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“The workshop will bring together applied researchers and theorists, with the 
goal of understanding how each understands notions of generalization.”


What is generalization?



Different notions of generalization
• Generalization: prediction on future examples which 

you haven’t seen before (?)


• Classical setting: additionally assume training data is 
iid from test distribution  .


• “Generalization” <-> understanding overfitting


• <-> distortion between training loss and test loss


• OOD Generalization, interactive settings, dependent 
samples, …. not strictly within scope of classical 
generalization theory.


• Nevertheless, very natural setting to understand 
pattern-formation/recognition ability! Even most basic 
case of a broader theory is worth understanding (and 
has caused people concern).

𝒟

?



Collaborators, etc.

• This talk is largely based on two recent joint works.


• “A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models” 
with Lijia Zhou, Danica Sutherland, Pragya Sur, and Nati Srebro


• “Uniform Convergence with Square-Root Lipschitz Loss” with Lijia Zhou, Zhen Dai, and Nati 
Srebro


• Also, it is related to lots of other interesting works and efforts.


• For example, it is related to words like “proportional asymptotics”, “CGMT” statistical physics 
methods in high-dimensional statistics (e.g. AMP), “benign overfitting”, “implicit bias”, …



Presentation vs papers
• The papers have the rigorous results.


• Nonasymptotic, appropriate for different noise 
models, etc.


• But it could look a bit unfriendly…


• This talk won’t be that formal (relatively)


• e.g. drop error terms/low sample size & 
dimension effects (even though they are not 
complicated)


• simple examples


• deemphasize minor assumptions


• hopefully an enticement for papers…



Overview: two high-level phenomena

• Observe some interesting (to me) phenomena in very simple models


• Not intuitively obvious (IMO) but natural output of mathematical analysis


• Food for future thought: these high-level phenomena may occur in other 
settings?



Phenomena 1: mismatch of training and test losses

• Classical generalization story (e.g. Vapnik-Chervonenkis ’71):


• where  and 


• Seems natural because empirical mean concentrates about true mean?


• Today’s story:


• Explain why we sometimes would have test loss differing from training loss! 

• I.e. model seeks to emulate an “oracle” minimizing a different loss than . 

• Naturally arises when we look at optimal generalization bounds.

test( f ) = 𝔼ℓ( f(x), y) train( f ) =
1
n

n

∑
i=1

ℓ( f(x(i)), y(i))

ℓ

test( f ) ≤ train( f ) + complexity( f )



Phenomena 2: “implicit bias” of overfitting, emergent losses

• Name borrowed from a parallel work of Ohad Shamir


• A new kind of “implicit bias” in learning:


• Previous work focuses on implicit regularization


• Choice of optimization method & model parameterization lead to a 
preference in regularization, e.g. low -norm or low rank solutions.


• New phenomena: model capacity <-> implicit change in loss function


• Important because typically, different losses to lead to different minimizers.


• I will give a very simple example to explain this point.


• Especially discover some new unexpected/emergent “sqrt-lipschitz” losses.
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An example to illustrate the idea
• A made-up story:


• You: have some user data.


• Surprisingly, you want to make money off 
the users.


• You want to know the income of each user 
(e.g. to target ads), but you don’t know 
what it is.


• Train a model f to predict income Y based 
of feature vector X.


• RMK: the story is just a pedagogical tool. 
Don’t take it too seriously…



The example, continued

• You collect a small subset of labeled examples (e.g. by asking 
the users). For simplicity: assume they are iid.


• Now you want to train a model f to map X -> Y = income.


• Natural to pick f by “Empirical Risk Minimization”:


• 


• To maximize simplicity, I consider an unlucky setting where 
 independent of Y. i.e. features are actually 

useless. and I fit a linear model.

min
1
n

n

∑
i=1

|Yi − f(Xi) |

X ∼ N(0,I)



Useless features lead to bad predictions…
(test set performance)

• (by itself, not surprising or interesting)
Trivia: Who is this?



Any interesting phenomena?
(interesting to me)

• I trained linear model  with different levels of ridge 
regularization and n = 200 examples.


• Since (for simplicity)  independently of label Y, the only 
predictive part of the model is the intercept b.


• Next slide: plot of b for different regularization levels.


• What will it look like?

f(x) = ⟨w, x⟩ + b

X ∼ N(0,I800)



Intercept vs regularization level



Intercept vs # of parameters (unregularizd)
a diferent experiment



Why interesting? (to me)
• Each plot has two extreme sides.


• In “low capacity” case (e.g. high ridge penalty):


• Classical statistical theory tells us


• But it turns out in high capacity case: 

• I.e. model seeks to emulate a different “oracle” ! 

• Where did the square loss come from? 🤔

b ≈ median = arg min
m

1
n

n

∑
i=1

|yi − b |

b ≈ mean = arg min
1
n

n

∑
i=1

(yi − b)2



Why is it happening?

NATURAL GUESS: squared loss due to ridge penalty?  

• This wouldn’t really explain the same phenomena happening as you vary # of 
parameters.


• It turns out, you could also get the same phenomena to happen with  
(LASSO) regularization instead of ridge.  

Actually, we will see:  arises purely from geometry of overfitting. 


• More precise story: overfitting transforms the LAD loss into the Huber and 
ultimately the squared loss.


We will see this through more general results…

∥w∥2 = ∑
i

w2
i
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How general will we go?
• The focus of this talk/line of work is understanding 

optimal generalization bounds.


• Common reality of mathematics: even if we think X is 
true for a big class of models, we may only be able to 
rigorously prove X for a small well-behaved subset.


• e.g. special solvable/integrable models in 
“universality classes” in physics


• I will make somewhat strong assumptions so I can 
solve for what happens precisely. 

• In particular, Gaussianity of data…

Class of models


with behavior X

Subclass of models


we can mathematically


solve with current knowledge



Rmk: some universality observable



Formal generative setting

• Data points are 


• Label  is generated in an arbitrary way based on a low-
dimensional projection of X.


• I.e.  for a noise variable  and 
for  vectors  .


• This is called a multi-index model in statistics.


• TODO: some trick to get rid of this assumption?


• Our fit models are generally misspecified

X ∼ N(0,Σ)

Y

Y = f(ξ, ⟨v*1 , X⟩, …, ⟨v*k , X⟩) ξ
k v*1 , …, v*k

X ∼ N(0,Σ)

PX ∼ N(0,PΣP)

Y

low-d 


projection

arbitrary



Moreau envelope + generalization bound
(will be explained!!)

• The minimizer is called the “proximal operator”. Standard objects in convex analysis.


• Then  one can prove the following (one-sided) generalization bound :


where  and  for 

∀(w, b) ∈ ℱ ∀λ ≥ 0

(w, b) ∈ ℱ ℛn = 𝔼 sup
w,b

1
n

n

∑
i=1

ϵi(⟨w, Xi⟩ + b) ϵ ∼ Uni{±1}n

𝔼fλ(⟨w, X⟩ + b, Y) ≤ 𝔼̂f(⟨w, X⟩ + b, Y) + λℛ2
n

Test error (envelope) Train error Rad. Complexity
ℱ

(w, b)



Example!

Moreau Envelope

(1/2λ)
(−1/2λ)

• Consider  the LAD loss


• Solve for the proximal operator by setting derivative to zero


• Minimizer is 0 for  and otherwise 


• Moreau envelope is  times the -Huber loss!


• Quadratic for , then linear


•  then 

f( ̂y, y) = | ̂y − y |

| ̂y | ≤ 1/2λ ̂y − sgn( ̂y)(1/2λ)

2λ 1/2λ

| ̂y | ≤ 1/2λ

λ → 0 fλ ≈ λ × ( ̂y)2



Matching the losses to example…
(not fully explained yet…)

/LADℓ1

/OLSℓ2

Huber!



𝔼fλ(⟨w, X⟩ + b, Y) ≤ 𝔼̂f(⟨w, X⟩ + b, Y) + λℛ2
n

Test error (envelope) Train error Rad. Complexity

For each point along the curve,


there is a corresponding value of 


such that intercept is Huber median.


(moreover such that for “localized ”,


below inequality is close


to equality…)

λ

ℱ



A bit more precisely…
• In this setting, “optimal generalization argument” is given by combining our 

bound with complexity of localized sets 

• I.e. we can show “localized Rademacher complexities” determine sharp 
bound in proportional asymptotics and other settings


• Localization: here means you apply the bound (for all ) over and over… λ

𝔼fλ(⟨w, X⟩ + b, Y) ≤ 𝔼̂f(⟨w, X⟩ + b, Y) + λℛn(ℱr)2

Test error (envelope) Train error Rad. Complexity

ℱ ℱsmall error ℱ



 


For convex ERM ( ) =  there is a dual upper bound on 
the training error for some localized ball  …


The statement and proof is closely related to “Convex Gaussian Minmax Theorem” 
(CGMT) and also predictions obtainable from Approximate Message Passing (AMP). 
(These existing frameworks tell us that Moreau envelopes/proximal operators are key.)

ŵ, b̂ arg min 𝔼̂f(⟨w, X⟩ + b, Y)
ℱr = {f ∈ ℱ : ∥f − f*∥L2

≤ r}

Saturation is an upper bound on train error
Generalization bound is a lower bound on training error.


• By “optimal generalization bound”, we mean it is saturated by ERM.

max
λ≥0 [𝔼fλ(⟨w, X⟩ + b, Y) − λℛn(ℱr(w))2] ≤ 𝔼̂f(⟨w, X⟩ + b, Y)
Test error (envelope) Train errorLocal Rad. Complexity



For reference. 
High-dimensional M-estimation 
<-> Moreau envelopes, 
proximal operators has a big 
literature… (e.g. [Stojnic ’12])

[…,Thrampoulidis-


Abbasi-Hassibi ’16, …]


CGMT

see e.g. […,Berthier-Montanari-Nyugen ’17] for analogous AMP theory

Our goal is to extend 
this to the Moreau 
envelope generalization 
theory…



A key special case: the theory for sqrt-
Lipschitz losses



Sqrt-Lipschitz Generalization Theory

• Bound simplifies dramatically if the loss is sqrt-Lipschitz (relaxation of smooth)


• Assume  is H-Lipschitz. EXERCISE: prove the below fact


• So


• Choosing  to balance terms yields

f

λ

λ
λ + H

𝔼f(⟨w, X⟩ + b, Y) ≤ 𝔼̂f(⟨w, X⟩ + b, Y) + λℛ2
n

𝔼f(⟨w, X⟩ + b, Y) ≤ 𝔼̂f(⟨w, X⟩ + b, Y) + Hℛn

𝔼f(⟨w, X⟩ + b, Y) ≤ (1 + H/λ)𝔼̂f(⟨w, X⟩ + b, Y) + (1 + λ/H)Hℛ2
n



“Easy” example: linear regression w/ squared loss

• Square loss = 1-sqrt Lipschitz (exercise: any H-smooth nonnegative loss is H-
sqrt Lipschitz), so 


• Optimal “optimistic rate” for squared loss regression [ZKSS ’24]


• Recovers benign overfitting a la [BLTT ’21], etc. (next slide)

𝔼(⟨w, X⟩ + b − Y)2 ≤ 𝔼̂(⟨w, X⟩ + b − Y)2 + ℛn



Example: OLS on  dataN(0,Id)
Localized bound (red) is close to saturated

Localization <->


intersection of  ball


with (P) ball 

ℓ2
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Example (benign overfitting)
(in general, can handle benign covariances as in [BLTT ’19])

• Completely 
overfit, but 
test error 
close to 
optimal (and 
generalization 
bound gets it)

n = 600 d/n = 20



Benign Overfitting Conditions

[Bartlett et al ’19, Tsigler-Bartlett ’20]: If ,  and:


Then  is consistent: .

∥w*∥ = 1 Σ = [Σ1 0
0 Σ2]

ŵ = arg min
𝕐=𝕏w

∥w∥ 𝔼(Y − ŵ ⋅ X)2 → min
w

𝔼(Y − w ⋅ X)2

Tr(Σ2
2)2

Tr(Σ2
2)

= ω(n)Tr(Σ2) = o(n)rank(Σ1) = o(n)

because we prove: ∥ŵ∥2 ≤ (1 + o(1))
σ2n

𝔼x∼N(0,Σ2)∥x∥2

𝔼(Y − ŵ ⋅ X)2 ≤ ℛ2
n ≤

∥ŵ∥2𝔼x∼N(0,Σ2)∥x∥2

n
≈ σ2

Bounding Rademacher w/ norm recovers this: (Performance of 


squared loss oracle)



Classification

• Analogue of squared loss for binary 
classification?


• Squared hinge loss  ! 

• “Huberization” if you optimize standard hinge 
loss in training


• Similar behavior if you start with logistic loss


• Key in our proof of benign overfitting results 
for classification (in fact, the same proof 
handles regression and classification….)

ℓ( ̂y, y) = max(0,1 − ̂yy)2

Huberized hinge loss


Figure 2, [Yang-Zou ’12]



Moreau theory key for sharp LAD analysis
• Old school generalization theory for LAD: by 

contraction principle, 
 . Can 

replace 2 by 1, but cannot shrink further.


• If we run unregularized LAD in above setting with 
dimension , it is consistent so 




• Moreau envelope theory can prove this, but old school 
bound only gives generalization gap of  
on smallest norm ball containing . Why? 


• Taking  focuses Moreau envelope bound 
on low-training error predictors. Old-school 
bound is hurt by large-training error predictor.


• broader theme: models with different training errors 
have different generalization gaps. “optimism”

𝔼 |Y − ⟨w, X⟩ | ≤ 𝔼̂ |Y − ⟨w, X⟩ | + 2ℛn

dJ → ∞
𝔼 |Y − ⟨ŵ, X⟩ | → 𝔼Z∼N(0,σ2) |Z | = σ 2/π ≈ 0.798σ

σ ≫ 0.798σ
ŵ

λ → 0

{w : ∥w∥2 ≤ B}{w : ∥w∥2 ≤ B, L̂(w) = 0}



“Hard” example: ReLU regression

• We saw that if you interpolate with a linear model, the ‘correct’ test loss is 
squared loss. (e.g. consistent under ‘benign overfitting’ covariance)


• What if you interpolate with a single ReLU neuron? 


• “Obvious generalization” of linear case: loss is … it’s wrong!


• Correct answer is discontinuous ! 😱  very different from 

σ(⟨w, x⟩ + b)

(σ( ̂y) − y)2

y = ϵ y = 0



Why discontinuous?

• Suppose  and . Then  so we already interpolate.


• But if  and , then  so if we want to change our 
prediction to interpolate, then we have to put in a lot of effort… ( )


• Note: loss is sqrt-Lipschitz but not twice-diferentiable (“smooth”)

̂y = − 100 y = 0 σ( ̂y) = y

̂y = − 100 y = 0.01 σ( ̂y) ≠ y
100.012



The ReLU case: food for thought

• This loss is a function of the preactivation  

• Not determined by model output  !


• Shows us that model architecture plays a key role in the loss


• But agnostic to regularization ( e.g.  vs  penalization)…


• Other settings? Only other solved case is phase retrieval model.

̂y

σ( ̂y)

ℓ1 ℓ2



(Phase retrieval)

• fit a model  to nonnegative labels Y


• consistent loss is squared loss 


• ERM is nonconvex, but we can analyze its generalization performance 
anyway


• (even though e.g. Convex Gaussian Minmax Theorem requires convexity…)


• can prove natural benign overfitting results in phase retrieval

x ↦ |⟨w, x⟩ + b |

( | ̂y | − y)2



Proof idea of main result

• Proved based on Gordon’s Theorem (gaussian minmax theorem) 

• cf “Gaussian Processes and Almost Spherical Sections of Convex Bodies” 

• View generalization as lower bound on stochastic process (training error).

𝔼fλ(⟨w, X⟩ + b, Y) ≤ 𝔼̂f(⟨w, X⟩ + b, Y) + λℛn(ℱ)2

Test error (envelope) Train error Rad. Complexity

𝔼fλ(⟨w, X⟩ + b, Y) − λℛn(ℱ)2 ≤ 𝔼̂f(⟨w, X⟩ + b, Y)



(assuming, b = 0, Y = pure noise model for simplicity)
Let F(w) = . Then𝔼fλ(⟨w, X⟩ + b, Y) − λℛn(𝒦)2

= max
w∈𝒦,u

inf
γ∈ℝ

[F(w) − 𝔼̂f(u, Y) + ⟨γ, u − Xw⟩]

≤ max
w∈𝒦,u

inf
γ∈ℝ

[F(w) − 𝔼̂f(u, Y) + ⟨γ, u⟩ − ∥γ∥2⟨G, Σ1/2w⟩ − ∥Σ1/2w∥2⟨H, γ⟩] (GMT!)

= max
w∈𝒦,u

inf
γ∈ℝ

[F(w) − 𝔼̂f(u, Y) + ⟨γ, u − ∥Σ1/2w∥2H⟩ − ∥γ∥2⟨G, Σ1/2w⟩]

= max
w∈𝒦,u,∥u−∥Σ1/2w∥2H∥2≤⟨G,Σ1/2w⟩

[F(w) − 𝔼̂f(u, Y)]

= max
w∈𝒦

[F(w) − min
r:∥r∥2≤⟨G,Σ1/2w⟩

𝔼̂f(∥Σ1/2w∥2H + r, Y)]

= max
w∈𝒦

[F(w) − min
r:∥r∥2≤⟨G,Σ1/2w⟩

[𝔼̂f(∥Σ1/2w∥2H + r, Y) + λr2 − λr2]]

max
w∈𝒦,u

[F(w) − 𝔼̂f(⟨X, w⟩, Y)]



= max
w∈𝒦

[F(w) − min
r:∥r∥2≤⟨G,Σ1/2w⟩

[𝔼̂f(∥Σ1/2w∥2H + r, Y) + λ∥r∥2 − λ∥r∥2]]

≤ max
w∈𝒦

[F(w) − min
r

[𝔼̂f(∥Σ1/2w∥2H + r, Y) + λ∥r∥2] + λ max
w

⟨G, Σ1/2w⟩2]]

≤ max
w∈𝒦

[F(w) − 𝔼̂fλ(∥Σ1/2w∥2H + r, Y) + λ max
w

⟨G, Σ1/2w⟩2]]

≈ 0 (by LLN)

max
w∈𝒦,u

[F(w) − 𝔼̂f(⟨X, w⟩, Y)] ≤ 0 so F is a valid lower bound


on training error.

Next slide: show this “Gaussian width”


equals Rademacher complexity ℛn



Gaussian Width is Rademacher Complexity of the Function Class

Expected Rademacher Complexity of ℱ := {x ↦ ⟨w, x⟩ : w ∈ 𝒦}

ℛn(ℱ) := 𝔼X1, …, Xn ∼ 𝒩(0,Σ)
σ ∼ Uni({±1}n)

sup
f∈ℱ

1
n

n

∑
i=1

σi f(Xi) .

= 𝔼X1, …, Xn ∼ 𝒩(0,Σ)
σ ∼ Uni({±1}n)

sup
w∈𝒦

1

n ⟨w,
1

n

n

∑
i=1

σiXi⟩ .

= 𝔼x ∼ 𝒩(0,Σ) sup
w∈𝒦

1

n
⟨w, x⟩ =

W(Σ1/2𝒦)

n

Rademacher complexity: how well can functions correlate with pure noise 
(random signs)? see e.g. [Bartlett-Mendelson ’02], [SSS-SBD ’14]



Closing thoughts

• When we learn there is often some overfitting/memorization. When there is overfitting, 
may want to consider that the model’s implicit/correct “test loss” may not be train…


• Interesting that overfitting can make model “care more” about outliers.


• Moreau -> /squared hinge loss more sensitive than /logistic/hinge


• Could be a good thing sometimes.


• Interesting that the “real objective” of model could be different from the training 
objective


• There is probably more to say…


• Thanks!

ℓ2 ℓ1


