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DECISION MAKING TODAY

Spam detection Medical diagnosis/monrtoring

Recommender systems College admission decisions LLM-powered ChatBots
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DECISION MAKING TODAY
Report: Tesla Autopilot Involved in 736 What h appens when

Crashes since 2019 Al May Be More Prone to Errors in
e Image-Based Diagnoses Than test # train?
Clinicians
NHTSA deepens its probe into New research indicates that Al may be more prone to making
Tasla collisions with sta tionary mistakes than humans in image-based medical diagnoses
because of the features they use for analysis. ‘Mv W ° I’'m D ’
emergency vehicles - Ay Watch Thinks I'm Dead
Dispatchers for 911 are being inundated with false, automated

ARTIFICIAL INTELLIGENCE

The agency added six more incidents since the investigation st

distress calls from Apple devices owned by skiers who are very

How Al Bias Impacts Medical
Diagnosis
Al models that are good at predicting race/gender are less | Artificial intelligence <+ Add to myFT>
_.4 accurate in diagnosis.
>, j - ‘ Hackers jailbreak’ powerful AI models in global
= — ’ s cffort to highlight flaws

Experts join forces in search for vulnerabilities in large language models made by OpenAl,
Google and Elon Musk’s xAl

‘ much alive.

GM's Cruise recalling 950 driverless cars
after pedestrian dragged in crash

Challenge: Errors on adversarial or out-of-distribution (OOD) data can be very costly
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STOCHASTIC VS WORS [-CASE SEQUEN TIAL PREDICTION

stochastic sequences

Data I1s drawn from some unknown
fixed distribution at each round

Easy to get strong guarantees

Too simplistic to model real worla

worst-case adversarial sequences

Data Is generatec

who knows the a

by an adversary
gorithm and history

Too pessimistic to get any guarantees

Very robust to

changes/attacks

Real world is not worst-case, but somewhere in between two extremes
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Can we achieve strong guarantees while handling any

amount of adversarial/OOD data!?

Potential Fix: >
. Allow the model to abstain on adversarial/OOD data A

DANGER

Can use human-in-the-loop to label unsure examples in high stakes applications

Today:
- New framework that incorporates abstention in sequential prediction
» Algorithms In this framework that achieve strong guarantees

Joint work with:

; "‘j

Steve Hanneke Shay Moran Abhishek Shetty
Purdue Technion & Google Research UC Berkeley




Acknowledgement: Thodoris Lykouris (MIT) and Adam Tauman Kalai (OpenAl)

Builds on: [Goldwasser-Kalai-Kalai-Montasser' 20] (will discuss after)

Part |.
Sequential prediction with Abstentions




Assume true label follows some fixed unknown

SEQU ENTIAL PREDICTION function from a binary-valued class &

Learning Learning
Algorithm eee Algorithm

Learning
Algorithm

Update

A\ VaN

Yyi Yo W Yr Yr

Prediction  True label

Goal: Minimize regret/error - total number of mistakes made by the algorithm

As T — o0, average number of mistakes — ()
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SEQUENTIAL PREDICTION - STOCHASTIC

Learning Learning
Algorithm eee Algorithm

Learning
Algorithm

Update

A\ VaN

Yyi Yo W Yr Yr

Prediction  True label

f data is purely stochastic then regret depends only on the VC dimension of &

Complexity notion for offline learning



SEQUENTIAL PREDICTION - ADVERSARIAL

Learning Learning
Algorithm eee Algorithm

Learning
Algorithm

Update

A\ VaN

Yyi Yo W Yr Yr

Prediction  True label

f data is fully adversarial then regret depends on the Littlestone dimension of &

Littlestone dimension can be infinite even when VC dimension is 1
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS

arbrtrary

A\

Data Xq 7: f 552 ?f fs X
Learning Learning
Algorithm eee Algorithm

Learning
Algorithm

Update

A\ VaN

i D Y2 N Yro )T
Prediction  Irue label
Sequence Is stochastic, but the adversary can decide at each time If they want to
inject an adversarial input (before the stochastic input is drawn)
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS
A AND ABSTENTIONS

Data Xq 7: f Xr ?f fs X
Learning Learning
Algorithm eee Algorithm

Learning
Algorithm

Update

Yyi Yo W Yr Yr

Prediction  True label
ég abstain

The learner gets an extra option to abstain from predicting (y, € {0,1, L })

: abstain



SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS
AND ABSTENTIONS

Protocol 1 Sequential Prediction with Adversarial Injections and Abstentions

Adversary (or nature) initially selects distribution ® € A(X) and f* € F. The learner does not have
access to f*. The learner may or may not have access to 3.
fort=1,...,7 do
Adversary decides whether to inject an adversarial input in this the round (¢; = 1) or not (¢; = 0).
if ¢; =1 then Adversary selects any z; € X
else Nature selects z; ~ %)
Learner receives Z; and outputs g; € {0,1, L} where | implies that the learner abstains.

Learner receives clean label y; = f*(2:). May not receive label when abstaining

+ Realizable model, fixed f* at the start (can handle adaptive f* in some cases)
* Insertion-only adversarial examples before seeing the 1.1.d. example

* Same as stochastic If no adversarial injections and same as fully adversarial if all
examples are injected
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS
AND ABSTENTIONS

Simultaneously want to minimize
* Incorrect prediction whenever the learner decides to predict

* |ncorrect abstentions whenever the learner abstains on non-adversarial data

T T
Error := Z Ly, =1— f*(2;)] -I-Z llc; =0Ag =1]
t=1 t=1

MisclassificationError AbstentionError

Abstentions on adversarial examples are free

Error does not need to scale with the number of adversarial injections
as long as we predict with certainty
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS
AND ABSTENTIONS

Why is it challenging!?
» Adversary can add any number of adversarial injections

* Learner does not know which examples in the history were injected, and hence
can't compute 1ts own loss

» Adversary could insert examples that cause downstream errors later

» Need to known when you know

Note that we do not need to solve one example adversarial detection (which may be
impossible) as long as we can predict correctly on the example

|4



CONNECTIONS TO OTHER FRAMEWORKS

* Abstention-based learning:
» Offline classification:
» Fast rates via abstenion [ Chow' /0, Herbel-VWegkamp'06, Bousguet-Zhivotovskiy 20]

* Transductive robust Iearning [Goldwasser-Kalai-Kalai-Montasser'20, Kalai-Kanade'2 | |

 [estable Distribution shift [Klivans-Stavropoulos-Vasilyan'24]

* Online classification:
» KWIK (know what it knows) [Li-Littman-Walsh'08, Sayedi et al! 10, Zhang-Chaudhuri'| 6]
» Fast rates via abstention [Neu-Zhivotovskiy'20]

Mostly focus on fully adversarial or purely stochastic setting



| Goldwasser-Kalal-Kalal-Montasser'20]

TRANSDUCTIVE ROBUST LEARNING

Clean labelled training data Corrupted unlabelled test data

§ (X15 V1) eoes (X, V) é Xiyeees X ﬁ

Want to output prediction set § C [m] and classifier i such that you minimize both

|
Incorrect predictions: — 2 1[A(x) # ]
M ies
Incorrect abstentions: — 2 1[X; was not corrupted]
& i€[m]\S

Our setup is an online version of this



CONNECTIONS TO OTHER FRAMEWORKS

* Beyond-worst case:

» Assumption on adve
aghtalab-Roughgarden-She

*» Assumption on future sec
Sridharan’ 3], learning with hi

* Adversarially robust learning:

uences such as predictable sec

NS [Bhaskara-Cutkosky-Kumar-Purohi' | 3

rsary such as smoothed adversary [Rakhlin-Sridharan-Tewari'| |,
ty 20, ...]

Uences [Rakhlin-

« Jest-time attacks [Szegedy et al. | 3, Biggio et al. | 3, Goodfellow et al. | 5, Feige et al. | 8, Attias et al."| 9,
Montasser et al. 19,20,21,22]

* [raining time a
Steinhardt et al’ | /7, S

tacks [Va

nafahi et al.

lan

085, Kearns and Li'93, Bshouty et a

8!

_evine and Feizi'2 |, Gao et al’2 |,

‘02, Biggio et al.
anneke et al.22,

2, Awas

thi et al |/,

Balcan ef

cal22]

We need to handle both test time and training time attacks

1/



CONNECTIONS TO OTHER FRAMEWORKS

* Testable Learning: (see Arsen’s Talk at Meet the Fellows)

» Our framework can be viewed as an online version of testable learning
Rubinfeld-Vasilyan'20]

» |estable learning tests an assumption on the data, and must succeed when the
assumption Is satistied

« Abstention acts as the tester

T T
Error := Z Ly, =1— f*(z;)] —I—Z llc; =0A gy =1]
t=1 t=1

MisclassificationError AbstentionError

Soundness Completeness



Part Il
Robust Algorithms via Abstention



Consider oblivious adversary

EXAMPLE: LINEAR THRESHOLDS

. . . . 1 x>
Class of linear thresholds in one dimension Jo(X) = =
ﬁ 0 otherwise.
N R SR
? d

» [he adversary chooses a random a

» [he adversary can Iinject a random point between the closest seen positive and
negative example so far

» |f the learner must predict, it will make a mistake on this with probability 1/2,
eading to T/2 mistakes in expectation
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0O otherwise.

EXAMPLE: LINEAR THRESHOLDS £,(x) = {1 tx2a

_

d

Algorithm: Learner can instead abstain between the closest positive and negative
example, and predict everywhere else

T
Error := Z [ (Z¢)] + Z lic; =0A g =1]
t=1

MisclassificationError AbstentionError

2|



0O otherwise.

EXAMPLE: LINEAR THRESHOLDS £,(x) = {1 tx2a

—|—

d

After seeing t — 1 1.1.d. examples, the probability of a new 1.1.d. example falling in
between the closest positive and negative is < 1/1 Fxchangeability argument

T
1
Jotal abstentions on 11.d. examples < Z - <2logT

=1

T T
Error:= Y 1§y =1— f*(&)]+» 1lfee=0Ag =L1] <2logT
t=1 t=1

MisclassificationError AbstentionError

Can extend to non-oblivious adversary since adversarial

. injections only reduce the probability of abstention



ABS TAINING WHENEVER UNCERTAIN

» Disagreement-based learning: Abstain on all points in the disagreement region™

and predict according to consistent hypothesis everywhere else
(common approach in active learning and perfect selective classification)

» Strategy always gets O misclassification error

- Abstention error Is well-understood and quantified by the star number of the
hypothesis class [Hanneke' | 6]

Star number is infinite for most hypothesis class of interest!

*disagreement region is the subset of the input sbace on which two different hypotheses disagree on the label

23



EXAMPLE: INTERVALS

| | | | 1 fa<x<b
Class of intervals in one dimension Jap(X) = A=t
0 otherwise.
e
a b

Suppose the LI1.d. distribution has very low mass on the positive part and we have
only seen negative examples so far

Then a disagreement-based learner will abstain on every example since every
example Is In the disagreement region

» However, 1t Is better to predict O everywhere

24



EXAMPLE: INTERVALS £ ) = {1 fa<x<b

0O otherwise.

R
a b

Algorithm: Learner predicts negative (resp. positive) If the closest labelled
examples to the left and right are both negative (resp. positive), else abstains.

T T
Error := Z Ly, =1— f*(2;)] -I-Z llc; =0A g =1]
t=1 t=1

MisclassificationError AbstentionError

£ 0
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EXAMPLE: INTERVALS £ ) = {1 fa<x<b

Algorithm: Learner predicts negative (resp. positive) 1

" the C

examples to the left and right are negative (resp. posr

ve), e

R

a Yl b

0O otherwise.

osest labelled
se abstains.

» If the algorithm makes a mistake, then 1t learns a positive label

26



EXAMPLE: INTERVALS £ ) = {1 fa<x<b

0O otherwise.

Algorithm: Learner predicts negative (resp. positive) If the closest labelled
examples to the left and right are negative (resp. positive), else abstains.

_—
a b

T the algorithm makes a mistake, then 1t learns a positive label

» [ he problem reduces to two thresholds, and the algorithm reduces to
disagreement-based learner for thresholds

» Can only make one misclassification mistake and at most O(log T') abstentions
on LL.d. examples

Make mistakes as long as they help with learning!

27




HIGHER-ORDER DISAGREEMENT-BASED LEARNER

Theorem:

Assuming access to the marginal distribution & over the i.i.d. inputs, there

s an algorithm that for any class with VC dimension d achieves,

“[MisclassificationError] < d*log T

-[AbstentionError] < 6d
Can improve to O(d log T) [Narayanan]

Works even when f* is adaptively decided as long as realizability holds
Can also allow for no labels when abstaining

28



HIGHER-ORDER DISAGREEMEN T

Goal: You want to predict in a way that mistakes will help you

Recall: In the interval example, we predicted negative, since If we made an error
we would gain information, and reduce the “dimensionality” of the problem

e e —
¢ b Interval (VC dim 2)

Threshold (VC dim [)

29



HIGHER-ORDER DISAGREEMEN T

Key idea: Use probability of shattering as an estimate of “dimensionality”

Recall: A set of size k is shattered by a function class F if for all possible labelings in {0,1}*
of the set of points, there exists a f € F that exactly matches it

O o O @
o o O O o ® o o 0

O ® ® O . 1 .

O - O © 1 ./
O O o O O O o O 0

< O O O . ] .

° ~ ® ~ 1 . / .
- O O O O O = =

O o O - . °

0

o S o o O O

@ O @ © o ® ® @
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HIGHER-ORDER DISAGREEMEN T

Key idea: Use probability of shattering as an estimate of “dimensionality”

Higher-order disagreement based on shattering: [Hanneke'09, 2]
At level k, the shattering probability is defined as the probability that a random

set of k points drawn from the distribution is shattered by the function class

Pi(F) = Pr [{xl, ..., X;.} Is shattered by 3‘7]

Xq5- . .,xkfv@@k
» p; Is the density of the disagreement region over the distribution
* Pr = Py Torall k

* ps.115 Osince no d + 1 points can be shattered (by definition of VC dimension)
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HIGHER-ORDER DISAGREEMENT-BASED LEARNER

» Set current level k = d

» Jo make a prediction on X:

» Compute the k-shattering probability for the current version space with restriction on
X, being labelled 0 and 1

» [T both quantities are large, we abstain

» Else we predict according to the larger one

+ If both quantities are small ( & T7%), go down a level
» Update version space after receiving label

+ Once at level 0, then abstain on any point in the disagreement region
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WHY DOES [T WORK?

» Jo make a prediction on X;

» Compute the k-shat

X, being labelled 0 and 1

» [T both quantities are large, we abstain

lering probabllity for the current version space with restriction on

» Llse we predict according to the larger one

+ If both quantities are small ( & T), go down a level

» Update version space after receiving label

~or I1.d. points, these quantities can't both

be large very often, so low abstentions

We reduce p, by a constant factor (0.6) at

every mistake, so low misclassifications

(next slide) Similar to halving for finite sized classes

but we do it for each level
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HIGHER-ORDER DISAGREEMENT: KEY LEMMA

Lemma:

Given any > 1/2,for an i..d. exam

are large 1s bounded by above as fol

r~3)

High-level intuition:

dle, the

OWS.

brobability that both quantities

L prg1 (F)
2n -1 pr(F)

+ Consider a set of k i.i.d. points, if they are shattered by both F*~% and F*~1,
then we have a set of k 4+ 1 I1.i.d. points that are shattered

» S0 this can not both happen too often If p,

34
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LIMITATIONS

» Requires access to the exact marginal distribution &

» |o simulate with unlabelled samples, naive implementation would need T4
samples, which Is too high for large VC dimension

» Checking shattering can be computationally inefficient

However, it wasn’t even clear we could get VC-like guarantees!
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WITHOUT ACCESS TO THE DISTRIBUTION /%

Theorem:

Without any access to the marginal distribution, forVC dimension 1

classes, there Is an algorithm that achieves,

—|MisclassificationError| < O(/T log T)
-| AbstentionError] < O(/T log T)

Note: The error scales as v/ T log T compared to log T in the known marginals case
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WITHOUT ACCESS TO THE DISTRIBUTION HE g,

Theorem:

Without any access to the marginal distribution, for axis-alighec

rectangles in dimension d, there is an algorithm that achieves,

-|MisclassificationError] < O(+/dT log T')
-|AbstentionError] < O(+/dT log T)

Note: The error scales as v/dT log T compared to O(d log T) in the known marginals
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RECTANGLE LEARNER

» Let P be the smallest rectangle enclosing the positive

points and IV be such that NV is the largest rectangle
containing no negative points

» To make a prediction on X,

» If X, Is not in the disagreement region, predict
according to consistent label

» Else count all the points X, such that 4j € {1,2} such

Votes to predict negative

» [f the number of such pointsis > a, predict
negative, else abstain

» Update P and N after getting the true label
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PROOF OVERVIEW

* We make no mistake on positive points They cannot vote negative in that
direction anymore

* bvery time we make a mistake on a negative, we can eliminate one direction

2T
each of & number of examples from the history, MisclassificationError < —

04

» [he adversary can fool us on a new 11.d. example with probability at most
2(a + 1)/n if we have seen n i.i.d. examples, AbstentionError < 2(a + 1)log T

For the latter, we show that not many i.i.d. points can be
attacked even if the adversary knows all the i.i.d. points
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Canl help Yes! | have
\,ou? a LoT of
cLuesHonS-

OPEN QUESTIONS

* General VC classes without distribution access:

» Only know results for special classes by exploiting structural properties
* Heuristics for more complex classes:

» (Can we test out heuristic algorithms for deep learning setups
* Beyond realizability:

» Benign noise models like random classification! We heavily use realizability
- Beyond binary classification:

» Multi-class, partial concept class! Regression?
- Computational efficiency:

* Are their efficient algorithms? Or statistical-computational trade-offs here?
- Connections to other problems/techniques:

» Jestable learning, conformal prediction, SoS style robustness
40



