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new

[Wang+ 24] arbitrary (generalized) Variance Exploding SDE+

2. backward sampling/inference process:
numerical simulation  sample Y

1. forward training/learning process: 
optimization  score s

+

★ bigger contribution

popular version (e.g., EDM [Karras+ 22])
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Setup

▶ Objective function (minimized by GD):

L̄em(θ) =
1

2n

n∑
i=1

N∑
j=1

w(tj)

σ̄tj
(tj − tj−1)︸ ︷︷ ︸
βj

∥σ̄tjS(θ; tj ,Xij) + ξij∥2

︸ ︷︷ ︸
f (θ;i ,j)

▶ Architecture: deep ReLU network

S(θ;Xij) = WL+1σ(WL · · ·W1σ(W0[Xij , tj ])),

▶ WL+1 ∈ Rd×m, Wℓ ∈ Rm×m, W0 ∈ Rm×d
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Setup
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Xij = xi + σ̄tj ξij ∼ Ptj (X |X (0) = xi ),

where σ̄2
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is the variance of Xtj |X0, and ξij ∼ N (0, I )
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Setup

▶ Number of samples:

Xi j = xi︸︷︷︸
n samples
from initial

distribution P0

+ σ̄tj︸︷︷︸
N time points

for forward/backward SDEs

ξi j
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Theory: assumptions
▶ Assumptions: mild + preserve the nature of diffusion models

▶ For example,
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▶ Data scaling: ∥xi∥ = Θ(
√
d) for all i .
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Theory: training

Theorem

For any ϵtrain > 0, consider m ≥ M(ϵtrain). With high probability,

L̄em(θ(k))

≤
k−1∏
s=0

(
1− C5h w(tj∗(s))(tj∗(s) − tj∗(s)−1)σ̄tj∗(s)

md
a0−1

2

n3N2

)
L̄em(θ(0))

Moreover, when K = Θ(d
1−a0

2 n2N log( d
ϵtrain

)),

L̄em(θ(K)) ≤ ϵtrain.

▶ Exponential decay



5/22

Theory: training

Theorem

For any ϵtrain > 0, consider m ≥ M(ϵtrain). With high probability,

L̄em(θ(k))

≤
k−1∏
s=0

(
1− C5h w(tj∗(s))(tj∗(s) − tj∗(s)−1)σ̄tj∗(s)

md
a0−1

2

n3N2

)
L̄em(θ(0))

Moreover, when K = Θ(d
1−a0

2 n2N log( d
ϵtrain

)),

L̄em(θ(K)) ≤ ϵtrain.

▶ Exponential decay



6/22

Theory: training

Theorem

L̄em(θ(k)) ≤
k−1∏
s=0

(
1− C5h w(tj∗(s))(tj∗(s) − tj∗(s)−1)σ̄tj∗(s)

md
a0−1

2

n3N2

)
L̄em(θ(0))

▶ Recall:

L̄em(θ) =
1

2n

n,N∑
i=1,j=1

f (θ; i , j)

▶ (i∗(s), j∗(s)) = the index of the largest loss f (θ(s); i , j)

▶ Faster convergence:

want to maximize over all the indices
⇒ want all f (θ(s); i , j) to be the largest loss
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Total weighting: theory vs practice

Corollary

When f (θ(k); i , j) ≈ f (θ(k); i ′, j ′) for all (i , j), (i ′, j ′), k, GD obtains
the optimal rate of convergence

L̄em(θ(k)) ≤

(
1− C7h max

j=1,··· ,N
w(tj)(tj − tj−1)σ̄tj

md
a0−1

2

n3N2

)k

L̄em(θ(0)).

▶ f (θ(k); i , j) ≈ f (θ(k); i ′, j ′):

f (θ; i , j) = βj︸︷︷︸
total weighting

∥σ̄tjS(θ; tj ,Xij) + ξij∥2

▶ Claim: this implies how to choose the total weighting βj
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Total weighting: theory vs practice
f (θ; i , j) = βj ∥σ̄tjS(θ; tj ,Xij) + ξij∥2

▶ ∥σ̄tS(θ; t, x0 + σ̄tξ) + ξ∥2:

▶ Thus, βj ∝ 1
∥σ̄tj

S(θ;tj ,Xij )+ξij∥2
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Total weighting: theory vs practice

In practice:

▶ EDM [Karras et al., 2022]
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▶ Other total weighting functions used in practice (mostly
monotone): e.g., βσ̄ = 1

σ̄ [Song et al., 2021]

▶ Performance: EDM > other models
⇒ “bell-shape” is preferable

▶ Roughly, Theory ≈ Practice
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Proof of convergence

▶ Recall: input data Xij = xi + σ̄tj ξij ,

output data − ξij
σ̄tj

,

where xi ∼ P0, ξij ∼ N (0, I )

▶ Framework [Allen-Zhu et al., 2019]:

semi-smoothness + local strongly convex︸ ︷︷ ︸
key

▶ No longer works in denoising diffusion models
▶ Reason: (1) scaling︸ ︷︷ ︸

bad

(((((((hhhhhhhsmall output data

;(2) correlation︸ ︷︷ ︸
“good”

((((((hhhhhhdata separability

▶ Our proof: high probability bound using some
high-dimensional geometry facts



10/22

Proof of convergence

▶ Recall: input data Xij = xi + σ̄tj ξij ,

output data − ξij
σ̄tj

,

where xi ∼ P0, ξij ∼ N (0, I )

▶ Framework [Allen-Zhu et al., 2019]:

semi-smoothness + local strongly convex︸ ︷︷ ︸
key

▶ No longer works in denoising diffusion models
▶ Reason: (1) scaling︸ ︷︷ ︸

bad

(((((((hhhhhhhsmall output data

;(2) correlation︸ ︷︷ ︸
“good”

((((((hhhhhhdata separability

▶ Our proof: high probability bound using some
high-dimensional geometry facts



10/22

Proof of convergence

▶ Recall: input data Xij = xi + σ̄tj ξij ,

output data − ξij
σ̄tj

,

where xi ∼ P0, ξij ∼ N (0, I )

▶ Framework [Allen-Zhu et al., 2019]:

semi-smoothness + local strongly convex︸ ︷︷ ︸
key

▶ No longer works in denoising diffusion models
▶ Reason: (1) scaling︸ ︷︷ ︸

bad

(((((((hhhhhhhsmall output data

;(2) correlation︸ ︷︷ ︸
“good”

((((((hhhhhhdata separability

▶ Our proof: high probability bound using some
high-dimensional geometry facts



10/22

Proof of convergence

▶ Recall: input data Xij = xi + σ̄tj ξij ,

output data − ξij
σ̄tj

,

where xi ∼ P0, ξij ∼ N (0, I )

▶ Framework [Allen-Zhu et al., 2019]:

semi-smoothness + local strongly convex︸ ︷︷ ︸
key

▶ No longer works in denoising diffusion models

▶ Reason: (1) scaling︸ ︷︷ ︸
bad

(((((((hhhhhhhsmall output data

;(2) correlation︸ ︷︷ ︸
“good”

((((((hhhhhhdata separability

▶ Our proof: high probability bound using some
high-dimensional geometry facts



10/22

Proof of convergence

▶ Recall: input data Xij = xi + σ̄tj ξij ,

output data − ξij
σ̄tj

,

where xi ∼ P0, ξij ∼ N (0, I )

▶ Framework [Allen-Zhu et al., 2019]:

semi-smoothness + local strongly convex︸ ︷︷ ︸
key

▶ No longer works in denoising diffusion models
▶ Reason: (1) scaling︸ ︷︷ ︸

bad

(((((((hhhhhhhsmall output data

;

(2) correlation︸ ︷︷ ︸
“good”

((((((hhhhhhdata separability

▶ Our proof: high probability bound using some
high-dimensional geometry facts



10/22

Proof of convergence

▶ Recall: input data Xij = xi + σ̄tj ξij ,

output data − ξij
σ̄tj

,

where xi ∼ P0, ξij ∼ N (0, I )

▶ Framework [Allen-Zhu et al., 2019]:

semi-smoothness + local strongly convex︸ ︷︷ ︸
key

▶ No longer works in denoising diffusion models
▶ Reason: (1) scaling︸ ︷︷ ︸

bad

(((((((hhhhhhhsmall output data

;(2) correlation︸ ︷︷ ︸
“good”

((((((hhhhhhdata separability

▶ Our proof: high probability bound using some
high-dimensional geometry facts



10/22

Proof of convergence

▶ Recall: input data Xij = xi + σ̄tj ξij ,

output data − ξij
σ̄tj

,

where xi ∼ P0, ξij ∼ N (0, I )

▶ Framework [Allen-Zhu et al., 2019]:

semi-smoothness + local strongly convex︸ ︷︷ ︸
key

▶ No longer works in denoising diffusion models
▶ Reason: (1) scaling︸ ︷︷ ︸

bad

(((((((hhhhhhhsmall output data

;(2) correlation︸ ︷︷ ︸
“good”

((((((hhhhhhdata separability

▶ Our proof: high probability bound using some
high-dimensional geometry facts



11/22

Theory: more about training

Recall:

Theorem

For any ϵtrain > 0, consider m ≥ M(ϵtrain). With high probability,

L̄em(θ(k))

≤
k−1∏
s=0

(
1− C5h w(tj∗(s))(tj∗(s) − tj∗(s)−1)σ̄tj∗(s)

md
a0−1

2

n3N2

)
L̄em(θ(0))

Moreover, when K = Θ(d
1−a0

2 n2N log( d
ϵtrain

)),

L̄em(θ(K)) ≤ ϵtrain.
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Theory: more about training
Properties of denoising score matching objective:

▶ L̄em(θ)→ L̄ as n→∞

L̄em(θ) =
1

2

N∑
j=1

w(tj)(tj − tj−1)
1

σ̄tj

1

n

n∑
i=1

∥σ̄tjS(θ; tj ,Xij) + ξij∥2

L̄(θ) = 1

2

N∑
j=1

w(tj)(tj − tj−1)
1

σ̄tj
EX0Eξ∥σ̄tjS(θ; tj ,Xtj ) + ξ∥2

▶ Score matching → denoising score matching:

0 ≤EXtj
∥S(θ; tj ,Xtj )−∇x log ptj (Xtj )∥

2

=
1

σ̄tj
EX0Eξ∥σ̄tjS(θ; tj ,Xtj ) + ξ∥2 + Ctj

▶ ⇒ L̄(θ) + C̄ ≥ 0
▶ ⇒ L̄(θ) ≥ −C̄ > 0, i.e., positive lower bound of L̄(θ)
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Theory: more training

▶ Theorem: choose arbitrarily large width m, ϵtrain can be as
small as possible

0
?←ϵtrain ≈ L̄em(θ)→ L̄(θ) ≥ −C̄ > 0

▶ Contradiction?
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Interesting generalization setting #1

No contradiction:

can have both L̄em(θ) ≈ 0 and L̄ ≈ −C̄ > 0

Reason:

▶ Overparameterized setting: fix m,

▶ L̄em(θ) ≤ ϵtrain: sample size n≪ m ⇒ n is bounded
▶ L̄em → L̄ as n→∞

Consequence:
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Interesting generalization setting #

▶ Recall:

KL(pδ|qT−δ) ≲ ED + EI︸ ︷︷ ︸
sampling

+ES

where pδ is the true density at time δ, and qT−δ is the
approximated density of pδ.

▶ ES : score error
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Interesting generalization setting #1

ES ≤ max
1≤j≤N

σ2
tN−j

w(tN−j)

(
ϵtrain + ϵn︸︷︷︸

L̄em(θ)−L̄(θ)

+ ϵest︸︷︷︸
estimation

error

+ ϵapprox︸ ︷︷ ︸
approximation

error

)

▶ ϵn + ϵest + ϵapprox
[Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

▶ Regression generalization → Diffusion models

▶ Open problem:

▶ ϵtrain + ϵn ≥ −2C̄ > 0 ⇒ error bound ̸→ 0
change decomposition ⇒ tighter analysis?

▶ S(θ; t,Xt)
?→ ∇x log pt(Xt)
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Example full error analysis

Theorem (EDM polynomial schedule [Karras et al., 2022])

KL(pδ|qT−δ) ≲
m2

2

T 2︸︷︷︸
EI

+
da2T

1
a

δ
1
aN

+ (m2
2 + d)

(
a2T

1
a

δ
1
aN

+
a3T

2
a

δ
2
aN2

)
︸ ︷︷ ︸

ED

+
1

N

C2 +

(
1− C1h

(
md

a0−1
2

n3N2

))K


︸ ︷︷ ︸
ES

,

where δ = t0, a = 7, a0 ∈ (1/2, 1).

▶ C2 = ϵn + ϵest + ϵapprox
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Theory: full error analysis

ES :=
N−1∑
j=0

αj( tj︸︷︷︸
time

schedule

, σ̄tj︸︷︷︸
variance
schedule

) EXtj
∥S(θ; tj ,Xtj )−∇ log ptj (Xtj )∥

2

sampling + optimization

▶ αj(tj , σ̄tj ) ̸= βj , the weighting for training objective

▶ First choose total weighting βj ; then apply the schedules tj , σ̄tj
▶ Next: focus on two concrete schedules used in practice

▶ Theoretical implication: how to choose between two
schedules
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Theory: full error analysis

Two most famous choices:

▶ Exponential schedules [Song et al., 2021]: first work

▶ Polynomial schedules [Karras et al., 2022]: improved design

Variance σ̄t Time tk

[Karras et al., 2022] t
(
σ̄
1/ρ
max − (σ̄

1/ρ
max − σ̄

1/ρ
min)

N−k
N

)ρ
[Song et al., 2021]

√
t σ̄2

max

(
σ̄2
min

σ̄2
max

)N−k
N

▶ Time schedule tk : a function of k

▶ ρ = 7
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Implication from theory: How to choose schedules?
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3.1 Summary

easy distribution
• 1st quantitative result that analyzes

- forward training + backward sampling

• nontrivial analysis of training dynamics
- overparameterized ReLU MLP
- weaker data assumpts (no separability, unbdd output, …)
- interesting generalization setting #1: SM - DSM gap

• besides understanding, practical implication
- total weighting
- variance and time schedules
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natural: empirical distribution, i.e. sum of Dirac’s
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What if: generated data = uniformly drawn from training data ?
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• score error
• integration error
• initialization error
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Key: what exactly is this?

natural: empirical distribution, i.e. sum of Dirac’s

4 types of errors  innovation?
Kadkhodaie+ 23, Scarvelis+ 23, …

What if: generated data = uniformly drawn from training data ?

accurate, but not innovative

perfect score

Generalization Setting #2 (open)

hope: understanding the training dynamics
& tight analysis of sampling inductive bias

Quantifications:
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Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible) 

what is it good at?

difference and similarity to autoregressive model

how to best deploy it?
…

3.2 Discussion and Future Direction 2
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