Generalization by Weight Decay and Large Learning
Rate in “curve fitting” with neural networks

Yu-Xiang Wang

Based on joint work with Kaiqgi Zhang, Dan Qiao, Esha Singh,
Zixuan Zhang, Minshuo Chen, Tuo Zhao and Daniel Soudry

< computerscience | JC San Dieg()
‘/ Computing. Relnvented. HAL'C'OGLU DATA SCIENCE INSTITUTE

Judea Pearl
Turing Award Laureate
2011

Curve fitting isn’t easy

* 60 years of associated literature

e Since [Nadaraya, Watson, 1964] then Wahba, Donoho, Mammen, Van de
Geer, Barron, Bartlett, Scholkopf etc...

* Methods: Kernels, splines, local polynomials, Gaussian processes and
RKHS, CART, MARS, neural networks

2

150 Y(X)

1+ N\

i YX0)

da}ta points

=]
% kernel average
smoother result

1 1 | 1 1 1
0 1 2X, 3 4 5 6

a.k.a., smoothing / filtering / denoising / signal processing / nonparametric regression.

Not whether you can “curve-fit” but how well
(and how efficiently) you can “curve-fit”

y; = f(x;) + Noise for i = 1,...,n.

o %
NL. ™~ o0
Qs

Goal: Estimate the function using noisy data

(xla y1)7 ooy ($n, yn)
assume that f € F .
* Approximation theory

MSE(f) := Epn% Z(f(a:z-) — fo(z;))?. * Estimation
i=1 (generalization) theory

* Optimality

“Curve fitting” is a perfect test-bed for
understanding the fundamental properties of

deep learning

* What functions do DNNs represent?

* Overparameterization

* How does training / regularization affect generalization?

Why do Neural Networks work better?

e Universal function approximation (Hornik et al, 1989)
* But so are kernels and splines!

* Flexible representation and modelling language
* So are graphical models / probabilistic programs

* Overparameterization
* Neural Tangent Kernels (acot et al., 2018; Du et al. 2019; etc)
* Interpolation regime / benign overfitting (seikin, 2019, Bartlett et al. 2020, Frei, 2022 and more)

The “adaptivity” hypothesis

* Neural networks aren’t stronger than classical methods in any specific
problem

* But the standard practices of how people develop / train DNNs enjoy
strong adaptivity
* No need to carefully specify the problem
* Automatically choose the right level of abstraction
* Tune only standard hyperparameters.
* They match the best classical methods on each problem

Recent work from my group sheds light on how

DNNSs are adaptive.

1. “Are Weight Decayed DNNs locally
adaptive?”

Elylz] = f(z)

\ J

/

Doppler-like functions Free knots Splines with adaptive orders

2. “Weight Decayed DNNs adapt to low-
dimensional manifolds” (will skip)

3. Generalization by Large Learning Rate
in Gradient Descent

Locally adaptive nonparametric regression

e

2.5
i AN

2.0

e

1.5

1.0

0.5

* Some parts smooth, other parts wiggly.

* Wavelets [Donoho&Johnston,1998], adaptive kernel [Lepski,1999], adaptive

splines [Mammen&Van De Geer,2001], Trend filtering [Steidl,2006; Kim et. al. 2009,

Tibshirani, 2013; W., Smola, Tibshirani, 2014], adaptive online local polynomials [Baby
and W.,, 2018/19]

* a.k.a, multiscale, multi-resolution compression, used in JPEG2000.

NTKs are strictly suboptimal for locally
adaptive nonparametric regression

* Observations: y; = fo(z;) + €, 1=1,...n
* TV-class: Fpn = {f L TV(fm) < C}
* Minimax error rate: Op(n~(2m+2)/(Zm+3))

e Best achievable rate for linear smoothers (e.g., any kernel ridge
regression, including NTK.)

O]P’ (n—(2m—|—1)/(2m—|—2))

(Tibshirani, 2014, Annals of Statistics) (Donoho, Liu, MacGibbon, 1990)

10

Example: merger of two black holes

%1021 Gravitational wave: GW150914
8 , : .

Input: H1-strain
Trend filtering

-8 1 1
-0.2 -0.15 -0.1 -0.05 0 0.05
time (s) sicne 1126259462.42

Example: merger of two black holes

%1072

Gravitational wave: GW150914

Trend filtering
——— Smoothing spline
— — General Relativity

-1.5
-0.2

-0.15

-0.1 -0.05
time (s) since 1126259462.42

0.05

12

Example: merger of two black holes

10721 Gravitational wave: GW150914
Trend filtering
—— Smoothing spline
— — General Relativity |
1 » .
|
l
0.5F A
/
) i 1 » I I
0 (| | [\ l 1|) !‘
1) / \ I
! \/
-0.5 l
/
1F
-1.5 ! ' L L
-0.2 -0.15 -0.1 -0.05 0 0.05

time (s) since 1126259462.42

Are DNNs |locally adaptive? Can they achieve
optimal rates for TV-classes / Besov classes?

! Ely|z] = f(z)

}

| |

Doppler-like functions Free knots Splines with adaptive orders

>

14

Are DNNs |locally adaptive? Can they achieve
optimal rates for TV-classes / Besov classes?

* Existing work:

e Suzuki (2019): Specific ReLU NN achieves minimax rate for Besov classes. (albeit
with width, depth, sparsity constraints tailored to each problem)

* Liu, Chen, Zhao, Liao (2021): ConvResNets works too. No sparsity, but similarly
requires the number of parameters to be small.

e Parhi and Nowak (2021): 2-layer NN is equivalent to Locally Adaptive Regression
Splines (LAR Splines)

Our results (zhang and W. 2023): Parallel Deep NN achieves near-

optimal local adaptive rates, simultaneously for many classes
* Tuning only weight decay / no architecture search.

 Depthisimportant. Implicit sparsity solves both representation
learning and overparameterization.

*Disclaimer: We ignore computation and focus on understanding the statistical property of the ERM.

0.3 1

0.2

0.1 -

0.0 -

-0.1+

- lambda = 2.52 ,
lambda = 2.94 #

Ground truth
Training data

lambda =0

lambda = 0.42
lambda = 0.84
lambda = 1.26
lambda = 1.68

lambda = 2.1

lambda = 3.36
lambda = 3.78
lambda = 4.2

y 4

-1.00 -0.75 -0.50 -0.25

0.00
X

0.25

0.50

0.75

1.00

et’s first look at an experiment: compare
ReLU NN with L1 trend filtering

L1-Trend Filtering

Two-layer ReLU NN with weight decay

0.3 A

0.2 A1

0.1 A

0.0 A

—-0.14

Ground truth

e Training data

weight decay = 0
—— weight decay = 0.001
—— weight decay = 0.002
—— weight decay = 0.003

weight decay = 0.004)
weight decay = 0.005
weight decay = 0.006
—— weight decay = 0.007
weight decay = 0.008
—— weight decay = 0.009
—— weight decay = 0.01

7

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
X

1.00

16

Let’s inspect the regularization paths

L1-Trend Filtering Two-layer ReLU NN with weight decay

0.10 A 0.10

0.05 - 0.05 A

2 0.00- — : 0.00 -
: :

—0.05 A —0.05 A

-0.104 | -0.10 1

0 1 5 3 2 0.000 0.002 0.004 0.006 0.008 0.010

lambda weight decay

17

't turns out that they are equivalent!

L1-Trend Filtering
(Kim, Koh and Boyd, 2009; Tibshirani, 2024)

1t

LAR Splines
(Mammen and Van De Geer, 1997)

i | Reveals the effect of weight decay

(Sufficiently wide) Two-layer RelLU
Neural Networks with Weight Decay

Background: Splines are piecewise polynomials

Linear' spllin:e (df = 4)

I
Lo, e,

Quadratic spline (df =5) Cubic spline (df = 6)
| | | | | ‘. | |
. | o | |

| |
! .
| & 156

|
|
NS
|
|

|

|
5 I
|”|l|||.l||l||||.|
2 4 6 8 10 0 2 4 6 8 10 0

(Illustration from a Stats.Stackexchange contributor)

O - - — —
(=)

* Where to choose knots?

* Smoothing splines: choose n of them, one on each input data point
and do L2 penalty on the coefficients

* LAR splines: select a sparse number of them using L1-penalty.

19

https://stats.stackexchange.com/questions/517375/splines-relationship-of-knots-degree-and-degrees-of-freedom

Background: Truncated power basis for splines

* Pickknotsat 1y, ...,T\;

* A set of basis functions that spans the splines

1,2, 2%, ...,2™, (z — t), (@ —tw)

0.7 1
0.8 -
Linear spline bases LG Cubic spline bases
0.6 - 0.5 1
0.4
04 T 03 i
0.2 1
0.2 1
o /
004 - 001 - — Tt e
0'0 0.2 04 06 0.8 10 0.'0 0‘2 O'4 O.'6 O.'8 1 'O
" 20

Observation: Two-layer NNs are approxtmating Free-
Knot Splines

M
* Neural networks =Y vjo™(wjz + b) + c(x),
71=1

* Splines / truncated power-basis
M

f(x) =" cjo™(x — t;) + (a)
j=1
* Only difference
* Trend filtering / smoothing splines fixed the knots at input data points
* NN left them freely moving, i.e., free-knot splines (Jupp 1978; Kass et al. 2001)

Weight decay = Total Variation Regularization

* Neural networks

* Weight decay =1

. A —
min L(f) +|2 > (10il* + [wi ™M)= A [ej| = TV ()

w,v

At the optimal solutions

* AM-GM inequality [0 2 4 Jw; 7™ > 2[vj|lwy|™ = 2|¢))
* Observed by (Neyshabur et al., 2014), (Parhi and Nowak, 2021), (Tibshirani,
2021) etc...

22

Two-layer Weight-Decayed NN is equivalent to LAR Splines
(Parhi and Nowak, 2021) when mildly overparameterized

* When the number of knots M >n - m
* Banach space representer Thm (Theorem 8 of Parhi and Nowak, 2021)

M ~
min (7)Y (el + ™) <5 minL(F) + ATV (/™))
| 2 ?

over all functions!

* By Mammen and Van De Geer (1997)

MSE(f) — O(n—(2m+2)(2m+3)). (Minimax rate)

23

Checkpoint: Overparameterize + Weight Decay in
2-layer NN is an optimal smoother for TV1.

* Tuning weight decay is equivalent to tuning the TV1 radius.

* Explains what kernels cannot explain! are provably suboptimal.

* Limitations:
 Effect of depth?
* Adaptivity to smoother classes? TV2, TV3, etc...

Can we generalize the result?

L-Layer Parallel Neural Networks

>\
57
’:‘/
()

202

;‘
SV

\!
N\

: ¢
ming, L(3Z; ;) + A3, 350, (W73
(a) Parallel NN with Weight Decay

(Ergen&Pilanci, 2021; Haeffele & Vidal, 2017). Also, SqueezeNet, ResNeXT etc.

Weight decayed L-Layer PNN is equivalent to Sparse
Linear Regression with learned basis functions

LA

S50
avo

VA

S

o
o

i

. 0
ming, LY, f;) + A, S W93

(a) Parallel NN with Weight Decay

(b) Sparse Regression with Learned Representation

M

arg min ZAL(Zajfj) = %Z(yz — fle(aci)Ta)2

{V_Vg'e)’gg'@:aj} J=1 g
st W p < eVd, ¥j e [M],

IWOllr <ervw,vj e M, 2< <L, [{a}|3] < P

26

Weight decayed L-Layer PNN is equivalent to Sparse
Linear Regression with learned basis functions

A Parametric Learnable Dictionary
Each column is a ReLU DNN

L, Sparse
Coefficients

2

|

M

<7-(£) (£ .
(WO B a3 =1

arg min IZ(Z@]@) = ! Z(yz — frm(x:) a)?

n

st [W|p < e1Vd, Vg € [M],
IWONr <evw,vjeMl,2<e<L, ({as}

2/L
2/L =

< P!

\/

Formal setup / notations

 Function classes
* Bounded Variation class: BV (m) := {f € Lo : TV (™) < oo}

* Besov class Bg‘q d-dimensional
e Connections: B?lnl—kl c BV(m) C B/t
: . 1 < .
e Metric MSE(f) := Ep. —) —)2,
(F) =B, 3 3 (F@) — fo(@))

* Problem setting:
* Fixed design, subgaussian noise

Main theorem: Parallel ReLU DNN approaches the
minimax rates as it gets deeper.

Minimax Rate Minimax Linear Rate
_ 2« __2a-—1
Besov Space n_ 2a+d n_ Zatd—1
. . 2m—+2 _2m+1
Bounded Variation n_ 2m+s n_ 2m+2

* Theorem 2: Besov space B,

" - 2a/d(1—2/L)

MSE(f) — O(n_ 2a/d+1—2/(pL)) 14 0(6_C6L)

* Corollary 3 for BV(m) class:

_ (2m+2)(1—2/L)

MSE(f) — O~(n 2m+3—2/L) + 0(6_661’),

Arbitrarily close to the minimax rates when we choose L = C log n.

Many interesting insights we can read off
from the theorem

1. Formal separation from kernels (NTK or other kernel ridge
regressions)

e Our upper bound + Donoho, Liu, MacGibbon (1990)’s linear smoother lower bound.

2. Deep NNs achieve smaller error than shallow NNs

3. Overparameterization does not cause overfitting
e Due to explicit regularization (i.e., weight decay) => sparsity

Comparing to classical nonparametric
regression methods

R M LAR Splines / Wavelet Parallel DNN
f (CI?) — E qg; (CI?) C; Trend filtering | smoothing
1=1

Basis Hard-coded for Hard-coded to Parametric and
[91 g eeey QM] functions each order of the chosen learned from
smoothness wavelets data.
Coefficient L1-sparsity L1 or LO- Lp sparsity
Cl.m € RM vector sparsity (p=2/L)

* DNNs adapt to different function classes

* By overparameterizing / learning representation and tuning
regularization weight via cross-validation (implicitly selecting a few
basis functions!)

* Paying almost no statistical price! 31

Examples of Functions with Heterogeneous
Smoothness

0.25
Observation —— Parallel Neural Network
% = =— Target function — Trend Filter 2.0 1
34 - ., ° ¢ = Parallel Neural Network 0.20 4 Smoothing Spline
—— Trend Filtering ' 1.5 1
‘ Smoothing Spline
21 3 1/% : 0.15 - 504
al wx e ' o] 0.5 -
1 i} :: L 2010- |
il S : 0.0 1
¥ -0.5 1
o 0.05 1
0 4
_10 -
- - r T - T 0.00 - : r : —— - : - - T :
0.0 0.2 0.4 0.6 0.8 1.0 25 50 75 100 12515017200 0.0 0.2 0.4 0.6 0.8 1.0
Nanrea nf freaadnm
Fitted functions with MSE comparison over Learned basis functions.
optimally tuned effective degree of On!y d handful that are
parameter freedom active, i.e. sparsity.

Lottery ticket?
32

Examples of Functions with even more
Heterogeneous Smoothness

Piecewise Linear

Piecewise Cubic

I | | \
o : .+ Observation
T — Target function
1.0 - Parallel Neural Netwaork
-— Trend Filtering
0.8 1 | ﬁj . Smoothing Spline
0.6 - - w
0.4 iREI
0.2 4 :
0.0 1 %
-0.2 1 .
0.0 0.2 0.4 0.6 0.8 1.0

Fitted functions with
optimally tuned
parameter

MSE

- Parallel Neural Network
- Trend Filter
Smoothing Spline

75 100 125 150 175 200
Degree of freedom

25 50

MSE comparison over
effective degree of
freedom

1.00 1

0.75

0.50

0.25 1

0.00 1

—0.25 1

—0.50 A1

—0.75 1

0.0

0.2 0.4 0.6 0.8 1.0

Learned basis functions.
Only a handful that are

active, i.e. sparsity.
Lottery ticket? 33

Checkpoint: PNN with weight decay enjoys
amazing adaptivity.

* Overparameterize then tune weight decay
* Adapts to a broad class of functions
* Learns a sparse linear combination of learned functions
* New insight into depth, width and representation

2
n, 2a+d

* But, does not solve the curse of dimensionality?

Recent work from my group sheds light on how

DNNSs are adaptive.

1. “Are Weight Decayed DNNs locally
adaptive?”

Elylz] = f(z)

\ J

/

Doppler-like functions Free knots Splines with adaptive orders

2. “Weight Decayed DNNs adapt to
low-dimensional manifolds” (will skip)

3. Generalization by Large Learning Rate
in Gradient Descent

35

Low-dimensional manifolds in high-
dimensional space

36

We prove near-optimal rate that adapts to intrinsic
dimension by overparameterization + weight
decay

Theorem: ResNeXt, or ConvResNeXt (or PNNs).
Lipschitz loss functions, bounded outputs. Choose
depth L = log(n), MN = O(n), then:

Ep[Loss(f(x), y)] < Ep[Loss(f*)] + O(n~ za/as1 1=0()),

* No (exponential) dependence on the ambient dimension D.
* No need to know intrinsic dim d, and other parameters
 Tune only the weight decay

37

Checkpoint: Parallel NNs adapt to low-
dimensional manifolds in data

* Overcomes the curse of dimensionality

* Adapts to unknown low-dimensional structures by tuning only weight
decay

e ConvNet also works (as long as there are parallel or sequential
structures, e.g., ResNet or ResNeXt)

* But, still says nothing about computation...

Recent work from my group sheds light on how

DNNSs are adaptive.

1. “Are Weight Decayed DNNs locally
adaptive?”

Elylz] = f(z)

\ J

/

Doppler-like functions Free knots Splines with adaptive orders

2. “Weight Decayed DNNs adapt to low-
dimensional manifolds” (will skip)

3. Generalization by Large Learning Rate
in Gradient Descent

39

2.0

1.5 1

1.0 1

0.5 1

0.0 A

—0.5 1

-1.0

Let’s start with an example

Simple Curve Fitting problem

—— True Function

Noisy Labels

04 —-02 0.0

0.2

0.4

30 data points. Noisy labels.
2-Layer ReLU NN with 1000 neurons.

Minimizing square loss.
No regularization.

Which ones of the following are true?

A. Global optimal solution has 0-loss.

B. Gradient descent finds global optimal
(“interpolating”) solutions.

C. GD solution satisfies “Benign overfitting”

1t’s surprisingly difficult to find an
interpolating solution with gradient descent.

1.5 1

1.0 1

0.5 1

0.0 1

_05 .

Trained ReLU NN with n=0.5

—— True Function

Fitted function
Noisy Labels
Fitted Labels

0.4

—0.2

0.0

0.2

0.4

Loss

1009

1071 4

Learning Curves: n=0.5

—— train Loss
MSE vs truth

0 25 50 75 100 125 150 175 200
lterations (in 100s)

41

Learning Rate =0.4

Trained ReLU NN with n=0.4

1.5 1

1.0 1

0.5 -

0.0 -

—0.5 4

—— True Function

—— Fitted function

Noisy Labels
Fitted Labels

—0.4

—0.2

0.0 0.2

0.4

Loss

100?

10_1?

Learning Curves: n=0.4

—— train Loss
—— MSE vs truth

Iterations (in 100s)

0 50 100 150 200 250

42

Learning Rate = 0.3

Trained ReLU NN with n=0.3 Learning Curves: n=0.3
—— train Loss
1.5+ ——— MSE vs truth
100 o [R ILLLLLLL 0'2
1.0
"
0.5 - s T [PP
L WY TN —————
0.0 1 —— True Function 101 1
—— Fitted function]
-0.5 A Noisy Labels
o Fitted Labels : : : : : : :
: : : : , 0 50 100 150 200 250 300
-0.4 -0.2 0.0 0.2 0.4 Iterations (in 100s)

43

1.5 1

1.0 -

0.5 1

0.0 -

_.05 .

-1.0

Learning Rate = 0.2

Trained ReLU NN with n=0.2

—— True Function

—— Fitted function
Noisy Labels

« Fitted Labels

T T Ll

0.4 —-02 0.0 0.2 0.4

Loss

Learning Curves: n=0.2

0 |
10 1 —— train Loss
——— MSE vs truth
....... o2
1071 1
0 100 200 300 400 500

Iterations (in 100s)

44

Learning Rate = 0.01

Trained ReLU NN with n=0.01

1.5

1.0+

05+

0.0 1

—0.5

—— True Function
—— Fitted function
Noisy Labels
o Fitted Labels

-0.4 —0.2 0.0 0.2 0.4

Loss

Learning Curves: n=0.01

10—1j

Iterations (in 100s)

: — train Loss
||=— MSE vs truthm
....... 02 e——
0 2000 4000 6000 8000 10000

45

Minima stability of Gradient Descent and SGD

Training Function

! Testing Function

Flat Minimum Sharp Minimum

Xer1 = X — 1V Loss(x;)

* Need learning rate n < 2/f to converge for B-smooth
functions. Stable minima are those that GD can converge to.

(Wu et al. 2018, Mulayoff et al. 2021)

46

“Edge of Stability” regime

sharpness (by time)

e n=2/500
& e n=2/400
S o 1=2/300
e e nN=2/200
7 o n=2/100
0 . , . : :
0 25 50 75 100 125

time = iteration x n

Cohen et al (2021) Gradient Descent on Neural Networks Typically

Occurs at the Edge of Stability 47

Gradient Descent selects a set of points it can
converge to (or stabilize around).

/ All functions representable \
by Two-Layer ReLU NN

GD with small n
Interpolating h GD with
Solutions large n ®
(when labels % e
\ i , }A\“
_are noisy) o o\

e “Edge of Stability”
overfitting EF QppeanHicy

48

What does this set of functions look like?
A Weighted TV1 class.

{fH ‘)\maX(VQL(H)) < 2/77}
C

|1 @lg(@de < 2 =TV ()

where (' = 1/77—|—é(1)

Mulayoff, Rotem, Tomer Michaeli, and Daniel Soudry. "The implicit bias of minima stability: A view from
function space." NeurlPS’2021

Flatness (in parameter space) implies
smoothness (in function space)

Theorem (Qiao, Zhang, Singh, Soudry and W., 2024): Consider a ReLU activated
two-layer NN / square loss. Let f be any function represented by the neural
network parameterized by 8. Assume fgis twice differentiable at 8. -Assume

interpelates.)
/ |f"(:1:)|g(a:)da: S)‘max(VQO‘C(e)) . % +xmax 2£(0),

—Tmax

Assume data is coming fromy; = fo(x;) + noise,then w.h.p.

/_a:max |f"(x)|g(x)dx <)‘max(vgﬁ(e)) — 1 + 5 (U:Bmax - min {1, \/%}) + xmax\/l\/IST(f)'

2 2

Tmax

* Tune learning rate => select smoothness of f
 Smoothness of f => Generalization bounds

50

Key proof idea: Hessian Decomposition

Interpolation helps here

}
Vo (fo(x) —¥)2 = Vafa(x)Vafa(x)T + (fo(x) — y)V5 fo(x)
e

(Mulayoff et al. 2021) showed that:

1
Amax (;Zi Vo fo (x:)Vely (Xi)T)
is connected to the TV1 of fy.

1/n very precisely predicts the sharpness, and
gives a classical U-shape risk curve.

Our upper bound on Aax(Hessian)

Loss and MSE of different ns
2 | 0.357 L
10 || -#- Training Loss(f) =& > (f(x;)) — yi)?
| I=1
0.301 1 MSE() =1 3 (fx) — folx)?
1 i=1
0.251
10* 1 [
0.20{ i
.
0.151 "‘-.\\
1009 -)
—— - Amax(Hessian) 0.10- il i M
, ..
1/n—1/2+ o+ VMSE *
—»— 1st order Total Variation 0.05+ - TSl e il B
10! 102 o 100 102
1/n

52

Generalization bounds that stem from these
function space characterization

Theorem: We proved that in the strict interior of the data support:

1. Agnostic case, generalization gap = O(n*{-2/5})

2. If training loss smaller than a2 then w.h.p., get an MSE

MSE7(f) = niz gE:I(f(xi) — fo(z:))> < O ((if)g (Zl,’r;;ax + 0'.”L'?na,x) ?)

*Again, near minimax optimal, beating kernels.

't tells us something new about the energy landscape
of overparameterized NN training on noisy problems

b f
0

o ° o

Training with GD automatically avoids these sharp solutions 54

“Representation learning” becomes learning

knots, and knot “sparsity” but are they really zero?

Random basis functions at initialization

1.0

0.8

0.6 1

0.4

0.2

0.0

-04 -02 00 02 04

Learned basis functions (n=0.3)

Learned basis functions (n=0.5)

Learned basis functions (n=0.4)

0.8
0.04
0.02 0.61
0.00 0.4
—0.02 1
0.2 1
—0.04 1
0.0
04 -02 00 02 0.4 -04 -02 0.0 0.2 0.4
Learned basis functions (n=0.2) Learned basis functions (n=0.1)
1.6
1.4 / 2.5
1.2
2.0
1.0
0.6 / 1.5
2:87 1.0
0.4
0.5
0.2
0.0 0.0

04 -02 0.0 0.2 0.4

0.0

0.2

0.4

55

Take-home messages

* In simple “curve fitting” problem, appropriately tuned DNN models can be
locally adaptive

* Not revealed by NTK theory
* Not compatible with Benign overfitting

* Adaptivity advantage
* Tuning weight decay / Learning rate

* Implicit sparsity in a learned dictionary space
* Analysis vs Synthesis

Implications on modern generalization theory?

/Classical generalization theoh

VC-theory
Rademacher complexity
Metric entropy

Other empirical process theory
for getting Uniform convergence

limitations
- Nothing about computation
- Unform convergence might not
be needed

In between
Algorithmic stability
Minima stability

Edge-of-Stability

Modern generalization theory

NTK theory
Benign overfitting

Everything to do with
optimization.

limitations
Often restrictive in model classes
/ data distribution
Dynamic theory is hard for
complex architectures.

Thank you for your attention!

References:
« Zhang et al. (2022) Deep Learning meets Nonparametric Regression: Are Weight-Decayed
DNNs Locally Adaptive? https://arxiv.org/abs/2204.09664

« Zhang et al. (2023) Nonparametric Classification on Low Dimensional Manifolds using
Overparameterized Convolutional Residual Networks: https://arxiv.org/abs/2307.01649

« Qiao et al. (2024) Stable Minima Cannot Overfit in Univariate ReLU Networks:
Generalization by Large Step Sizes: https://arxiv.org/abs/2406.06838

* Work partially supported by
* NSF DMS Grant “SCALE MoDL: The Adaptivity of Deep Learning”

— B / \ e :) 1 7 / / > i ’ ,‘
Kaiqi Zhang, Dan Qiao, Esha Singh, Zixuan Zhang, Minshuo Chen, Tuo Zhao and Daniel Soudry

58

https://arxiv.org/abs/2204.09664
https://arxiv.org/abs/2307.01649
https://arxiv.org/abs/2406.06838

