(Unexpected Test) Losses from
Generalization Theory?




“The workshop will bring together applied researchers and theorists, with the
goal of understanding how each understands notions of generalization.”

What is generalization?



Different notions of generalization

Generalization: prediction on future examples which
you haven’t seen before (?)

Classical setting: additionally assume training data is
iid from test distribution & .

* “Generalization” <-> understanding overfitting O

O Vi
e <-> distortion between training loss and test loss .
OOD Generalization, interactive settings, dependent 0 — dr
samples, .... not strictly within scope of classical o i poits

generalization theory.

Nevertheless, very natural setting to understand
pattern-formation/recognition ability! Even most basic
case of a broader theory is worth understanding (and
has caused people concern).




Collaborators, etc.

* This talk is largely based on two recent joint works.

* “A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models”™
with Lijia Zhou, Danica Sutherland, Pragya Sur, and Nati Srebro

* “Uniform Convergence with Square-Root Lipschitz Loss” with Lijia Zhou, Zhen Dai, and Nati
Srebro
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* Also, it is related to lots of other interesting works and efforts.

 For example, it is related to words like “proportional asymptotics”, “CGMT” statistical physics
methods in high-dimensional statistics (e.g. AMP), “benign overfitting”, “implicit bias”, ...



Presentation vs papers

* The papers have the rigorous results.

 Nonasymptotic, appropriate for different noise
models, etc.

* But it could look a bit unfriendly...
* This talk won’t be that formal (relatively)

* e.g. drop error terms/low sample size &
dimension effects (even though they are not
complicated)

* simple examples
 deemphasize minor assumptions

* hopefully an enticement for papers...

Definition 2. Under the model assumptions (2), define a (possibly oblique) projection matrix () onto
the space orthogonal to wf, ..., w} and a mapping ¢ from R? (o R*+1 by

k
Q=1li- Zw?(wé‘)r& o(w) = ({w, Zwy), ..., (w, Bup), |52 Quw|2)*. (4)
.':1
We let £+ = Q7 EQ denote the covariance matrix of Q7z. We also define a low-dimensional
surrogate distribution D over R* 1 x R by
&~ N0, D), E€~Dg,  and  §=g(E,.., 3, &) (3)

This surrogate distribution compresses the “meaningful part” of 2 while maintaining the test loss,
as shown by our main result Theorem 1 (proved in Appendix D). Note that as a non-asymptotic
statement, the functions €, 5 and C'y only need hold for a specific choice of n and D.

Theorem 1. Suppose A € R satisfies that for any € (0, 1), there exists a continuous function
x5 : R¥YY = R such that with probability at least 1 — §/4 over independent draws (Z;, ;) from
the surrogate distribution D defined in (5), we have uniformly over all (i1, b) € ®RF "2 that

1 — . e e T -
. Y oAUEE)+b,5) > E_[A(EE) +5,§)] - e s(@,b). (6)
Ci=1

(,5)~

Further, assume that for any § € (0, 1), there exists a continuous function Cy : R* - 0, o] such
that with probability at least 1 — §/4 over z ~ N (0, %), uniformly over all w € R,

1:(2'?1}? _7,‘::0 'C_': (‘0 ('U.‘) . (7)

Then it holds with probability at least 1 — § that uniformly over all (w,b) & R we have

N 7 2
Ly (w.b) < Lp(w,b) +exs(d(w),b) + ACsw)” (8)

)
If we additionally assume that (6) holds uniformly for all A € R™, then (8) does as well.




Overview: two high-level phenomena

 Observe some interesting (to me) phenomena in very simple models
* Not intuitively obvious (IMO) but natural output of mathematical analysis

* Food for future thought: these high-level phenomena may occur in other
settings?



Phenomena 1: mismatch of training and test losses

» (Classical generalization story (e.g. Vapnik-Chervonenkis ’71):

test(f) < train(f) + complexity(f)
where test(f) = EZ(f(x), y) and train(f) = l 2 £(f(xW), y»)
i

 Seems natural because empirical mean concentrates about true mean?
* Joday’s story:

* Explain why we sometimes would have test loss differing from training loss!

» |.e. model seeks to emulate an “oracle” minimizing a different loss than £ .

* Naturally arises when we look at optimal generalization bounds.



Phenomena 2: “implicit bias” of overfitting, emergent losses

 Name borrowed from a parallel work of Ohad Shamir
* A new kind of “implicit bias” in learning:
* Previous work focuses on implicit regularization

* Choice of optimization method & model parameterization lead to a
preference in regularization, e.g. low £,-norm or low rank solutions.

* New phenomena: model capacity <-> implicit change in loss function
e |Important because typically, different losses to lead to different minimizers.
* | will give a very simple example to explain this point.

o Especially discover some new unexpected/emergent “sqgrt-lipschitz” losses.



An example to illustrate the idea

A made-up story:
e You: have some user data.

o Surprisingly, you want to make money off
the users.

e You want to know the income of each user
(e.g. to target ads), but you don’t know
what It Is.

 Train a model f to predict income Y based
of feature vector X.

« RMK: the story is just a pedagogical tool.
Don’t take it too seriously...
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The example, continued

* You collect a small subset of labeled examples (e.g. by asking
the users). For simplicity: assume they are iid.

Szmpled Inceome Distribution (Log Normal with Given Mean and Median)

 Now you want to train a model f to map X -> Y = income.

* Natural to pick f by “Empirical Risk Minimization”:

g

15 -

1 n
min — Y. — f(X.
, nz}\ — X))

0 100000 23000C 300000 400000

Income

 To maximize simplicity, | consider an unlucky setting where

X ~ N(0,]) independent of Y. i.e. features are actually
useless. and | fit a linear model.



Useless features lead to bad predictions...

(test set performance)

Linear Regression: True vs Predicted Income
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Trivia: Who is this?

* (by itself, not surprising or interesting)



Any interesting phenomena?

(interesting to me)

» | trained linear model f(x) = (w, x) + b with different levels of ridge
regularization and n = 200 examples.

» Since (for simplicity) X ~ N(0,l,,) independently of label Y, the only
predictive part of the model is the intercept b.

* Next slide: plot of b for different regularization levels.

 What will it look like?



Intercept vs regularization level

Intercept vs Regularization Strength (LAD Regressor)
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Intercept vs # of parameters (unregularizd)

a diferent experiment

Intercept vs Dimension (LAD Regressor)
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Intercept vs Regularization Strength (LAD Regressor )

Why interesting? (to me)
 Fach plot has two extreme sides.
* In “low capacity” case (e.g. high ridge penalty):
» Classical statistical theory tells us

b ~ median = arg mm — Z el
* But it turns out in high capacity case:
b~ mean = argmin— ) (y; = b)’ 17

n-

=1
* |.e. model seeks to emulate a different “oracle™ !

 Where did the square loss come from?



Why is it happening?

—_—
NATURAL GUESS: squared loss due to ridge penalty? ||w||, = Z Wi2
i

\

L

* This wouldn’t really explain the same phenomena happening as you vary j
parameters.

e It turns out, you could also get the same phenomena to happen with ¢ 1
(LASSO) regularization instead of ridge.

Actually, we will see: ¢, arises purely from geometry of overfitting.

E of

.

* More precise story:. overfitting transforms the LAD loss into the Huber and

ultimately the squared loss.

We will see this through more general results...



How general will we go?

* The focus of this talk/line of work is understanding Class of models
optimal generalization bounds.

with behavior X
 Common reality of mathematics: even if we think X is

true for a big class of models, we may only be able to
rigorously prove X for a small well-behaved subset.

* e.g. special solvable/integrable models in

“universality classes” in physics <@
e | will make somewhat strong assumptions so I can /
solve for what happens precisely.

Subclass of models
* |In particular, Gaussianity of data...

we can mathematically

solve with current knowledge
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oression with junk features (n = 300, d = 3000). In the junk features setting, as

predicted in section 6, the test error curve 1s essentially flat once the regularization 1s small enough
to fit the signal, and we get nearly optimal population risk as long as we do not over-regularize the
predictor. The test error curve can be expected to be more flat with increasing d. This phenomenon is
also consistent across different feature distributions and label generating processes. Our bound (19)
closely tracks the performance of ridge regression along the entire regularization path.




Formal generative setting

» Data points are X ~ N(0,2)

e Label Y is generated in an arbitrary way based on a low-

dimensional projection of X. X ~ N(0,X)
low-d
. le. Y=/, (v X),...,(v¥ X)) for a noise variable £ and l -
for k vectors v{k, e, vlzk . projection
PX ~ N(O,PXP)
* This is called a multi-index model in statistics. l arbitrary
 TODO: some trick to get rid of this assumption? Y

* Qur fit models are generally misspecified



(will be explained!!)

Definition 1. The Moreau envelope of f : R x R — R with parameter A € R
function fy : R x R — R given by

H1,y) = in flu,y) + Au — §)°.

Moreau envelope + generalization bound

1S defined as the

3)

 The minimizer is called the “proximal operator”. Standard objects in convex analysis.

» Then V(w, b) € & one can prove the following (one-sided) generalization bound VA > 0:

A\

(W, X) +b,Y) <Ef((w,X) +b,Y) + AR,

Test error (envelope) Train error Rad. Complexity

(w, b)
A
F

1 It
where (W, b) € F and £, = [E sup — Z e((w,X;) + b) fore ~ Uni{x1}"

! I
W,b =1



Example!

Moreau Envelope

Definition 1. The Moreau envelope of f : R x R — R with parameter A € R™ is defined as the
function f) : R x R — R given by

» Consider f(y,y) = |y — y| the LAD loss

» Solve for the proximal operator by setting derivative to zero (—1/22) /

X X (1/22)
» Minimizeris O for |y | < 1/24 and otherwise y — sgn(y)(1/24) /

/
/

* Moreau envelope is 24 times the 1/24-Huber Ioss!i\

 Quadratic for |y | < 1/24, then linear
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Matching the losses to example...
(not fully explained yet...)

£5/OLS

Intercept vs Regularization Strength (LAD Regressor)
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Intercept
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For each point along the curve,

there is a corresponding value of A

such that intercept is Huber median.

(moreover such that for “localized F”
below inequality Is close

to equality...)

f,((w, X) +b,Y) <

Test error (envelope)

A\

(W, X) +b,Y) + AR>

Train error Rad. Complexity




A bit more precisely...

* |n this setting, “optimal generalization argument” Is given by combining our
bound with complexity of /localized sets

* |.e. we can show “localized Rademacher complexities” determine sharp
bound in proportional asymptotics and other settings

 Localization: here means you apply the bound (for all A) over and over...

f((w. X) + b,Y) S Ef(w.X) +b,Y) + AR (F,)?

Test error (envelope) Train error Rad. Complexity

o SO




Saturation is an upper bound on train error

Generalization bound is a lower bound on training error.

By “optimal generalization bound”, we mean It is saturated by ERM.

max |Ef((w,X) + b, ¥) = AZ,(F )| < E (. X) + 5. )

Test error (envelope) Local Rad. Complexity Train error

For convex ERM (1, b) = arg min A—f((w X) +b,Y ) there is a dual upper bound on
the training error for some localized ball # . = {f € F : ||f = f*[[, < r} ..

The statement and proof is closely related to “Convex Gaussian Minmax Theorem”
(CGMT) and also predictions obtainable from Approximate Message Passing (AMP).
(These existing frameworks tell us that Moreau envelopes/proximal operators are key.)



Convex Analysis: For a convex function f : R™ — R, we let 0 f(x) denote the subdifferential of f at x and
f*(y) = sup, y'x — f(x) its Fenchel conjugate. The Moreau envelope function of f at x with parameter

T is defined by
For reference. r) o min Ll 1
- 5 . m o er (x;7) := min —||x — v||53 + f(V).
High-dimensional M-estimation ! v
Sequence of problem instances: Formally, our result applies on a sequence of problem instances
<-> Moreau envelopes! {x0,A,z,L, f,m},ecn indexed by n such that the properties listed above hold for all members of the

prOXi mal ope rato rs ha S a big sequence and for all n € N. (We do not write out the subscripts n for arguments of the sequence to not
- _ g overload notation). Every such sequence generates a sequence {y, X },en Where y := Ax, + z, and,
literature... (e.g. [Stojnic ’12])

X = argm)in Ly — Ax)+ A f(x). (2)

Assumption 1 (Summary functionals L and F'). We say that Assumption 1 holds if:

Our gOaI IS tO eXtend (a) ForallcSEIRand'r>O, there exist continuous functions L : R X Rsg > Rand F : R xRy - R
this to the Moreau et
envelope generalization

'th eo ry (b) At least one of the following holds. There exists constant C > 0 such that % < C with probability
o approaching 1 (w.p.a.1), or, Supy,cgm SUPgear(v) |I8ll2 < 0o forallm € N.

'rln {er (cg +2z;7) — L(2z)} LBy L(c,T) and le {ef (ch +x0;7) — f(x0)} P, F(c,7),

Theorem 3.1 (Master Theorem). Let X be a minimizer of the Generalized M-estimator in (2) for fixed
A > 0. Further let Assumptions 1 and 2 hold. If the following convex-concave minimax scalar optimization

B, fr_g)_mh af? /\.F(aﬁ’o&). . ..., Thrampoulidis-

l 80 Dlestg Bymn) = =57 +0- L (a’ 3 2 o7

Th  Th

has a unique minimizer o, then, it holds in probability that

1

lim —[|% — xo3 = o2. CGMT

n—oc N,

see e.g. [...,Berthier-Montanari-Nyugen ’17] for analogous AMP theory

Abbasi-Hassibi ’16, ...



A key special case: the theory for sgrt-
Lipschitz losses



Sqrt-Lipschitz Generalization Theory

 Bound simplifies dramatically if the loss is sqrt-Lipschitz (relaxation of smooth)

o Assume \/]_C Is H-Lipschitz. EXERCISE: prove the below fact

Proposition 1. A function f : R — R is non-negative and \/ H-square-root-Lipschitz if and only if
forany x € R and A > 0, it holds that

(@) > s f(z) 35
+So ) .
Tl f((w, X) +b,Y) <Ef(w,X) +b,Y) + AR;

A\

f((w, X) + b,Y) < (1 4+ HIDEf((w, X) +b,Y) + (1 + A/ H)HZ;,

e Choosing A to balance terms yields

VEA(w,X) +b,Y) <A/Ef((w,X)+b,Y) +\/HZR,




“Easy” example: linear regression w/ squared loss

o Square loss = 1-sqgrt Lipschitz (exercise: any H-smooth nonnegative loss is H-
sqgrt Lipschitz), so

VEW, XY +b=Y)? <AJE(W,X)+b-Y) + %,

* Optimal “optimistic rate” for squared loss regression [ZKSS ’24]

* Recovers benign overfitting a la [BLTT '21], etc. (next slide)



Example: OLS on N(0,/,) data

Localized bound (red) is close to saturated

| ocalization <->

intersection of £, ball

with L,(P) bal



Example (benign overfitting)

(in general, can handle benign covariances as in [BLTT ’19])
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Benign Overfitting Conditions

2, 0
[Bartlett et al ‘19, Tsigler-Bartlett '20]: If [|[w*|| = 1, 2 = [ ! ] and:

0 2,
Tr(Z3)*
rank(2,) = o(n) Tr(X,) = o(n) = w(n)
Tr(25
Then W = arg min ||w|| is consistent: E(Y — W - X)* - min E(Y — w - X)*.
Y=Xw W
Bounding Rademacher w/ norm recovers this: (Performance of
(Y= - X)2 < B2 < Il _x~N(O,Ez)Hx”2 o 2 squared loss oracle)
- n - o°n

because we prove: ||W||* < (1 + o(1))

—x~N(0,%,) [ x]]2




Classification

(a) (b)

&= 0.01

e Analogue of squared loss for binary 1] N
classification?

Hub
e
-
7

 Squared hinge loss £(y, y) = max(0,1 — yy)2 !

(d]

» “Huberization” if you optimize standard hinge 7
loss in training 1\

:
3 8

e Similar behavior if you start with logistic loss .|

* Key Iin our proof of benign overfitting results | ,
for classification (in fact, the same proof Huberized hinge loss
handles regression and classification....)

Figure 2, [Yang-Zou ’'12]



Moreau theory key for sharp LAD analysis

* Old school generalization theory for LAD: by
contraction principle,

| Y-wW,X)| <E|Y—W,X)| +2% . Can
replace 2 by 1, but cannot shrink further.

 |f we run unregularized LAD in above setting with
dimension d; — oo, it is consistent so

Y =W, X) | = Ezonvoor) | Z] = 02/x = 0.7980

* Moreau envelope theory can prove this, but old school
bound only gives generalization gap of o > (.798¢
on smallest norm ball containing w. Why?

« Taking 4 — (O focuses Moreau envelope bound
on low-training error predictors. Old-school
bound is hurt by large-training error predictor.

E.4 Sharpness of Improved Lipschitz Contraction

In this section, we show that the Lipschitz contraction bound (11) for 1-Lipschitz loss functions f,

(1—0(1)L;(w) < Ls(w) + m

n

has sharp constants in the case of the Ly loss f(4,y) := |y — g|. This shows that the only way
o tighten the bound further is to consider one with a different functional form (e.g. the Morecau
envelope bound with the Huber test loss). In particular, the Moredu envelope version of the bound is
significantly more useful when looking at interpolators.

Data Distribution. We will show tightness in the setting of the junk features model. Let’s consider

x~N(0,%), y~N(O, 0'2)

where the response y is independent of the covariate = and the covariance X i1s given by

10
v — .
2<lo 31

b\
-

A

* broader theme: models with different training errors {W : HWH2 < B}{ w: |lwll, < B i(w) —0)
. 2 N ° —

have different generalization gaps. “optimism”



“Hard” example: RelLU regression

 We saw that if you interpolate with a linear model, the ‘correct’ test loss is
squared loss. (e.g. consistent under ‘benign overfitting’ covariance)

» What if you interpolate with a single ReLU neuron? o({w, x) + b)
. “Obvious generalization” of linear case: loss is (6(}) — y)*... it’s wrong!

» Correct answer is discontinuous ! § y = € very different from y = 0

Our analysis will show that the consistent loss for benign overfitting with ReLLU regression 1s

o _[@—y? if y>0



Why discontinuous?

Our analysis will show that the consistent loss for benign overfitting with ReLLU regression 1s

o [@—y? if y>0

e Suppose y = — 100 and y = 0. Then o(y) = y so we already interpolate.

e Butify=—100andy = 0.01, then 6(y) # y so if we want to change our
orediction to interpolate, then we have to put in a lot of effort... (100.017)

* Note: loss is sqrt-Lipschitz but not twice-diferentiable (“smooth”)



The RelLU case: food for thought

Our analysis will show that the consistent loss for benign overfitting with ReLLU regression 1s

o J@—y? if y>0

* This loss is a function of the preactivation y

 Not determined by model output (V) !

 Shows us that model architecture plays a key role in the loss

» But agnostic to regularization ( e.g. £’y vs £, penalization)...

* Other settings? Only other solved case is phase retrieval model.



(Phase retrieval)

» fita model x — | (w, x) + b| to nonnegative labels Y

» consistent loss is squared loss (| V| — y)2

 ERM is nonconvex, but we can analyze its generalization performance
anyway

e (even though e.g. Convex Gaussian Minmax Theorem requires convexity...)

e can prove natural benign overfitting results in phase retrieval



Proof idea of main result

£ (W, X) 4+ b,Y) <EAW,X)+b,Y) + AR (F)?

Test error (envelope) Train error Rad. Complexity

* Proved based on Gordon’s Theorem (gaussian minmax theorem)
o cf “Gaussian Processes and Almost Spherical Sections of Convex Bodies”

* View generalization as lower bound on stochastic process (training error).

A\

f((w, X) +b,Y) = AR, (F)* < Ef(w, X) +b,Y)




(assuming, b = 0, Y = pure noise model for simplicity)

Let F(w) = Ef,((w,X) + b,Y) — A% (%) Then
max [F(w) — EA(X,w), Y)]

WEX ,u

= max inf [F(w) — Ef(u,Y) + (v, u — Xw)]
weX uyeR

< max inf [F(w) - Ef(u, Y) + (r, u) — llyll,{G, 2 w) — IZ2w||,(H, v)] (GMT!)
WEFX U yE

= max inf [F(w) — Ef(u, Y) + (y,u — [IZ"w|,H) — |I7]l,{G, Z"*w)]
weX . u yeR

= max [F(w) — Ef(u, Y)]
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=max[F(w)—  min _ [EA|IZ"?w|,H +r,Y) + A||r]|> = Al|7]|1*]]
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< max[F(w) — A-f/l(HZl/szzH +r,Y) + Amax{G, Z"*w)?]]
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Next slide: show this “Gaussian width”

~ 0 (by LLN)

equals Rademacher complexity £,

max [F(w) — Ef((X,w),¥)] <0 so F is a valid lower bound

WEX U

on training error.



Gaussian Width is Rademacher Complexity of the Function Class

Rademacher complexity: how well can functions correlate with pure noise
(random signs)? see e.g. [Bartlett-Mendelson '02], [SSS-SBD ’14]

Expected Rademacher Complexity of # = {x —» (w,x) : w € K}

1 n
RAF) = Ex,,_.x,~ 403 | sup | = D, 6f(X)
o~ Uni({x1}) | f€F [

1 1 <«
Xy s X, ~ H(0,Z) | SUP W, Z X,
o ~ Uni({x1}n) | w€ZX \/E \/E i=1

| WE2 %)
—x ~ N (0,X) SUp <W9 X> —

wEeEX \/Z - \/E




Closing thoughts

 When we learn there is often some overfitting/memorization. When there is overfitting,
may want to consider that the model’s implicit/correct “test loss” may not be train...

* |Interesting that overfitting can make model “care more” about outliers.

» Moreau -> ¢5/squared hinge loss more sensitive than ¢;/logistic/hinge

* Could be a good thing sometimes.

* |nteresting that the “real objective” of model could be different from the training
objective

* There is probably more to say...

e Thanks!



