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DECISION MAKING TODAY

Self-driving Spam detection Medical diagnosis/monitoring

Recommender systems College admission decisions LLM-powered ChatBots
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DECISION MAKING TODAY

Challenge: Errors on adversarial or out-of-distribution (OOD) data can be very costly

What happens when 

test  train?≠
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stochastic sequences

STOCHASTIC VS WORST-CASE SEQUENTIAL PREDICTION

worst-case adversarial sequences

Data is drawn from some unknown 
fixed distribution at each round

Data is generated by an adversary 
who knows the algorithm and history

Easy to get strong guarantees
Too simplistic to model real world

Too pessimistic to get any guarantees
Very robust to changes/attacks

Real world is not worst-case, but somewhere in between two extremes



Today: 
• New framework that incorporates abstention in sequential prediction
• Algorithms in this framework that achieve strong guarantees

Can we achieve strong guarantees while handling any 
amount of adversarial/OOD data?

Potential Fix: 
• Allow the model to abstain on adversarial/OOD data

Can use human-in-the-loop to label unsure examples in high stakes applications
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Purdue
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Technion & Google Research

Abhishek Shetty
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Part 1: 
Sequential prediction with Abstentions 

Acknowledgement: Thodoris Lykouris (MIT) and Adam Tauman Kalai (OpenAI)

Builds on: [Goldwasser-Kalai-Kalai-Montasser’20] (will discuss after)
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SEQUENTIAL PREDICTION

Learning 
Algorithm

̂y1 y1

Learning 
Algorithm

̂y2 y2

Learning 
Algorithm

̂yT yT

⋯

Prediction True label

Update

Data x1 x2 xT

Assume true label follows some fixed unknown 
function from a binary-valued class ℱ

Goal: Minimize regret/error - total number of mistakes made by the algorithm
As , average number of mistakesT → ∞ → 0
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SEQUENTIAL PREDICTION - STOCHASTIC

Learning 
Algorithm

̂y1 y1

Learning 
Algorithm

̂y2 y2

Learning 
Algorithm

̂yT yT

⋯

Prediction True label

Update

Data x1 x2 xT

If data is purely stochastic then regret depends only on the VC dimension of ℱ
Complexity notion for offline learning
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SEQUENTIAL PREDICTION - ADVERSARIAL

Learning 
Algorithm

̂y1 y1

Learning 
Algorithm

̂y2 y2

Learning 
Algorithm

̂yT yT

⋯

Prediction True label

Update

Data x1 x2 xT

If data is fully adversarial then regret depends on the Littlestone dimension of ℱ
Littlestone dimension can be infinite even when VC dimension is 1
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS

Learning 
Algorithm

̂y1 y1

Learning 
Algorithm

̂y2 y2

Learning 
Algorithm

̂yT yT

⋯

Prediction True label

Update

Sequence is stochastic, but the adversary can decide at each time if they want to 
inject an adversarial input (before the stochastic input is drawn)

Data ̂x1 ̂x2 ̂xT

arbitrary
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS

Learning 
Algorithm

̂y1 y1

Learning 
Algorithm

̂y2 y2

Learning 
Algorithm

̂yT yT

⋯

Prediction True label

Data

Update

The learner gets an extra option to abstain from predicting ( )̂yt ∈ {0,1, ⊥ }

̂x1 ̂x2 ̂xT

AND ABSTENTIONS

abstain

abstain
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS

• Realizable model, fixed  at the start (can handle adaptive  in some cases)

• Insertion-only adversarial examples before seeing the i.i.d. example
• Same as stochastic if no adversarial injections and same as fully adversarial if all 

examples are injected

f ⋆ f ⋆

AND ABSTENTIONS

May not receive label when abstaining
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS
AND ABSTENTIONS

Simultaneously want to minimize
• Incorrect prediction whenever the learner decides to predict
• Incorrect abstentions whenever the learner abstains on non-adversarial data

Abstentions on adversarial examples are free 

Error does not need to scale with the number of adversarial injections 
as long as we predict with certainty
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SEQUENTIAL PREDICTION WITH ADVERSARIAL INJECTIONS
AND ABSTENTIONS

Why is it challenging?

• Adversary can add any number of adversarial injections
• Learner does not know which examples in the history were injected, and hence 

can’t compute its own loss
• Adversary could insert examples that cause downstream errors later
• Need to known when you know

Note that we do not need to solve one example adversarial detection (which may be 
impossible) as long as we can predict correctly on the example



• Abstention-based learning:
• Offline classification:

• Fast rates via abstenion [Chow’70, Herbei-Wegkamp’06, Bousquet-Zhivotovskiy’20]

• Transductive robust learning [Goldwasser-Kalai-Kalai-Montasser’20, Kalai-Kanade’21]

• Testable Distribution shift [Klivans-Stavropoulos-Vasilyan’24]

• Online classification: 
• KWIK (know what it knows) [Li-Littman-Walsh’08, Sayedi et al.’10, Zhang-Chaudhuri’16] 

• Fast rates via abstention [Neu-Zhivotovskiy’20]
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CONNECTIONS TO OTHER FRAMEWORKS

Mostly focus on fully adversarial or purely stochastic setting
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TRANSDUCTIVE ROBUST LEARNING
[Goldwasser-Kalai-Kalai-Montasser’20]

(x1, y1), …, (xn, yn)

Clean labelled training data

̂x1, …, ̂xm

Corrupted unlabelled test data

Want to output prediction set  and classifier  such that you minimize both

Incorrect predictions:  

Incorrect abstentions: 

S ⊆ [m] h
1
m ∑

i∈S

1[h( ̂xi) ≠ ̂yi]

1
m ∑

i∈[m]∖S

1[ ̂xi was not corrupted]

Our setup is an online version of this
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CONNECTIONS TO OTHER FRAMEWORKS
• Beyond-worst case: 

• Assumption on adversary such as smoothed adversary [Rakhlin-Sridharan-Tewari’11, 
Haghtalab-Roughgarden-Shetty’20, …]

• Assumption on future sequences such as predictable sequences [Rakhlin-
Sridharan’13], learning with hints [Bhaskara-Cutkosky-Kumar-Purohi’13]

• Adversarially robust learning:

• Test-time attacks [Szegedy et al.’13, Biggio et al.’13, Goodfellow et al.’15, Feige et al.’18, Attias et al.'19, 
Montasser et al.’19,20,21,22]

• Training time attacks [Valiant’85, Kearns and Li’93, Bshouty et al.’02, Biggio et al.’12, Awasthi et al.’17, 
Steinhardt et al.’17, Shafahi et al.’18, Levine and Feizi’21, Gao et al.’21, Hanneke et al.’22, Balcan et al.’22]

We need to handle both test time and training time attacks 
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CONNECTIONS TO OTHER FRAMEWORKS

• Testable Learning: (see Arsen’s Talk at Meet the Fellows)

• Our framework can be viewed as an online version of testable learning 
[Rubinfeld-Vasilyan’20]

• Testable learning tests an assumption on the data, and must succeed when the 
assumption is satisfied

• Abstention acts as the tester

Soundness Completeness



Part II:
Robust Algorithms via Abstention 
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EXAMPLE: LINEAR THRESHOLDS

fa(x) = {1  if x ≥ a
0  otherwise.

a?

• The adversary chooses a random 

• The adversary can inject a random point between the closest seen positive and 
negative example so far

• If the learner must predict, it will make a mistake on this with probability , 
leading to  mistakes in expectation

a

1/2
T/2

Class of linear thresholds in one dimension

Consider oblivious adversary
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Algorithm: Learner can instead abstain between the closest positive and negative 
example, and predict everywhere else

EXAMPLE: LINEAR THRESHOLDS fa(x) = {1  if x ≥ a
0  otherwise.

a
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After seeing  i.i.d. examples, the probability of a new i.i.d. example falling in 
between the closest positive and negative is

Total abstentions on i.i.d. examples 

t − 1
≤ 1/t

≤
T

∑
t=1

1
t

≤ 2 log T

EXAMPLE: LINEAR THRESHOLDS

≤ 2 log T

a

fa(x) = {1  if x ≥ a
0  otherwise.

Exchangeability argument

Can extend to non-oblivious adversary since adversarial 
injections only reduce the probability of abstention
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ABSTAINING WHENEVER UNCERTAIN

• Disagreement-based learning: Abstain on all points in the disagreement region  
and predict according to consistent hypothesis everywhere else                
(common approach in active learning and perfect selective classification)

• Strategy always gets 0 misclassification error

• Abstention error is well-understood and quantified by the star number of the 
hypothesis class [Hanneke’16]

*

Star number is infinite for most hypothesis class of interest!

disagreement region is the subset of the input space on which two different hypotheses disagree on the label*
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EXAMPLE: INTERVALS

fa,b(x) = {1  if a ≤ x ≤ b
0  otherwise.

a

• Suppose the i.i.d. distribution has very low mass on the positive part and we have 
only seen negative examples so far

• Then a disagreement-based learner will abstain on every example since every 
example is in the disagreement region

• However, it is better to predict 0 everywhere

Class of intervals in one dimension

b
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EXAMPLE: INTERVALS fa,b(x) = {1  if a ≤ x ≤ b
0  otherwise.

Algorithm: Learner predicts negative (resp. positive) if the closest labelled 
examples to the left and right are both negative (resp. positive), else abstains.

≠ 0

a b
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EXAMPLE: INTERVALS

Algorithm: Learner predicts negative (resp. positive) if the closest labelled 
examples to the left and right are negative (resp. positive), else abstains.

• If the algorithm makes a mistake, then it learns a positive label

• The problem reduces to two thresholds, and the algorithm reduces to 
disagreement-based learner for thresholds

• Can only make one misclassification mistake and at most  abstentions 
on i.i.d. examples

O(log T)

a b?a

fa,b(x) = {1  if a ≤ x ≤ b
0  otherwise.



• If the algorithm makes a mistake, then it learns a positive label

• The problem reduces to two thresholds, and the algorithm reduces to 
disagreement-based learner for thresholds

• Can only make one misclassification mistake and at most  abstentions 
on i.i.d. examples

O(log T)

• If the algorithm makes a mistake, then it learns a positive label

• The problem reduces to two thresholds, and the algorithm reduces to 
disagreement-based learner for thresholds

• Can only make one misclassification mistake and at most  abstentions 
on i.i.d. examples

O(log T)
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EXAMPLE: INTERVALS

a ba

Make mistakes as long as they help with learning!

fa,b(x) = {1  if a ≤ x ≤ b
0  otherwise.

Algorithm: Learner predicts negative (resp. positive) if the closest labelled 
examples to the left and right are negative (resp. positive), else abstains.
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HIGHER-ORDER DISAGREEMENT-BASED LEARNER

Theorem: 
Assuming access to the marginal distribution  over the i.i.d. inputs, there 
is an algorithm that for any class with VC dimension  achieves,

𝒟
d

𝔼[𝖬𝗂𝗌𝖼𝗅𝖺𝗌𝗌𝗂𝖿𝗂𝖼𝖺𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋] ≤ d2 log T
𝔼[𝖠𝖻𝗌𝗍𝖾𝗇𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋] ≤ 6d

Works even when  is adaptively decided as long as realizability holds
Can also allow for no labels when abstaining

f ⋆

Can improve to  [Narayanan]Õ(d log T)
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HIGHER-ORDER DISAGREEMENT

Goal: You want to predict in a way that mistakes will help you

Recall: In the interval example, we predicted negative, since if we made an error 
we would gain information, and reduce the “dimensionality” of the problem

a b Interval (VC dim 2)

a ba Threshold (VC dim 1)
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HIGHER-ORDER DISAGREEMENT

Key idea: Use probability of shattering as an estimate of “dimensionality”

Recall: A set of size  is shattered by a function class  if for all possible labelings in  
of the set of points, there exists a  that exactly matches it

k ℱ {0,1}k

f ∈ ℱ



31

HIGHER-ORDER DISAGREEMENT

•  is the density of the disagreement region over the distribution 

•  for all 

•  is 0 since no  points can be shattered (by definition of VC dimension)

ρ1 𝔇

ρk ≥ ρk+1 k

ρd+1 d + 1

Higher-order disagreement based on shattering: [Hanneke’09,12]
At level , the shattering probability is defined as the probability that a random 
set of  points drawn from the distribution is shattered by the function class

k
k

ρk(ℱ) = Pr
x1,…,xk∼𝔇⊗k [{x1, …, xk} is shattered by ℱ]

Key idea: Use probability of shattering as an estimate of “dimensionality”



32

• Set current level 

• To make a prediction on :
• Compute the -shattering probability for the current version space with restriction on 

 being labelled  and 
• If both quantities are large, we abstain
• Else we predict according to the larger one

• If both quantities are small ( ), go down a level

• Update version space after receiving label

• Once at level , then abstain on any point in the disagreement region

k = d

̂xt

k
̂xt 0 1

≈ T−k

0

HIGHER-ORDER DISAGREEMENT-BASED LEARNER



• To make a prediction on :
• Compute the -shattering probability for the current version space with restriction on 

 being labelled  and 
• If both quantities are large, we abstain
• Else we predict according to the larger one

• If both quantities are small ( ), go down a level

• Update version space after receiving label

̂xt

k
̂xt 0 1

≈ T−k

WHY DOES IT WORK?
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For i.i.d. points, these quantities can’t both 
be large very often, so low abstentions

We reduce  by a constant factor (0.6) at 
every mistake, so low misclassifications

ρk

Similar to halving for finite sized classes 
but we do it for each level

(next slide)
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HIGHER-ORDER DISAGREEMENT: KEY LEMMA

Lemma: 
Given any , for an i.i.d. example, the probability that both quantities 
are large is bounded by above as follows:

η > 1/2

High-level intuition:
• Consider a set of  i.i.d. points, if they are shattered by both  and , 

then we have a set of  i.i.d. points that are shattered
• So this can not both happen too often if  is small

k ℱx→0 ℱx→1

k + 1
ρk+1(ℱ)

η = 0.6



LIMITATIONS 
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• Requires access to the exact marginal distribution 

• To simulate with unlabelled samples, naive implementation would need  
samples, which is too high for large VC dimension

• Checking shattering can be computationally inefficient

𝒟

TΩ(d)

However, it wasn’t even clear we could get VC-like guarantees!
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Theorem: 
Without any access to the marginal distribution, for VC dimension  
classes, there is an algorithm that achieves,

1

𝔼[𝖬𝗂𝗌𝖼𝗅𝖺𝗌𝗌𝗂𝖿𝗂𝖼𝖺𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋] ≤ O( T log T)

𝔼[𝖠𝖻𝗌𝗍𝖾𝗇𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋] ≤ O( T log T)

Note: The error scales as  compared to  in the known marginals caseT log T log T

WITHOUT ACCESS TO THE DISTRIBUTION
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Theorem: 
Without any access to the marginal distribution, for axis-aligned 
rectangles in dimension , there is an algorithm that achieves,d

𝔼[𝖬𝗂𝗌𝖼𝗅𝖺𝗌𝗌𝗂𝖿𝗂𝖼𝖺𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋] ≤ O( dT log T)

𝔼[𝖠𝖻𝗌𝗍𝖾𝗇𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋] ≤ O( dT log T)

Note: The error scales as  compared to  in the known marginalsdT log T Õ(d log T)

WITHOUT ACCESS TO THE DISTRIBUTION



N̄

P
a1

a2

b1

b2
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• Let  be the smallest rectangle enclosing the positive 
points and  be such that  is the largest rectangle 
containing no negative points

• To make a prediction on :
• If  is not in the disagreement region, predict 

according to consistent label
• Else count all the points  such that  such 

that 

• If the number of such points is , predict 
negative, else abstain

• Update  and  after getting the true label

P
N N̄

̂xt

̂xt

̂xi ∃j ∈ {1,2}
̂xi,j ∈ (aj, ̂xt,j]

≥ α

P N

RECTANGLE LEARNER

Votes to predict negative
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PROOF OVERVIEW

• We make no mistake on positive points

• Every time we make a mistake on a negative, we can eliminate one direction 

each of  number of examples from the history, 

• The adversary can fool us on a new i.i.d. example with probability at most 
 if we have seen  i.i.d. examples, 

α 𝖬𝗂𝗌𝖼𝗅𝖺𝗌𝗌𝗂𝖿𝗂𝖼𝖺𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋 ≤
2T
α

2(α + 1)/n n 𝖠𝖻𝗌𝗍𝖾𝗇𝗍𝗂𝗈𝗇𝖤𝗋𝗋𝗈𝗋 ≤ 2(α + 1)log T

For the latter, we show that not many i.i.d. points can be 
attacked even if the adversary knows all the i.i.d. points

They cannot vote negative in that 
direction anymore
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OPEN QUESTIONS
• General VC classes without distribution access:

• Only know results for special classes by exploiting structural properties
• Heuristics for more complex classes:

• Can we test out heuristic algorithms for deep learning setups
• Beyond realizability:

• Benign noise models like random classification? We heavily use realizability
• Beyond binary classification:

• Multi-class, partial concept class? Regression?
• Computational efficiency:

• Are their efficient algorithms? Or statistical-computational trade-offs here?
• Connections to other problems/techniques:

• Testable learning, conformal prediction, SoS style robustness


