
How do transformers work?

Daniel Hsu (Columbia) and Ankur Moitra (MIT)

Simons Bootcamp, September 4th



PLAN

� Some history and background

� Introduce the mechanics of transformers

� Musings on how to think about them conceptually
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LANGUAGE MODELS
First attempt to model natural language by Shannon ca. 1950

How well do humans
predict the next word?

How well do n-gram models
predict the next word?vs

Definition: An n-gram model is

The quick brown fox jumped over the lazy 
dog

Conditional probability of next word, given previous two words 
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LANGUAGE MODELS
Are n-grams a good generative model for natural text? 

Generates gibberish or uninteresting sentences

For (say) n = 4, can’t estimate the V5 parameters 

Absolutely not!

Many workarounds, e.g.

Clustering words, e.g. {big, large, …}
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ENTER DEEP LEARNING
Depth and overparameterization makes everything better

it is a truth

ℎ! ℎ" ℎ# ℎ$ ℎ%

…

…

Process tokens sequentially, accumulate information as you go

feed forward 
neural network
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ENTER DEEP LEARNING

But recurrent neural networks are difficult to train

Conceptually, we know language has long-range dependencies

e.g. I grew up in France, where I spent 
most of my summers. I speak fluent 

______

In many models, past information gets overshadowed by what’s
more recent



TRANSFORMERS
In 2017, a major breakthrough enabling LLMs
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TRANSFORMERS
Transforms sequence of N tokens to sequence of N vectors
by composing several sequence-to-sequence maps

it is a truth …

ℎ"" ℎ#" ℎ$" ℎ%" …

ℎ"# ℎ## ℎ$# ℎ%# …

…

Layer 1

Layer 2

Layer 3

…

What computation is done in each layer?
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TRANSFORMERS
Our exposition will follow

How do transformers work, through pseudocode?

Also Jay Alammar’s excellent Illustrated Transformer



ATTENTION

Where should you look in a sentence for purposes of  translation?



ATTENTION

Where should you look in a sentence for purposes of  translation?

e.g. need to
decide if “it”
is masculine
or feminine
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ASIDE: WORD EMBEDDINGS

Many ways to find a mapping that captures semantic meaning

word vector
E.g. can use it to solve analogies like 

USA:burger::Canada:____
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How is attention implemented?

word embedding
query 
matrix query vector=

word embedding
key 

matrix key vector=

word embedding
value 
matrix value vector=
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SINGLE QUERY ATTENTION

Given a query q, and keys and values for previous words compute

where

weighted average of 
other values

weights are given 
by softmax

Can look far back for the relevant information

Similarity is computed in a natural concept space
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WHAT IS ATTENTION TRYING TO DO?
Consider the sentence

The expensive blue car was totaled

What does the car look like?



MULTI-HEADED ATTENTION

word embedding

query 
matrix

query vector
=query 

matrixquery 
matrix

query vector

query vector

similarly for keys and values



COMBINING THE INFORMATION

computation 
from head #1

computation 
from head #2

computation 
from head #3

linear transformation
to aggregate



MULTI-HEADED ATTENTION

Credit: Jay Alammar’s blog



WHY MULTIPLE HEADS?
As a motivating example, consider

John and Doug planned to split the 
bill but Doug didn’t have enough 
money in his wallet. So he went to 

the bank before they met up.

Who does he refer to?
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WHY MULTIPLE HEADS?
Need different sorts of information, e.g.

Who are the people?

Which one doesn’t have money?

Natural approach is to have multiple channels for the flow of
Information, e.g. to keep track of different attributes



ITERATING

Credit: Jay Alammar’s blog



ITERATING

Also intersperse normalization 

Credit: Jay Alammar’s blog
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OTHER CONSIDERATIONS
Architecture is designed so that computation is highly
parallelizable

But need to keep track of positional information

input vectors = word embeddings + positional embeddings   

lookup table of fixed
vectors to map each

position to

Credit: Jay Alammar’s blog
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OTHER CONSIDERATIONS
Transformers are made up of an encoder and decoder

In order to use decoder for generation, need masking

attention computation only depends on earlier contexts

In particular, set all inner products with future contexts to -∞ 
before computing softmax
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The Chomsky Hierarchy was an attempt to formalize the syntax
of natural language

But natural language, especially corner-cases, can be quite
complex
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THE VIEW FROM LINGUISTICS
Recognizing all of natural language can be quite complex

Theorem: Swiss German is not context free

But these are often contrived examples, don’t arise often,
don’t need to solve them to get good completions
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REVERSE ENGINEERING CIRCUITS FROM GPT

Mary and John went to a bar. John 
handed a drink to _____

What is the next word?

Copy this word, only if this no other word gets copied there

Used tools from causality to identify a circuit computing this in GPT2

[Wang, Variengien, Conmy, Shlegeris, Steinhardt] considered
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WINOGRAD SCHEMAS
For natural sentences, what kinds of logical circuits are needed?

I tried to put the trophy in the 
suitcase but it was too big

What does it refer to?

I tried to put the trophy in the 
suitcase but it was too small

How about now?
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“lower layers recognize simple features like edges, 
higher layers recognize composite features that
are the building blocks of objects”

Credit: Ermon group
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PROSPECTS

What about for transformers?

Too general an answer can lead us down a rabbit hole, e.g.

“deep neural networks can approximate any
continuous function arbitrarily well”

Need theories rooted in the structure of data (language),
corroborated experimentally (interpretability)

For deep learning, we have ansatzes about how we think it
processes information



Thanks! Any Questions?


