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© Overview
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Graph Laplacian
G = (V, E,w): (undirected) graph with edge weights w € R¥
Graph Laplacian Matrix

Lqg = Z we(ei - ej)(ei - ej)T

e={i,j}€E
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Graph Laplacian
G = (V, E,w): (undirected) graph with edge weights w € R¥
Graph Laplacian Matrix

LG = Z we(ei - ej)(ez- - ej)T
e={i,j}€E
Quadratic form

Qo(z) =z Loz = Z we(w; — 7)° / \
e={ij}€E \ /

Energy of G (as a circuit) with potential =
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Graph Laplacian
G = (V, E,w): (undirected) graph with edge weights w € R?

Quadratic form

Qe(z) = Loz = Z we(T; — ;) / \

e={i,j}eE

Cut function
For a vertex set X C V,

ka(X) = > we = Qa(1x).

{i.g}eE:{i,5}nX[=1
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Spectral Graph Sparsification speiman, reng 2011

edge subset B C B - i edge weight can be modified
A weighted subgraph G = (V, E , @) of G is an e-spectral sparsifier
A
= (1-¢)Qc(@) < Qsx) < (1+6)Qc(z)  (Yx eR')

G

e Spectral sparsifier = all cuts are preserved (i.e., cut sparsifier)
[ O(n/&‘z) edgeS iS SUﬁ:iCient [Batson, Spielman, Srivastava 2014; Y. T. Lee, Sun 2015]
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Hypergraph Cut

H = (V,&,w): hypergraph with edge weight w € RE

Hypergraph cut function
For vertex subset X C V, (*\

kp(X) = Z We

ee&:0<lenX|<|e|

Hypergraph cut function is NOT a quadratic form in the usual sense!
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Spectral Hypergraph Sparsification isome, voshisa 201

Energy function

Qu(x) = Zwe Izr;%i;(x, — xj)2

eef

In particular, Qr(1x) = kg (X) for X C V.
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Spectral Hypergraph Sparsification isome, voshisa 201

Energy function

xT) = w, max(z; — ;)
Qu(s) = 3 wemex(e: = )
In particular, Qr(1x) = kg (X) for X C V.

A weighted subhypergraph Hof Hisan e-spectral sparsifier

< (1-9)Qu(@) < Q@) < (1+6)Qu() (Ve eRY)

spectral sparsifier = cut sparsifier [kogan, krauthgamer 2015]
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Bounds for offline hypergraph sparsification

reference cut SpeCtral

Kogan, Krauthgamer (2015) O(@)

Soma, Yoshida (2019) O(Z—S logn)
Bansal, Svensson, Trevisan (2019) O(”g—’;?’ log n)
Chen, Khanna, Nagda (2020a) O(Eﬂ2 logn)

Kapralov, Krauthgamer, Tardos, Yoshida (2021) O(%)
Kapralov, Krauthgamer, Tardos, Yoshida (2022) O(& log? n)

J. R. Lee (2023)

Jambulapati, Liu, Sidford (2023) O(Zlognlogr)

n = |V|, r = maxcecg |e]
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Drawbacks of offline sparsification algorithms

To store the input hypergraph, we may need exponential space in n

But, the output sparsifier has only O(¢2nlognlogr) hyperedges,
which is nearly linear!

Q. Can we construct a spectral sparsifier of a hypergraph
using only polynomial space?
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Online hypergraph spectral sparsification

e Hyperedges and weights (e, w;), (€2, ws), .. ., (ém, Wy,) arrive in stream.

* When (e;, w;) arrives, we irrevocably decide whether to include e; to H along
with its weight.

e Only poly(n) working space is available.
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Online hypergraph spectral sparsification

e Hyperedges and weights (e, w;), (€2, ws), .. ., (ém, Wy,) arrive in stream.

* When (e;, w;) arrives, we irrevocably decide whether to include e; to H along
with its weight.

e Only poly(n) working space is available.

A weighted subhypergraph H of H is an (¢, 0)-spectral sparsifier
A
=  (1-¢)Qu(@)—dlzl; < Qz(z) < 1 +e)Qu(x) +dllzl;  (Vz€RY)
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Online hypergraph spectral sparsification

e Hyperedges and weights (e, w;), (€2, ws), . . ., (ém, Wy,) arrive in stream.

* When (e;, w;) arrives, we irrevocably decide whether to include e; to H along
with its weight.

e Only poly(n) working space is available.

A weighted subhypergraph H of H is an (¢, 6)-spectral sparsifier
A
<=  (1-¢)Qu(x) — |zl < Qz(z) < (1 +6)Qu(x) +dllz[; (V= €R")

Theorem (Soma, Tung, and Yoshida ’24)

There is an online algorithm that outputs an (e, §)-spectral sparsifier with
O(e~2nlognlogrlog £¥) many hyperedges using O(n?) space. (Here, W = ¥, wi)
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Online hypergraph spectral sparsification

e Hyperedges and weights (e, w;), (€2, ws), . . ., (ém, Wy,) arrive in stream.

* When (e;, w;) arrives, we irrevocably decide whether to include e; to H along
with its weight.

e Only poly(n) working space is available.

A weighted subhypergraph Hof His an (¢, §)-spectral sparsifier
A
<=  (1-¢)Qu(x) - 4|z} < Qa(x) < (1 +€)Qu(x) + 4|z}  (VzeRY)

Theorem (Soma, Tung, and Yoshida ’24)

For unweighted r-uniform hypergraphs, there is an online algorithm that outputs an
e-spectral sparsifier with O(e~2nr log® nlog r) many hyperedges using O(n?) space.
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® Algorithm
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Edge sampling algorithm

Algorithm

1. Compute edge sampling probability p. € [0, 1] for every hyperedge
eef.

2. for each hyperedge e :

5 Add a copy of e to H with weight w, /p. W.p. pe.

Properties

e E5[Q;(x)] = Qu(x) (i-e., unbiased)
e Expected total # of hyperedges = > . pe
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Challenge

# of edges

Variance of
cut weight

sparse dense

/\

large small

Need to carefully choose p.!
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Reweighting

[Kapralov, Krauthgamer, Tardos, Yoshida 2022; J. R. Lee 2023; Jambulapati, Liu, Sidford 2023]

Clique expansion: e
G = (V, F), each hyperedge being replaced with clique A
ﬁ

o
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Reweighting

[Kapralov, Krauthgamer, Tardos, Yoshida 2022; J. R. Lee 2023; Jambulapati, Liu, Sidford 2023]

Clique expansion:
G = (V, F), each hyperedge being replaced with clique

Lemma ([Kapralov, Krauthgamer, Tardos, Yoshida 2022; J. R. Lee 2023])
There are edge weights c. ., > 0 on F' such that

¢ Zu,vee Ceuw = We (e € E)

® Coup >0 = Ty = MaXy yee Tw v, Where ry, is
the effective resistance between u,v.

ﬁ

Effective resistance:
Tu,p = (€u — ev)TLE(eu —ey)
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Reweighting

[Kapralov, Krauthgamer, Tardos, Yoshida 2022; J. R. Lee 2023; Jambulapati, Liu, Sidford 2023]

Clique expansion: e
G = (V, F), each hyperedge being replaced with clique A
—

Lemma ([Kapralov, Krauthgamer, Tardos, Yoshida 2022; J. R. Lee 2023]) %

There are edge weights c. ., > 0 on F' such that

Zu,'UEe Ceuv = We (6 € E)

® Ceup >0 = Ty = MaXy yice Ty v, WhEre ry, is
the effective resistance between u,v.

Effective resistance:
Tu,p = (€u — ev)TLg(eu —ey)

Given {ceuv}, Pe X We MaXy yee Tuy Yields e-spectral sparsifier with
O(e72nlognlogr) hyperedges. (. R. Lee 2023; Jambulapati, Liu, Sidford 2023]

Graph case: effective resistance sampling [Spielman, Srivastava 2011]
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Convex optimization for reweighting u s cec 2024

The edge weight {c. .} can be found by convex optimization:

maX log det E E ce,u,vLu,v + J Lu,v = (eu_ev)(eu_ev)T
J: all-one matrix
eeFE uweV
sub. to E Ceuv = We (e €E)
Uu,VEE

Ceuw >0 (e € E,u,v€e)
KKT condition = the required conditions for reweighting.
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Our online algorithm

(cf. online spectral sparsification of graphs [Cohen, Musco, Pachocki 2020])

Let n = §/e > 0. (regularization parameter)
Define matrix L; ( =0,1,...) as follows:
= LO = Ons

o Li=Li1+), _— W;Ci up L w, Where ¢, ,, , is the solution of the following
convex optimization:

CiGAei

max log det (Li—l A Z wicz‘,u,vLu,v + nIn>

u,vEe;

Laplacian matrix upto ¢ — 1 - RN, ridge regularizer

A.: simplex in RE)
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Our online algorithm

Letn =4d/e > 0.
iE f[o = (0, Lo:=0, e Laplacian matrix for reweighted clique expansion
2. fori=1,2,...:
3. Solve the following convex optimization:
3000000000000 KL ridge regularizer
max logdet [ L;—; + WiCiwoLluy + I, .
ci€le; < ( ot Z G o T in A,: simplex in R(E)
u,vee;
L, = (e,—ey,)(e,—ey)

40 Ly« Li 1+ Zu,veﬁ U el iy
5 p; X w; MaXy pee; ||(Li + 771')_1/2 - USRS ridged effective resistance
6 Add e; with weight w; /p; to H;_; with probability p;

and obtain H;.

T
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Analysis

H;: input hypergraph up to time ¢

e [, is deterministically determined by H;.
— Sampling of each e; is independent

e Maintains only sparsifier H; and Laplacian matrix L;.
— O(n?) space

e H;is an (g, §)-spectral sparsifier of H; w.h.p.
Based on the chaining analysis by . r. Lee 2023.
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Analysis
The expected # of hyperedges = 0(5_2n10g %)

Consider the potential function ®; := log det L;.

® &), = logdetnl = nlogn.

o &, — b, 1 =Q(p;) at every step i.

o &, =logdet(Ly, +nI) < nlog (%= + ) = nlog (2~ + 7).
— Expected # of hyperedges

i = oW
%E pi < E :((I)i_q)i—l)=(I)m_q)0=nlog(n_n+l)
P A
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® Summary
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Summary

e Online algorithm: O(e~ *nlog 5+ ) hyperedges with O(n?) space

* We need O(e?nlog 5% ) for graphs [Cohen, Musco, Pachocki 2020].
e Can we reduce the space complexity from O(n?) to, say, O(nr)?

e For the fully dynamic setting, O(e~2nr log m)-sized sketch exists
for cut sparsification = Putterman’s talk on Wednesday!
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Summary

e Online algorithm: O(e~ *nlog 5+ ) hyperedges with O(n?) space

* We need O(e?nlog 5% ) for graphs [Cohen, Musco, Pachocki 2020].
e Can we reduce the space complexity from O(n?) to, say, O(nr)?

e For the fully dynamic setting, O(e~2nr log m)-sized sketch exists
for cut sparsification = Putterman’s talk on Wednesday!

Thanks! Questions?
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