
AI Safety: Robustness, memorization,
and uncertainty quantification.

Tatsunori Hashimoto

Many safety problems remain in LLM deployment

1. Robustness under complex,
varying user inputs

2. Privacy and copyright
concerns on data usage

3. Hallucinations that
confidently assert falsehoods

The problems are new, the ideas and methods less so

Robustness

Privacy

Hallucinations

Input perturbations
Distributional robustness

Differential Privacy
Membership Inference

Uncertainty Quantification
Scoring Rules

Part 1: Robustness

Are LMs more uniquely robust?
What are their robustness failures?

Part 1: Robustness Part 2: Privacy/memorization Part 3: Uncertainty

Distribution shifts and robustness – a constant issue

Model capabilities have advanced, but so have robustness issues

Generalizing to a held-out set Generalizing to a new domain Generalizing to arbitrary user inputs

Late 2010s
(structured robustness)

2020s
(open ended generalization)

2000s
 (generalization)

Training data

Test data

Trivia Q&A

Jeopardy Q&A

Trivia Q&A

New trivia questions

Many Q&A tasks

Any user question

LLMs today – sometimes remarkably bad

[Roose 2023, New York Times]

Generalizing to new distributions

Unpredictable sensitivity to inputs

Models fail when you restructure prompts

For ChatGPT (3.5):

What is 7 + 8? 15

But also..

7 + 8 = 15, True or False? False

Major problems for LLMs
• Does the LM know 7+8? (understanding)
• Can we rely on LLMs to do arithmetic? (engineering)

Connections to the past: consistency and robustness
Similar to classic adversarial examples and prompt consistency

.. But open ended nature of LLMs enables more complex transformations

What is 7 + 8? 7+8=15, True or False?

15 True

x

y

Connections to ongoing debates:
Why is G-V consistency relevant? (and why have there been many papers on this?)

Improving LMs
Via self-feedback / consistency

(Constitutional AI, Self-improvement,
Self-consistency, etc).

Search and inference-time
scaling

(Brown 2024, Snell 2024, Yao 2024)

One work: GV consistency
If a generator performs a task, the discriminator should agree with it

[Li et al, ICLR 2024]

Arithmetic

GD consistency rates (accuracy): ChatGPT (3.5) 67.7 , GPT4 75.6 , Alpaca30B 53.9

QA

GD consistency rates (accuracy): ChatGPT (3.5) 89.6, GPT4 95.3, Alpaca30B 79.9

Consistency overall

GD consistency is an open problem for many models

Can GD consistency be improved?
Our approach: filter and fine-tune

• Connections to the past: co-training / self-training
• Requires no labeled data
• Straightforward to run on open models (Alpaca 30B)

Often improves both the generator and discriminator

Generator: major gains on 3 tasks (priority, plan
arith, harmful)
Discriminator: small, but consistent gains.

16

Distributional robustness advances from LLMs

Dramatic improvements to structured
robustness in the last 3 years

More ro
bust

[Awadalla et al 2022]

Significant improvements to robustness
from few- and zero- shot models.

What about among few-shot models?

In-domain Q&A accuracy
O

ut
-o

f-d
om

ai
n

 a
cc

ur
ac

y

A meta-analysis approach to understanding capabilities
Our approach:

A meta analysis of LMs and benchmarks to understand capabilities and generalization

Almost a
hundred
models

Dozens of benchmarks

Ruan, Maddison, and Hashimoto 2024

A low dim ‘capability space’ captures LM perf variation
Observation 1: Only a few principal components explain most LM perf variation

The PCs scale predictably with compute
Observation 2: Each PC is tightly and linearly correlated with training compute

Implications – existing benchmarks scale predictably

Simple model explaining the data:
• LMs share a small number of base capabilities

• Most benchmarks are (log linear) functions of these base capabilities
• Model families vary in how compute-efficiently they obtain each capability

What are some implications of these observations?

1. Like for non-LLM models – models generalize in just a few predictable ways.

2. A lot of the generalization comes from scale (and possibly data)

Predictability of LM capabilities
Do models generalize to ‘uncommon’ or ‘emergent’ tasks in predictable ways?

Prediction of LM performance on ‘emergent’ tasks (Wei et al 2021) is generally pretty
accurate: performance on ‘basic’ benchmarks predicts generalization to others

Robustness and LLMs

What’s new: far better cross-task and within-task generalization from scale

What’s not really new:
• Input sensitivity (and resulting adversarial jailbreak implications)

• Use of co-training / self-training style consistency tricks for self-supervision

• Distributional generalization is still very predictable (and limited beyond scale & data)

Part 2: Privacy and memorization

Language models learn facts during pretraining
is there a downside to that?

Part 1: Robustness Part 2: Privacy/memorization Part 3: Uncertainty

LLMs ability to learn facts from pretraining can be a problem

Unintentional benchmark contamination

Private data / copyrighted data

Privacy protection is a major concern
There are hard tradeoffs for data-collection in tasks like dialogue generation

10 billion conversations from a dating app fed into a chatbot
Predictably – leaked intimate information directly to the public

This line of thinking has already led to real-world harms

Public data (low quality, large quantity) Annotator-driven data (high quality, costly)

Private, user data (high quality, large quantity ?)

Memorization from pre-training is also an issue

Regulation

Memorization and privacy during pre-training have major implications

Copyright

Large models pose a challenge for privacy

Memorizing data leads to a range of copyright risks..

Privacy tradeoffs may be hard to avoid
Performance of large NLP models relate closely to memorization

[Carlini et al 2018]

Gold standard – differential privacy (DP)
Differential privacy: a formal privacy guarantee for a randomized algorithm

This is the gold standard for statistics (used in the 2020 census), but hard to achieve.

This gap is 𝜖, the privacy level

[from Hsu 14]

Large models pose a challenge for DP
Early attempts to apply DP to large neural models in NLP (via DPSGD) have often failed.

Example: Kerrigan et al – trained language generation models on reddit data

Input: “Bob lives close to the..”
 Non-private outputs: “station and we only have two miles of travel left to go”
 Private output (𝜖 = 100): “along supply am certain like alone before decent exceeding”

Why did things fail? (The dimensionality hypothesis)
1. Large language models have billions of parameters. That is a lot of things to privatize

2. Theory says differential privacy performance should degrade with dimension 𝑑/𝑛
3. Most (if not all) successful DP methods relied on low-dimensional statistics.

Differential privacy with large language models

Training large language models from scratch with DP

Open problem – large model size poses statistical + computational issues

Using a public language model to build a private downstream model

Public data Large LM

Private data

Differential privacy

This works (well)!

[Li+ 2021]

Surprisingly, bigger models are better private learners
DP-SGD beats nonprivate baselines + heuristic privacy notions

Non-private
 baseline

Heuristic
Privacy method

[Li+ 2021]

The challenges turn out to be systems related
Is the problem solved? Not quite.

Subtlety: Differential privacy (via DP-SGD) is extremely memory intensive

‘medium’ model
with 300 million parameters

‘large’ model
with 700 million parameters

Non-private 34 examples 10 examples

Private 6 examples 0 examples

How many examples can we process in a Titan RTX GPU?

Breaking the compute bottleneck

Autodiff libraries (e.g. torch, tensorflow) can very efficiently compute gradient sums

Unfortunately, DP-SGD cannot be written as a gradient sum.

This is memory intensive: we must look at gradients individually to clip them

Key observation: compute the scaling (max(1, 𝑣)) for cheap, then do a weighted sum

/
!

∇𝑓(𝑥!)

∑! clip ∇𝑓 𝑥! + noise	 where clip 𝑣 ≔ "
#$%(',))

Breaking the memory barrier for DP-SGD
Putting it all together: nearly nonprivate levels of memory consumption

(caveat: implementation dependent, extra backpropagation pass)

The payoff: usable, private NLP models

Properly tuned, large language models beat state-of-the art in private NLP

Carefully engineered
specialized
optimizer, SoTA 6/21

Applying basic DP-SGD

Large models + ‘signal-to-noise’ + ghost clipping = simple, provable privacy.

(these numbers are roughly non-private SoTA ~2018)

DP and LLMs – an interesting future?

How do we balance privacy for fine-tuning vs costs in pre-training?

Directions: training on ‘permissive’ data, using datastores / retrieval

Understanding the surprising effectiveness of DP-SGD finetuning for large models

Bounds that depend on ‘effective’
dimensionality of gradients

Limitation: verbatim memorization and fair use
Fair use is more than just avoiding copying

[Henderson+ 2023]

What is in the training data of a LLM?

Language models derive their strength from massive, lightly-curated pretraining data

.. But maybe your
test set is in here?

Lots of public discourse on contamination..

Some circumstantial evidence toward contamination – but no proof or audits

Lots of methods for detecting membership – mostly heuristic

Min-k-prob: is the minimum ‘too likely’?Did ChatGPT cheat on your test:
Ask LLMs to generate the first example

Can we provably detect (some) contamination?

Setup:

Given a test set and access to log-probabilities from a language model

Return a statistical test for contamination with type-I error rate at most 𝛼
1. The null hypothesis is that the test set and model are independent r.v.s
2. The error guarantee should hold w.r.t draws of the datasets

Goal: provide a provable (false positive) guarantee
for detecting test set contamination.

Our approach: exploit the exchangeability of datasets

Starting observation: most test sets are exchangeable.

Language model preference for ‘canonical’ orderings must come from contamination

Key idea:

[Oren+ 2024]

Our approach: exploit the exchangeability of datasets

Language model preference for ‘canonical’ orderings must come from contamination

Key idea:

[Oren+ 2024]

This leads to a simple test for contamination

Shuffle and compute log probs

Gives exact p-values

[Oren+ 2024]

Result #1 – detection in known settings
Can we detect known contamination?
 We pretrained a 1.4B param, 20B token LM w/ known contamination

100% detection rate on ≥ 10 duplication count datasets
[Oren+ 2024]

Result #2 – contamination in the wild

• No evidence of contamination (except ARC+Mistral)
• MMLU tests consistent with Touvron et al’s contamination test

[Oren+ 2024]

Privacy and memorization

What’s new: pretraining – both enabling DP (finetuning) and new privacy threats

What’s not really new:
• The desire and need for precise guarantees (DP) in privacy type settings.

• Costs of privacy – both computationally and in performance

• Difficulty of membership inference, and the basic primitives (randomized canaries)

Part 3: uncertainty quantification

Language models confidently assert false facts
can we fix that?

Part 1: Robustness Part 2: Privacy/memorization Part 3: Uncertainty

What LLMs know (and don’t know) is a core open problem

LLMs are remarkably good at many things – even closed-book QA
.. But they aggressively make things up for things they don’t know

51

What can we do about hallucinations?

We don’t necessarily know everything in the world

.. but we generally know how to back off and communicate uncertainty

Are there any strictly proper, bounded
scoring rules?

I don’t know anything about scoring rules.

Broader context: uncertainty quantification
Uncertainty quantification in general is a rich area

Conformal prediction

Multicalibration

Challenge: Bridging uncertainty estimation and LLMs

Language can carry rich notions of uncertainty: explicitly, via hedges

And implicitly via entailments and pragmatics

“It’s going to rain tomorrow”

“It’s going to a lot rain tomorrow”

“It’s going to drizzle tomorrow”

“It’ll pour tomorrow”

[Zhou, Jurfasky, Hashimoto 2023]

[Many exciting works on LMs + uncertainty – see Mielke et al 2022, Lin et al 2022 (and recent works at ACL/ICML!)]

One example: conformal prediction for factuality
Can conformal prediction help with hallucination?

Yes, if we bridge correctness and uncertainty quantification

(Red shows falsehoods,
blue is correct)

[Mohri and Hashimoto 2024]

Algorithmic instantiation: ‘back off’ claims until correct
The algorithm:
1. Construct a sequence of “less specific” 𝑦!
2. Score each 𝑦! via a confidence measure 𝑆(𝑦!)
3. Select a cutoff 𝜏	for 𝑆(𝑦!) using conformal prediction such that

𝑃 𝑦∗ ∈ 𝐸 𝑦, ≥ 1 − 𝛼

At inference time return 𝑦" -- this has a 1 − 𝛼 correctness guarantee

[Mohri and Hashimoto 2024]

Does it work?

Setup – split data into half, calibrate on first half, measure marginal correctness on other half [Mohri and Hashimoto 2024]

Factuality on FactScore from 0% to 80%

Ordinal: remove the last claims
GPT-4: ask the LM for confidence
Frequency: sample + count claim freq.
Oracle: remove non-factual first

Note: hand-annotated first 50 samples +
used our own claim splits for data quality

[Mohri and Hashimoto 2024]

Random FactScore examples

[Mohri and Hashimoto 2024]

Broader connections between conformal prediction and LLMs

Adaptively weaken guarantees,
optimize the scoring function Robust to multiple environments

Other directions: training LMs to express numerical uncertainty
Linguistic uncertainty is a powerful tool to deal with lack of knowledge

How can we optimize language models to provide useful
or calibrated uncertainty in language?

Decision-based losses naturally lead to calibration
Simple but effective trick – optimize LMs against proper scoring rules (e.g. log-loss) for a

downstream decision task (e.g. QA on LLM outputs)

[Band+ 2024]

Uncertainty and LLMs

What’s new: language as an output space – high dimensional, and ‘in-band’ uncertainty

What’s not really new:
• Tools and challenges – conformal / multicalibration

• Impossibility results - individual coverage, or coverage under dist. shifts

• Usefulness of thinking about the interactions between uncertainty and decisions

Putting it together

The classic trustworthiness problems really remain problems
• Robustness and generalization
• Privacy
• Uncertainty quantification

The tools and observations from the past carry over, though sometimes with twists
• Data augmentation, difficulty of distributional generalization
• Surprising effectiveness of DP, membership inference
• Conformal inference, proper scoring rules.

