Privately Evaluating Untrusted Black-Box Functions

Sofya Raskhodnikova

Joint work with:

Ephraim Linder *Boston University*

Adam Smith *Boston University*

Thomas Steinke *Google DeepMind*

To provide tools for sharing sensitive data in situations when

the data curator does not know in advance

what questions the (untrusted) analyst will ask about the data

Want:

- an automated way for the analyst to interact with the data Instead of:
- putting the analyst through background checks and
- monitoring their access to data

Private data analysis

Typical examples: *census, medical studies, data collected by industry…* Two conflicting goals

- ➢ *Protect privacy of individuals : Differential privacy* [Dwork McSherry Nissim Smith 06]
- ➢ *Provide accurate information*

Many techniques developed for releasing *specific* functions of dataset that are not too ``sensitive'' to individual inputs.

The black-box privacy problem **[Jha Raskhodnikova 11]**

- Ana asks Curi to evaluate her program on the dataset x and send back the output
- The overall algorithm Curi runs to produce the output must be differentially private
- What can Curi do?

Embracing the black box

What queries can Curi use?

• Function f can be queried on any dataset [Jha Raskhodnikova 11, Awasthi Jha Raskhodnikova Molinaro 16, Lange Linder Raskhodnikova Vasilyan]

- Function f can be queried only on **dataset** x and its subsets **[**Kohli Laskowski 23, this work] $\boldsymbol{\mathcal{X}}$ This restriction allows us to \checkmark deal with large (or even infinite) universe for individual data entries \checkmark give accurate answers for functions f that behave nicely Consider actual data of people in x rather than adding hypothetical individuals' data
	- on x and its subsets, but do strange things on outliers
	- \checkmark improve accuracy for functions f that are more "sensitive" to additions of data entries than to removals

Example: max($x_1, ..., x_n$) can *increase* arbitrarily under an *addition of* $x_{n+1} \in \mathbb{R}$, but can *decrease* by at most the gap between the largest and the second largest element under a *removal of an entry* x_i *.*

f.py

Information provided by the analyst

Automated sensitivity detection setting [this work]

- The analyst supplies
	- the black-box function f
	- the intended range of f

Claimed sensitivity bound setting [Jha Raskhodnikova 11, Awasthi Jha Molinaro Raskhodnikova 16, Kohli Laskowski 23, Lange Linder Raskhodnikova Vasilyan, this work]

- The analyst supplies (in addition to the above)
	- parameters that describe the sensitivity of f

Privacy is guaranteed even if the parameters supplied by the analyst are incorrect

Correct setting of parameters ensures better accuracy

sensitivity parameters

Notions of sensitivity: preliminary definitions

We consider functions $f: U^* \to \mathbb{R}$, where

- $\mathcal U$ is (finite or infinite) universe, where data items come from
- Each dataset is a (multi)-set of items $x_1, ..., x_n \in \mathcal{U}$ for some $n \in \mathbb{N}$
- \mathcal{U}^* represents the set of all datasets

Two datasets are *neighbors* if one can be obtained from the other by deleting one data item

Notions of sensitivity

We consider functions $f: \mathcal{U}^* \to \mathbb{R}$, where \mathcal{U}^* represents the set of all datasets

Two datasets are *neighbors* if one can be obtained from the other by deleting one data item

• The global sensitivity of f (denoted GS^{f}) is

 max x,x' neighbors $f(x) - f(x)$

If $GS^f = c$, then f is called c-Lipschitz.

Example: f is $max(x_1, ..., x_n)$ If the universe $\mathcal{U} = [r]$, then $GS^f = r - 1$ If the universe $\mathcal{U} = \mathbb{N}$, then $GS^f = \infty$

 $\boldsymbol{\chi}$

 λ

For depth $\lambda \in \mathbb{N}$, the λ -down-neighborhood of dataset x (denoted $\mathcal{N}^{\downarrow}_{\lambda}(x)$) is the set of all subsets of x of size at least $|x| - \lambda$.

• The down sensitivity of f at depth λ on dataset x (denoted $\mathrm{DS}_{\lambda}^{f}(x)$) is

$$
\max_{z \in \mathcal{N}_{\lambda}^{\downarrow}(x)} |f(x) - f(z)|
$$

How much can the value of f change if at most λ people are removed from x ?

Example: f is $max(x_1, ..., x_n)$, $x = \{0,1,1,1,2,2,2,3\}$ Then $DS_3^f(x) = 1$

Our contributions

Automated sensitivity detection setting

- Introduce the setting
- Give a privacy mechanism and a tight lower bound for $f: U^* \to \mathbb{R}$

Claimed sensitivity bound setting

- First guarantees in terms of down sensitivity
- First accuracy guarantees with **no** dependence on the universe size
- Tight upper and lower bounds for $\bar{f}: \mathcal{U}^* \to \mathbb{R}$
- Reinterpretation & analysis of other constructions in our framework

[Jha Raskhodnikova 11, Lange Linder Raskhodnikova Vasilyan]

- gave guarantees in terms of global sensitivity and have dependence on $|\mathcal{U}|$
- Used different techniques, based on local Lipschitz filters [Saks Seshadhri 10]

[Kohli Laskowski 23] designed the first black-box private algorithm with queries in $\mathcal{N}_{\lambda}^{\downarrow}(x)$ and analyzed its privacy (but not accuracy)

 $range(f)$

on query complexity and accuracy

- Background on differential privacy and definition of privacy wrappers
- Quantitative statement of results
- Privacy wrapper for the automated sensitivity detection setting
- Extension to graphs and other types datasets

Differential privacy **[Dwork McSherry Nissim Smith 06]**

Intuition: An algorithm is **differentially private (DP)** if its output distribution is roughly the same for all pairs of *neighbor datasets.*

Think: The output distribution is roughly the same whether or not your data is in the dataset.

An algorithm $\mathcal A$ is (ϵ, δ) -differentially private if for all pairs of *neighbors* x , x' and all possible sets of outputs S: $Pr[\mathcal{A}(x) \in S] \leq e^{\epsilon} Pr[\mathcal{A}(x') \in S] + \delta$

If $\delta = 0$, we say A is purely DP

Basic $(\epsilon, 0)$ -differentially private mechanisms

Laplace Mechanism (for approximating $f: U^* \to \mathbb{R}$)

Given x, return $f(x) + Z$ for $Z \sim Laplace(\sigma)$ where $\sigma = 0$ GS^f $\mathcal{E}_{\mathcal{E}}$

Previous work on the black-box DP problem tries to emulate this mechanism (for the case when the claimed GS^f is correct)

• Exponential Mechanism (for approximating $f: U^* \to U$) Define a score function $score_x(y)$ for all $y \in \mathcal{Y}$, and let Δ be its sensitivity: $score_x(y) - score_{x'}(y)| \leq \Delta$ for all $y \in \mathcal{Y}$ and all neighbor datasets x, x'

Given x, return each $y \in \mathcal{Y}$ with probability proportional to exp $\epsilon\!\cdot\!score_x(y)$ 2Δ

Utility: ExponentialMechanism (x) returns \hat{y} satisfying: for all $\beta \in (0,1)$, $score_x(\hat{y}) \leq \min_y$ \mathcal{Y} scor $e_x(y)$ + 2Δ ϵ ln \overline{y} β with probability $\geq 1 - \beta$

Properties of Differential Privacy (DP)

Post-processing: If algorithm $\mathcal A$ is (ϵ, δ) -DP and $\mathbf B$ is any randomized algorithm **then** $\mathcal{B}(\mathcal{A}(x))$ is (ϵ, δ) -DP

Composition: If algorithms $\mathcal A$ and $\mathcal A'$ are (ϵ, δ) -DP **then** the algorithm that outputs $(\mathcal{A}(x), \mathcal{A}'(x))$ is $(2\epsilon, 2\delta)$ -DP

Privacy wrapper

An algorithm W that

• gets and input $x \in \mathcal{U}^*$ and query access to a function f on \mathcal{U}^* ; and potentially some additional parameters

[Kohli Laskowski 23]

• produces an output in range $(f) \cup \{\perp\}$

is an (ϵ, δ) -privacy wrapper if \mathcal{W}^f is (ϵ, δ) -DP for every function f

- Algorithm W is λ -down local if for all functions f and datasets x , the queries of \mathcal{W}^f on input x are contained in $\mathcal{N}^{\downarrow}_{\lambda}(x)$
- Algorithm W is (α, β) -accurate for a function f and a dataset x if $Pr[|\mathcal{W}^f(x) - f(x)| \ge \alpha] \le \beta$

Example: For each $\beta \in (0,1]$, Laplace mechanism is (α, β) -accurate for all functions with $GS^f=1$ and all datasets with $\alpha=O\left(\frac{\ln 1/\beta}{\sigma}\right)$ $\mathcal{E}_{\mathcal{E}}$

It is not a privacy wrapper, since it is not private when the parameter GS^f is not set correctly

$$
\left\langle \frac{x}{\sqrt{2}}\right\rangle_{15}
$$

and all settings of

makes $O(|x|^{\lambda})$ queries

the parameters

- \checkmark Background on differential privacy and definition of privacy wrappers
- Quantitative statement of results
- Privacy wrapper for the automated sensitivity detection setting
- Extension to graphs and other types datasets

Our results for the automated sensitivity detection setting

The starting point for our algorithm is the Shifted Inverse (ShI) mechanism [Fang Dong Yi 22]

• It is an $(\epsilon, 0)$ -DP algorithm for releasing a value of a monotone function

A function $f: U^* \to \mathbb{R}$ is monotone if $\int f(x) \ge f(z)$ for all $x, z \in \mathcal{U}^*$ such that $z \subset x$

Our results for the automated sensitivity detection setting

The starting point for our algorithm is the Shifted Inverse (ShI) mechanism [Fang Dong Yi 22]

- It is **not** a privacy wrapper, because it is private only for monotone functions.
- It works for real-valued functions with a **finite** range $\mathcal{Y} \subset \mathbb{R}$.

Our results for the claimed sensitivity bound setting

Reinterpretation & analysis of other constructions:

- We reinterpret the Lipschitz extension of [Cummings Durfee 20] as a privacy wrapper
- We analyze the accuracy of TAHOE by [Kohli Laskowski 23]

The two lower bounds hold separately.

sensitivity

 $\mathcal{C}_{0}^{(n)}$

Plan

- \checkmark Background on differential privacy and definition of privacy wrappers
- \checkmark Quantitative statement of results
- Privacy wrapper for the automated sensitivity detection setting
	- 1. ShI mechanism [Fang Dong Yi 22] for monotone functions
	- 2. Modified ShI (with better dependence on r , the size of the range)
	- 3. From monotone to general functions

• Extension to graphs and other types datasets

ShI mechanism [Fang Dong Yi 22]

- Let $g: U^* \to Y$, where Y is a finite subset of $\mathbb R$, be a monotone function.
- Define $g_j(x) = \min\{g(z) : z \in \mathcal{N}^{\downarrow}_{\lambda}(x)\}\$ for each depth $j = 0, 1, ..., \lambda$ and a sequence $\vec{g}(x) = (g_0(x), g_1(x), ..., g_\lambda(x))$ $\boxed{g_0(x) = g(x)}$
- For each answer $y \in \mathcal{Y}$, define $score_x(y)$ = the smallest number of $g_i(x)$ values that must be changed in $\vec{g}(x)$ to make y the median of the resulting sequence Used in the exponential mechanism for the median

ShI (Input: dataset x, privacy parameter $\epsilon > 0$, failure probability β , finite range \mathcal{Y} ;

query access to a *monotone* function $g: U^* \to U$

- 1. Set $\lambda = \Theta$ 1 ϵ $\log \frac{|y|}{2}$ β and compute $\vec{g}(x)$
- 2. Compute the scores $score_x(y)$ for all $y \in y$
- 3. Return: the output of the exponential mechanism run with these scores

 $\boldsymbol{\mathcal{X}}$

 $g_0(x)$

 $\boldsymbol{g}_{\pmb{\lambda}}(\pmb{x}$

 $\ddot{\bullet}$

 $\boldsymbol{\lambda}$

ShI mechanism: analysis [Fang Dong Yi 22]

- Let $g: U^* \to Y$, where Y is a finite subset of $\mathbb R$, be a monotone function.
- Define $g_j(x) = \min\{g(z) : z \in \mathcal{N}^{\downarrow}_{\lambda}(x)\}\$ for each depth $j = 0, 1, ..., \lambda$ and a sequence $\vec{g}(x) = \bigl(g_0(x), g_1(x), ..., g_{\lambda}(x)\bigr)$ $\boldsymbol{\chi}$ j

The interleaving property

If *g* is monotone and datasets $x \subset x'$ are neighbors, then $\vec{g}(x)$ and $\vec{g}(x')$ are interleaved: $g_{\lambda}(x) \leq g_{\lambda}(x') \leq \dots \leq g_{1}(x) \leq g_{1}(x') \leq g_{0}(x) \leq g_{0}(x')$

Proof: (1) $g_{j+1}(x') \le g_j(x)$ for all j

 $\mathcal{N}_{j+1}^{\downarrow}(x') \supset \mathcal{N}_j^{\downarrow}(x)$

We are taking the minimum over the corresponding down−neighborhoods.

 $\boldsymbol{\chi'}$

 $j+1$

ShI mechanism: analysis [Fang Dong Yi 22]

- Let $g: U^* \to Y$, where Y is a finite subset of $\mathbb R$, be a monotone function.
- Define $g_j(x) = \min\{g(z) : z \in \mathcal{N}^{\downarrow}_{\lambda}(x)\}\$ for each depth $j = 0, 1, ..., \lambda$ and a sequence $\vec{g}(x) = \bigl(g_0(x), g_1(x), ..., g_{\lambda}(x)\bigr)$ j

The interleaving property

If g is monotone and datasets $x \subset x'$ are neighbors, then $\vec{g}(x)$ and $\vec{g}(x')$ are interleaved: $g_{\lambda}(x) \leq g_{\lambda}(x') \leq \dots \leq g_{1}(x) \leq g_{1}(x') \leq g_{0}(x) \leq g_{0}(x')$

Proof: $(2) g_j(x) \leq g_j(x')$ for all j

Suppose $x' = x \cup \{k\}$ and let $z' = argmin \{g(z) : z \in \mathcal{N}_j^{\downarrow}(x')\}$, i.e., $g_j(x') = g(z')$

 $\boldsymbol{\chi}$

 $\boldsymbol{\chi'}$

j

Then either $z' \in \mathcal{N}_j^{\downarrow}(x) \implies g_j(x) \leq g(z') = g_j(x')$ or $z' = z \cup \{k\} \Rightarrow g_j(x) \le g(z) \le g(z') = g_j(x')$ by monotonicity of q

ShI mechanism: analysis [Fang Dong Yi 22]

The interleaving property

If g is monotone and datasets $x \subset x'$ are neighbors, then $\vec{g}(x)$ and $\vec{g}(x')$ are interleaved: $g_{\lambda}(x) \leq g_{\lambda}(x') \leq \cdots \leq g_{1}(x) \leq g_{1}(x') \leq g_{0}(x) \leq g_{0}(x')$

• Interleaving ⇒ privacy

Modified ShI [this work]**:** *abstracting ShI*

Idea: Abstract the original version of ShI as a reduction to the Generalized Interior Point problem

- Interior Point Problem: Given a dataset x, return $y \in hull(x)$ (with the usual definition of DP)
- Generalized Interior Point Problem [Bun Dwork Rothblum Steinke 18, Cohen Lyu Nelson Sarlós Stemmer 23]: Given a dataset x , construct \vec{a} and return $y \in hull(a)$ (DP if for all neighbors x and x' ,

the corresponding sequences \vec{a} and a' are interleaved)

Modified ShI [this work]

- Generalized Interior Point Problem [Bun Dwork Rothblum Steinke 18, Cohen Lyu Nelson Sarlós Stemmer 23]: Given a dataset x , construct \vec{a} and return $y \in hull(a)$ (DP if for all neighbors x and x' , the corresponding sequences \vec{a} and a' are interleaved)
- Modified ShI: Instead of using the exponential mechanism for the median on $\vec{g}(x)$, we use the state-of-the-art (ϵ, δ) -DP algorithms for Generalized Interior Point. Accuracy of these algorithms translates into locality λ for Modified ShI

With probability at least $1 - \beta$, it outputs $y \in [-\min]$ $z \in \mathcal{N}^{\downarrow}_{\lambda}(x)$ $g(z)$, $g(x)]$

This improves the dependence on $r = |y|$ in locality λ from $\log r$ to $\log \frac{1}{s}$ δ \cdot 2⁰(log^{*} r at the price of having an (ϵ, δ) -DP with positive δ instead of $(\epsilon, 0)$ -DP

Modified ShI runs the best of the two algorithms for a given parameter setting.

What's missing for a black-box wrapper?

Issue

- Privacy guarantees of ShI [Fang Dong Yi 22] and our Modified ShI [this work] require monotonicity everywhere
- But Curi gets a black box that computes f

Solution

• Locally transform to f get monotonicity

Enforcing monotonicity locally

Monotonization operator M_{ℓ}

For each $l \in \mathbb{Z}$ *, the level-* l *monotonization of a function* $f: U^* \to Y$ is a function $M_\ell[f]$ defined by $M_{\ell}[f](x) = \max(\{f(z): z \subseteq x, |z| \geq \ell\} \cup \{\inf \mathcal{Y}\})$

Properties of monotonization (for all ℓ and f)

- 1. Function $M_{\ell}[f](x)$ is monotone
- 2. If f is monotone, then $M_{\ell}[f] = f$.
- 3. The value $M_{\ell}[f](x)$ can be computed by querying f on all subsets of x of size at least ℓ .

 (x)

Idea: Pick ℓ randomly, aiming to get $\ell \approx |x| - \lambda$

 $\mathcal{N}^\downarrow_{|x|-\ell}$ ↓

 $\boldsymbol{\mathcal{X}}$

 ℓ

 $\boldsymbol{\lambda}$

Privacy wrapper with automated sensitivity detection (GenShI)

GenShI (Input: dataset x, privacy parameters ϵ , δ , failure probability β , finite range $\mathcal{Y}\subset\mathbb{R}$; query access to a function $f: U^* \to Y$)

- 1. Set λ to twice the depth needed to run Modified ShI with parameters $\frac{\epsilon}{2}$ 2 , δ , β 2 and \overline{y}
- 2. Release $\ell \leftarrow ||x|$ 3 4 $\lambda + Z$ where $Z \sim Laplace \left(\frac{2}{\epsilon}\right)$ ϵ
- 3. Run Modified ShI with parameters $\frac{\epsilon}{2}$ 2 , δ , β 2 and y and query access to the monotonization $M_\ell[f]$ and return its answer.

Privacy analysis:

- Step 2 runs the Laplace mechanism with parameter $\frac{\epsilon}{2}$ 2 to release a function with GS=1
- Step 3 runs an $\left(\frac{e}{2}\right)$ 2 , δ)-DP mechanism
- By composition, GenShI is (ϵ, δ) -DP

Privacy wrapper with automated sensitivity detection (GenShI)

 \mathcal{W} : \tilde{S} GenShI (Input: dataset x , privacy parameters ϵ , δ , failure probability β , finite range $\mathcal{Y}\subset\mathbb{R};\mathcal{Y}$ query access to a function $f: \mathcal{U}^* \to \mathcal{Y}$)

- 1. Set λ to twice the depth needed to run Modified ShI with parameters $\frac{\epsilon}{2}$, δ , $\frac{\beta}{2}$ and \mathcal{Y}
- 2. Release $\ell \leftarrow |x| \frac{3}{4}\lambda + Z$ where $Z \sim Laplace\left(\frac{2}{\epsilon}\right)$
- 3. Run Modified ShI with parameters $\frac{\epsilon}{2}$, δ , $\frac{\beta}{2}$ and γ and query access to the monotonization $M_{\ell}[f]$ and return its answer.

Accuracy claim for GenShI privacy wrapper

With probability at least $1-\beta$, GenShI outputs $y\in hull\{f(z)\colon z\in \mathcal{N}^{\downarrow}_{\lambda}(x)\}$

Proof: Bad events: (1) noise magnitude $|Z|$ is large; (2) Modified ShI fails

• Condition on bad events not occurring. Then $|x| - \lambda \leq \ell \leq |x| - \lambda/2$ and $\min_{\mathbf{M}_{\ell}[f]} M_{\ell}[f](z) \leq \mathcal{W}^{f}(x) = \text{ShI}^{\mathbf{M}_{\ell}[f]}(x) \leq M_{\ell}[f](x)$ **Upper bound:** $W^f(x) \leq M_f[f](x)$ $z \in \mathcal{N}_{\lambda/2}^{\, \downarrow}(x)$ $=$ max{ $f(z)$: $z \subseteq x$, $|z| \ge \ell$ } | by definition of monotonization \leq max $\{f(z): z \in \mathcal{N}_\lambda^\downarrow\}$ since $\ell \ge |x| - \lambda$

 $\boldsymbol{\chi}$

 $\lambda/2$

 ℓ

 $\boldsymbol{\lambda}$

Privacy wrapper with automated sensitivity detection (GenShI)

 \widetilde{S} GenShI (Input: dataset x , privacy parameters ϵ , δ , failure probability β , finite range $y\subset\mathbb{R};\mathbb{R}$ \mathcal{W} : query access to a function $f: \mathcal{U}^* \rightarrow \mathcal{Y}$)

- 1. Set λ to twice the depth needed to run Modified ShI with parameters $\frac{\epsilon}{2}$, δ , $\frac{\beta}{2}$ and \mathcal{Y}
- 2. Release $\ell \leftarrow |x| \frac{3}{4}\lambda + Z$ where $Z \sim Laplace\left(\frac{2}{\epsilon}\right)$
- 3. Run Modified ShI with parameters $\frac{\epsilon}{2}$, δ , $\frac{\beta}{2}$ and γ and query access to the monotonization $M_{\ell}[f]$ and return its answer.

Accuracy claim for GenShI privacy wrapper

With probability at least $1-\beta$, GenShI outputs $y\in hull\{f(z)\colon z\in \mathcal{N}^{\downarrow}_{\lambda}(x)\}$

Proof (continued): Condition on bad events not occurring. Then $\min_{x \in \mathcal{X}} M_{\ell}[f](z) \leq \mathcal{W}^{f}(x) = \text{ShI}^{\mathbf{M}_{\ell}[f]}(x) \leq M_{\ell}[f](x)$ **Lower bound:** $W^f(x) \geq \min$ $z \in \mathcal{N}_{\lambda/2}^{\downarrow}(x)$ $M_{\ell}[f](z) \geq \min_{z \in S_{\ell}}$ $z \in \mathcal{N}_{\lambda/2}^{\downarrow}(x)$ $M_{\ell}[f](z) \leq$ $z' \in N_{\lambda}^{\downarrow}(x)$ $f(z')$

> Monotonization $M_{\ell}[f](z) = f(z')$ for some $z' \subset z, |z'| \ge \ell$ Since $\ell \ge |x| - \lambda$, this $z' \in \mathcal{N}_{\lambda}^{\downarrow}(x)$

 $\boldsymbol{\chi}$

 $\lambda/2$

 ℓ

 $\boldsymbol{\lambda}$

Our results for the automated sensitivity detection setting

The starting point for our algorithm is the Shifted Inverse (ShI) mechanism [Fang Dong Yi 22]

- It is **not** a privacy wrapper, because it is private only for monotone functions.
- It works for real-valued functions with a **finite** range $\mathcal{Y} \subset \mathbb{R}$.

Plan

- \checkmark Background on differential privacy and definition of privacy wrappers
- \checkmark Quantitative statement of results
- \checkmark Privacy wrapper for the automated sensitivity detection setting
	- 1. ShI mechanism [Fang Dong Yi 22] for monotone functions
	- 2. Modified ShI (with better dependence on r , the size of the range)
	- 3. From monotone to general functions

• Extension to graphs and other types datasets

General domains

Our privacy wrappers can be implemented for any partially ordered domain of datasets (D, \preccurlyeq) that satisfies:

- There exists a unique minimum element in D denoted \emptyset .
- There is a function $size: D \rightarrow \mathbb{Z}_{\geq 0}$ such that, for all $u \in D$, the partial order on the down neighborhood of u is isomorphic to a hypercube ${0,1}^{size(u)}$.
- There exists a neighbor relation ∼ such that if $u, v \in D$; $v \leq u$; and $size(v) = size(u) - 1$ then $u \sim v$.

Example: Datasets can be graphs (or hypergraphs) with ``node-neighbor'' relationship

Summary of our contributions

- Formulated the automated sensitivity detection setting in the context of black-box privacy.
- Formalized notions of accuracy in both automated sensitivity detection and claimed sensitivity bound settings, appropriate for dealing with large/infinite universe.
- Reinterpreted and analyzed existing constructions, fitting them in the black-box privacy setting.
- Gave nearly optimal privacy wrappers and lower bounds for both settings for black-box functions with real range.

Open questions

• Can the dependence on the size of the range be avoided in the automated sensitivity detection setting?

• Can we design privacy wrappers for functions with more complicated outputs (e.g., vector outputs)?

- Our accuracy guarantees are instance-based. Potentially one can consider different notions of sensitivity/accuracy. Which notions are the best?
- Query complexity $|x|^{\lambda} \approx n^{O(\log n/\varepsilon)}$ is too large for practice. Are there practical alternatives (e.g., for important function classes, or in combination with formal methods)?