed DNNs adapt to
low-dimensional manifolds” (will skip)

3. Generalization by Large Learning Rate
in Gradient Descent

35



Low-dimensional manifolds in high-
dimensional space

36



We prove near-optimal rate that adapts to intrinsic
dimension by overparameterization + weight
decay

Theorem: ResNeXt, or ConvResNeXt (or PNNs).
Lipschitz loss functions, bounded outputs. Choose
depth L = log(n), MN = O(n), then:

Ep[Loss(f(x), y)] < Ep[Loss(f*)] + O(n~ za/as1 1=0()),

* No (exponential) dependence on the ambient dimension D.
* No need to know intrinsic dim d, and other parameters
 Tune only the weight decay
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Checkpoint: Parallel NNs adapt to low-
dimensional manifolds in data

* Overcomes the curse of dimensionality

* Adapts to unknown low-dimensional structures by tuning only weight
decay

e ConvNet also works (as long as there are parallel or sequential
structures, e.g., ResNet or ResNeXt)

* But, still says nothing about computation...



Recent work from my group sheds light on how

DNNSs are adaptive.

1. “Are Weight Decayed DNNs locally
adaptive?”

Elylz] = f(z)

\ J

/

Doppler-like functions Free knots Splines with adaptive orders

2. “Weight Decayed DNNs adapt to low-
dimensional manifolds” (will skip)

3. Generalization by Large Learning Rate
in Gradient Descent
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Let’s start with an example

Simple Curve Fitting problem

—— True Function

Noisy Labels

04  —-02 0.0

0.2

0.4

30 data points. Noisy labels.
2-Layer ReLU NN with 1000 neurons.

Minimizing square loss.
No regularization.

Which ones of the following are true?

A. Global optimal solution has 0-loss.

B. Gradient descent finds global optimal
(“interpolating”) solutions.

C. GD solution satisfies “Benign overfitting”



1t’s surprisingly difficult to find an
interpolating solution with gradient descent.

1.5 1

1.0 1

0.5 1

0.0 1

_05 .

Trained ReLU NN with n=0.5

—— True Function

Fitted function
Noisy Labels
Fitted Labels

0.4
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0.0

0.2

0.4

Loss

1009

1071 4

Learning Curves: n=0.5

—— train Loss
MSE vs truth

0 25 50 75 100 125 150 175 200
lterations (in 100s)
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Learning Rate =0.4

Trained ReLU NN with n=0.4
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Learning Curves: n=0.4

—— train Loss
——  MSE vs truth

Iterations (in 100s)

0 50 100 150 200 250

42



Learning Rate = 0.3

Trained ReLU NN with n=0.3 Learning Curves: n=0.3
—— train Loss
1.5+ ——— MSE vs truth
100 o [ R ILLLLLLL 0'2
1.0
"
0.5 - s T [ PP
L WY TN —————
0.0 1 —— True Function 101 1
—— Fitted function ]
-0.5 A Noisy Labels
o Fitted Labels : : : : : : :
: : : : , 0 50 100 150 200 250 300
-0.4 -0.2 0.0 0.2 0.4 Iterations (in 100s)
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Learning Rate = 0.2

Trained ReLU NN with n=0.2

—— True Function

—— Fitted function
Noisy Labels

« Fitted Labels

T T Ll
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Learning Curves: n=0.2

0 |
10 1 —— train Loss
——— MSE vs truth
....... o2
1071 1
0 100 200 300 400 500

Iterations (in 100s)
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Learning Rate = 0.01

Trained ReLU NN with n=0.01

1.5

1.0+

05+

0.0 1

—0.5

—— True Function
—— Fitted function
Noisy Labels
o Fitted Labels

-0.4 —0.2 0.0 0.2 0.4
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Learning Curves: n=0.01

10—1j

Iterations (in 100s)
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....... 02 e——
0 2000 4000 6000 8000 10000
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Minima stability of Gradient Descent and SGD

Training Function

! Testing Function

Flat Minimum Sharp Minimum

Xer1 = X — 1V Loss(x;)

* Need learning rate n < 2/f to converge for B-smooth
functions. Stable minima are those that GD can converge to.

(Wu et al. 2018, Mulayoff et al. 2021)
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“Edge of Stability” regime

sharpness (by time)

e n=2/500
& e n=2/400
S o 1=2/300
e e nN=2/200
7 o n=2/100
0 . , . : :
0 25 50 75 100 125

time = iteration x n

Cohen et al (2021) Gradient Descent on Neural Networks Typically

Occurs at the Edge of Stability 47



Gradient Descent selects a set of points it can
converge to (or stabilize around).

/ All functions representable \
by Two-Layer ReLU NN

GD with small n
Interpolating h GD with
Solutions large n ®
(when labels % e
\ i , }A\“
_are noisy) o o\

e “Edge of Stability”
overfitting EF QppeanHicy
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What does this set of functions look like?
A Weighted TV1 class.

{fH ‘)\maX(VQL(H)) < 2/77}
C

|1 @lg(@de < 2 =TV ()

where (' = 1/77—|—é(1)

Mulayoff, Rotem, Tomer Michaeli, and Daniel Soudry. "The implicit bias of minima stability: A view from
function space." NeurlPS’2021



Flatness (in parameter space) implies
smoothness (in function space)

Theorem (Qiao, Zhang, Singh, Soudry and W., 2024): Consider a ReLU activated
two-layer NN / square loss. Let f be any function represented by the neural
network parameterized by 8. Assume fgis twice differentiable at 8. -Assume

interpelates. )
/ |f"(:1:)|g(a:)da: S )‘max(VQO‘C(e)) . % +xmax 2£(0),

—Tmax

Assume data is coming fromy; = fo(x;) + noise,then w.h.p.

/_a:max |f"(x)|g(x)dx < )‘max(vgﬁ(e)) — 1 + 5 (U:Bmax - min {1, \/%}) + xmax\/l\/IST(f)'

2 2

Tmax

* Tune learning rate => select smoothness of f
 Smoothness of f => Generalization bounds
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Key proof idea: Hessian Decomposition

Interpolation helps here

}
Vo (fo(x) —¥)2 = Vafa(x)Vafa(x)T + (fo(x) — y)V5 fo(x)
e

(Mulayoff et al. 2021) showed that:

1
Amax (;Zi Vo fo (x:)Vely (Xi)T)
is connected to the TV1 of fy.



1/n very precisely predicts the sharpness, and
gives a classical U-shape risk curve.

Our upper bound on Aax(Hessian)

Loss and MSE of different ns
2 | 0.357 L
10 || -#- Training Loss(f) =& > (f(x;)) — yi)?
| I=1
0.301 1 MSE() =1 3 (fx) — folx)?
1 i=1
0.251
10* 1 [
0.20{ i
.
0.151 "‘-.\\
1009 - )
—— - Amax(Hessian) 0.10- il i M
, ..
1/n—1/2+ o+ VMSE *
—»— 1st order Total Variation 0.05+ - TSl e il B
10! 102 o 100 102
1/n
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Generalization bounds that stem from these
function space characterization

Theorem: We proved that in the strict interior of the data support:

1. Agnostic case, generalization gap = O(n*{-2/5})

2. If training loss smaller than a2 then w.h.p., get an MSE

MSE7(f) = niz gE:I(f(xi) — fo(z:))> < O ((if)g (Zl,’r;;ax + 0'.”L'?na,x) ?)

*Again, near minimax optimal, beating kernels.



't tells us something new about the energy landscape
of overparameterized NN training on noisy problems

b f
0

o ° o

Training with GD automatically avoids these sharp solutions 54



“Representation learning” becomes learning

knots, and knot “sparsity” but are they really zero?

Random basis functions at initialization
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Learned basis functions (n=0.3)

Learned basis functions (n=0.5)

Learned basis functions (n=0.4)
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Take-home messages

* In simple “curve fitting” problem, appropriately tuned DNN models can be
locally adaptive

* Not revealed by NTK theory
* Not compatible with Benign overfitting

* Adaptivity advantage
* Tuning weight decay / Learning rate

* Implicit sparsity in a learned dictionary space
* Analysis vs Synthesis



Implications on modern generalization theory?

/Classical generalization theoh

VC-theory
Rademacher complexity
Metric entropy

Other empirical process theory
for getting Uniform convergence

limitations
- Nothing about computation
- Unform convergence might not
be needed

In between
Algorithmic stability
Minima stability

Edge-of-Stability

Modern generalization theory

NTK theory
Benign overfitting

Everything to do with
optimization.

limitations
Often restrictive in model classes
/ data distribution
Dynamic theory is hard for
complex architectures.



Thank you for your attention!
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