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Goal

To provide tools for sharing sensitive data 

in situations when 

     the data curator does not know in advance  

     what questions the (untrusted) analyst will ask about the data
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Want: 

• an automated way for the analyst to interact with the data

Instead of:

•  putting the analyst through background checks and

•  monitoring their access to data



Private data analysis
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Typical examples: census, medical studies, data collected by industry…

Two conflicting goals
➢ Protect privacy of individuals

➢ Provide accurate information

: Differential privacy [Dwork McSherry Nissim Smith 06] 

Questions about 𝒙

Many techniques developed for releasing specific functions of dataset 𝑥 

that are not too ``sensitive’’ to individual inputs.



The black-box privacy problem [Jha Raskhodnikova 11] 

• Ana asks Curi to evaluate her program on the dataset 𝑥 and send back the output

• The overall algorithm Curi runs to produce the output must be differentially private

• What can Curi do?
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Embracing the black box 

What can Curi do?

• Inspect the code of 𝑓?

• Ask Ana to implement 𝑓 using a restricted language?

• Query the black box in a few places (e.g., to check sensitivity)?
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Data Analyst 

Ana

(Approximate)
output of f.py on 𝒙 

f.py

Curi will run into computationally hard problems

Limits the functions Ana can use

Curator

Curi

• Allows Ana to construct arbitrarily complicated programs

• Enables Ana to obfuscate her programs



What queries can Curi use?

• Function 𝑓 can be queried on any dataset                                                                                   
[Jha Raskhodnikova 11, Awasthi Jha Raskhodnikova Molinaro 16,                                  
Lange Linder Raskhodnikova Vasilyan]

• Function 𝑓 can be queried only on dataset 𝒙 and its subsets                                                    
[Kohli Laskowski 23, this work]
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Curi’s algorithm

𝒚
𝒇(𝒚)

f.py

𝒙

This restriction allows us to

✓ deal with large (or even infinite) universe for individual data entries

✓ give accurate answers for functions 𝑓 that behave nicely                                  
on 𝑥 and its subsets, but do strange things on outliers

✓ improve accuracy for functions 𝑓 that are more ``sensitive’’                   
to additions of data entries than to removals

Consider actual data of people in 𝑥 rather 

than adding hypothetical individuals’ data

Example: max(𝑥1, … , 𝑥𝑛) can increase arbitrarily under an addition of 𝑥𝑛+1 ∈ ℝ, but can decrease by 
at most the gap between the largest and the second largest element under a removal of an entry 𝑥𝑖.



Information provided by the analyst

Automated sensitivity detection setting [this work]

• The analyst supplies 

– the black-box function 𝑓

– the intended range of 𝑓

Claimed sensitivity bound setting [Jha Raskhodnikova 11, Awasthi Jha Molinaro 

Raskhodnikova 16, Kohli Laskowski 23, Lange Linder Raskhodnikova Vasilyan, this work]

• The analyst supplies (in addition to the above)

– parameters that describe the sensitivity of 𝑓
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𝒓𝒂𝒏𝒈𝒆(𝒇)

𝒓𝒂𝒏𝒈𝒆(𝒇)

sensitivity
parameters

Privacy is guaranteed even if the parameters supplied by the analyst are incorrect

Correct setting of parameters ensures better accuracy



Notions of sensitivity: preliminary definitions

We consider functions 𝑓: 𝒰∗ → ℝ, where

• 𝒰 is (finite or infinite) universe, where data items come from

• Each dataset is a (multi)-set of items 𝑥1, … , 𝑥𝑛 ∈ 𝒰 for some 𝑛 ∈ ℕ

• 𝒰∗ represents the set of all datasets
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Two datasets are neighbors if one can be obtained from the other by deleting one data item
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𝑥 𝑥′ = 𝑥 ∖ 𝑥2

𝑥3



Notions of sensitivity

We consider functions 𝑓: 𝒰∗ → ℝ, where 𝒰∗ represents the set of all datasets

• The global sensitivity of 𝑓 (denoted 𝐺𝑆𝑓) is 

              max
𝑥,𝑥′ neighbors

𝑓 𝑥  − 𝑓 𝑥′

      If 𝐺𝑆𝑓 = 𝑐, then 𝑓 is called 𝑐-Lipschitz.

• The down sensitivity of 𝑓 at depth 𝜆 on dataset 𝑥 (denoted D𝑆𝜆
𝑓

(𝑥)) is

max
𝑧∈𝒩𝜆

↓(𝑥)
𝑓 𝑥  − 𝑓 𝑧
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Two datasets are neighbors if one can be obtained from the other by deleting one data item

Example: 𝑓 is max(𝑥1, … , 𝑥𝑛)
If the universe 𝒰 = 𝑟 , then 𝐺𝑆𝑓 = 𝑟 − 1 

If the universe 𝒰 = ℕ, then 𝐺𝑆𝑓 = ∞ 

𝒙

𝝀

Example: 𝑓 is max(𝑥1, … , 𝑥𝑛), 𝑥 = {0,1,1,1,2,2,2,3}

Then D𝑆3
𝑓

𝑥 = 1

How much can the value of 𝑓 change if  

at most 𝜆 people are removed from 𝑥?

For depth 𝜆 ∈ ℕ, the 𝜆-down-neighborhood of dataset 𝑥 (denoted 𝒩𝜆
↓(𝑥)) 

is the set of all subsets of 𝑥 of size at least 𝑥 − 𝜆.



Our contributions

Automated sensitivity detection setting

• Introduce the setting

• Give a privacy mechanism and a tight lower bound for 𝑓: 𝒰∗ → ℝ

Claimed sensitivity bound setting

• First guarantees in terms of down sensitivity

• First accuracy guarantees with no dependence on the universe size

• Tight upper and lower bounds for 𝑓: 𝒰∗ → ℝ

• Reinterpretation & analysis of other constructions in our framework
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𝒓𝒂𝒏𝒈𝒆(𝒇)

𝒓𝒂𝒏𝒈𝒆(𝒇)

sensitivity
parameters

[Jha Raskhodnikova 11, Lange Linder Raskhodnikova Vasilyan]

• gave guarantees in terms of global sensitivity and have dependence on 𝒰
• Used different techniques, based on local Lipschitz filters [Saks Seshadhri 10]

[Kohli Laskowski 23] designed the first black-box private algorithm with queries in 𝒩𝜆
↓(𝑥) 

and analyzed its privacy (but not accuracy)

on query complexity and accuracy



Plan

• Background on differential privacy and definition of privacy wrappers

• Quantitative statement of results

• Privacy wrapper for the automated sensitivity detection setting

• Extension to graphs and other types datasets
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Differential privacy [Dwork McSherry Nissim Smith 06]
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An algorithm 𝒜 is 𝝐, 𝜹 -differentially private if                                                     
for all pairs of neighbors 𝒙, 𝒙′ and all possible sets of outputs S:

𝐏𝐫 𝓐 𝒙 ∈ 𝑺 ≤ 𝒆𝝐 𝐏𝐫 𝓐 𝒙′ ∈ 𝑺 + 𝜹

If 𝛿 = 0, we say 𝒜 is purely DP

𝑥𝑛

𝑥𝑛−1

𝑥3

𝑥2

𝑥1

𝑥𝑛

𝑥𝑛−1

𝑥1

 

𝑥 𝑥′

𝑥3

Intuition: An algorithm is differentially private (DP) if its output distribution is roughly 

the same for all pairs of neighbor datasets.

Think: The output distribution is roughly the same whether or not your data is in the dataset.



Basic (𝝐, 𝟎)-differentially private mechanisms

• Exponential Mechanism (for approximating 𝑓: 𝒰∗ → 𝒴)

     Define a score function 𝑠𝑐𝑜𝑟𝑒𝑥 𝑦  for all 𝑦 ∈ 𝒴, and let Δ be its sensitivity:

𝑠𝑐𝑜𝑟𝑒𝑥 𝑦 − 𝑠𝑐𝑜𝑟𝑒𝑥′ 𝑦 ≤ Δ for all 𝑦 ∈ 𝒴 and all neighbor datasets 𝑥, 𝑥′

    Utility: ExponentialMechanism(𝑥) returns ො𝑦 satisfying: for all 𝛽 ∈ 0,1 ,

𝑠𝑐𝑜𝑟𝑒𝑥 ො𝑦 ≤ min
𝑦

𝑠𝑐𝑜𝑟𝑒𝑥 𝑦 +
2Δ

𝜖
ln

𝒴

𝛽
 with probability ≥ 1 − 𝛽
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• Laplace Mechanism (for approximating 𝑓: 𝒰∗ → ℝ)

     

Previous work on the black-box DP problem tries to emulate this mechanism 
(for the case when the claimed 𝐺𝑆𝑓 is correct)

Given 𝑥, return each 𝑦 ∈ 𝒴 with probability proportional to exp
𝜖⋅𝑠𝑐𝑜𝑟𝑒𝑥(𝑦)

2Δ

Given 𝑥, return 𝑓 𝑥 + 𝑍 for 𝑍 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜎) where 𝜎 = 𝑂
𝐺𝑆𝑓

𝜀



Properties of Differential Privacy (DP)

•  Post-processing: If algorithm 𝓐 is 𝜖, 𝛿 -DP and 
                                      𝓑 is any randomized algorithm       

                                     then 𝓑 𝓐 𝑥  is 𝜖, 𝛿 -DP

 
• Composition: If algorithms 𝓐 and 𝓐′ are 𝜖, 𝛿 -DP 

                              then the algorithm that outputs 𝓐 𝑥 , 𝓐′ 𝑥  is 2𝜖, 2𝛿 -DP 

𝑥1

𝑥2

𝑥3

𝑥𝑛 

𝓐



𝓑

𝑥1

𝑥2

𝑥3

𝑥𝑛 

𝓐


𝓐′



Privacy wrapper

• Algorithm 𝒲 is 𝜆-down local if for all functions 𝑓 and datasets 𝑥, 

the queries of 𝒲𝑓 on input 𝑥 are contained in 𝒩𝜆
↓(𝑥) 

• Algorithm 𝒲 is (𝛼, 𝛽)-accurate for a function 𝑓 and a dataset 𝑥 if 

Pr 𝒲𝑓 𝑥 − 𝑓 𝑥 ≥ 𝛼 ≤ 𝛽
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An algorithm 𝒲 that 

• gets and input 𝑥 ∈ 𝒰∗ and query access to a function 𝑓 on 𝒰∗; 

• produces an output in range 𝑓 ∪ {⊥} 

is an 𝜖, 𝛿 -privacy wrapper if 𝒲𝑓 is 𝜖, 𝛿 -DP for every function 𝑓 

[Kohli Laskowski 23]

𝒙

𝝀

Example: For each 𝛽 ∈ 0,1 , Laplace mechanism is (𝛼, 𝛽)-accurate 

for all functions with 𝐺𝑆𝑓 = 1 and all datasets with 𝛼 = 𝑂
ln 1/𝛽

𝜀
 

• It is not a privacy wrapper, since it is not private               

when the parameter 𝐺𝑆𝑓 is not set correctly  

and potentially some 

additional parameters

and all settings of 

the parameters

makes 𝑂( 𝑥 𝜆) queries



Plan

✓ Background on differential privacy and definition of privacy wrappers

• Quantitative statement of results

• Privacy wrapper for the automated sensitivity detection setting

• Extension to graphs and other types datasets
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Our results for the automated sensitivity detection setting 

The starting point for our algorithm is the Shifted Inverse (ShI) mechanism [Fang Dong Yi 22]

• It is an 𝜖, 0 -DP algorithm for releasing a value of a monotone function

     A function 𝑓: 𝒰∗ → ℝ is monotone if 

        𝑓 𝑥 ≥ 𝑓(𝑧) for all 𝑥, 𝑧 ∈ 𝒰∗ such that 𝑧 ⊂ 𝑥
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𝒙

𝒛

𝑓 𝑥 ≥ 𝑓(𝑧)

𝒓𝒂𝒏𝒈𝒆(𝒇)



Our results for the automated sensitivity detection setting 

The starting point for our algorithm is the Shifted Inverse (ShI) mechanism [Fang Dong Yi 22]

• It is not a privacy wrapper, because it is private only for monotone functions.

• It works for real-valued functions with a finite range 𝒴 ⊂ ℝ.
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Algorithm Privacy Accuracy 𝜶 Down locality 𝝀

[Fang Dong Yi 22] 𝜖, 0 -DP only for 

monotone 

functions

down 

sensitivity     

at depth 𝜆,

 D𝑆𝜆
𝑓

(𝑥)

𝜆 𝜖,0 ≔ 𝑂
1

𝜖
log

|𝒴|

𝛽

Modified ShI 𝜖, 𝛿 -DP 𝜆 𝜖,𝛿 ≔
1

𝜖
log

1

𝛿
⋅ 2𝑂 log∗ |𝒴|

Generalized 

ShI
𝜖, 𝛿 -DP

all 

functions
D𝑆𝜆

𝑓
(𝑥) min 𝜆 𝜖,0 , 𝜆 𝜖,𝛿

Lower bound 𝜖, 𝛿 -DP
all 

functions
D𝑆𝜆

𝑓
(𝑥) Ω

1

𝜖
log min

|𝒴|

𝛽
,
1

𝛿
 ⇒



Our results for the claimed sensitivity bound setting 

Reinterpretation & analysis of other constructions:

• We reinterpret the Lipschitz extension of [Cummings Durfee 20] as a privacy wrapper

• We analyze the accuracy of TAHOE by  [Kohli Laskowski 23]

Algorithm Privacy Accuracy 

assumption

Accuracy 𝜶 Down locality 𝝀

[Cummings 
Durfee 20]

𝜖, 0 -DP
𝑐

𝜖
|𝑥|

𝑐-Lipschitz 

on 𝒩𝜆
↓(𝑥) TAHOE 𝜖, 𝛿 -DP 𝑂

𝑐

𝜖2
log

1

𝛿
𝑂

1

𝜖
log

1

𝛿

Subset 

Extension
𝜖, 𝛿 -DP as above 𝑂

𝑐

𝜖
𝑂

1

𝜖
log

1

𝛿

Lower 

bounds
𝜖, 𝛿 -DP as above

[Ghosh Roughgarden Sundararajan 09] 

𝑐/𝜖, e.g., for 𝑓 𝑥 = |𝑥|
Ω

1

𝜖
log

1

𝛿

sensitivity

𝑐

The two lower bounds hold separately.



Plan

✓ Background on differential privacy and definition of privacy wrappers

✓Quantitative statement of results

• Privacy wrapper for the automated sensitivity detection setting

• Extension to graphs and other types datasets
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1. ShI mechanism [Fang Dong Yi 22] for monotone functions

2. Modified ShI (with better dependence on 𝑟, the size of the range)

3. From monotone to general functions
𝒓𝒂𝒏𝒈𝒆(𝒇)



ShI mechanism [Fang Dong Yi 22]

• Let 𝑔: 𝒰∗ → 𝒴, where 𝒴 is a finite subset of ℝ, be a monotone function.

• Define  𝑔𝑗 𝑥 = min 𝑔 𝑧 : 𝑧 ∈ 𝒩𝜆
↓(𝑥)  for each depth 𝑗 = 0,1, … , 𝜆 

and a sequence Ԧ𝑔 𝑥 = 𝑔0 𝑥 , 𝑔1 𝑥 , … , 𝑔𝜆 𝑥

• For each answer 𝑦 ∈ 𝒴, define                                                               
𝑠𝑐𝑜𝑟𝑒𝑥 𝑦 = the smallest number of 𝑔𝑗(𝑥) values that must be   

changed in Ԧ𝑔 𝑥  to make 𝑦 the median of the resulting sequence
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𝒈𝟎(𝒙) = 𝒈(𝒙)

ShI (Input: dataset 𝑥, privacy parameter 𝜖 > 0, failure probability 𝛽, finite range 𝒴;

       query access to a monotone function 𝑔: 𝒰∗ → 𝒴)

1. Set 𝜆 = Θ
1

𝜖
log

|𝒴|

𝛽
 and compute Ԧ𝑔 𝑥  

2. Compute the scores 𝑠𝑐𝑜𝑟𝑒𝑥 𝑦  for all 𝑦 ∈ 𝒴

3. Return: the output of the exponential mechanism run with these scores

𝒙

𝝀

𝒈𝟎 𝒙

𝒈𝝀 𝒙

⋮

Used in the exponential mechanism for the median



ShI mechanism: analysis  [Fang Dong Yi 22]

• Let 𝑔: 𝒰∗ → 𝒴, where 𝒴 is a finite subset of ℝ, be a monotone function.

• Define  𝑔𝑗 𝑥 = min 𝑔 𝑧 : 𝑧 ∈ 𝒩𝜆
↓(𝑥)  for each depth 𝑗 = 0,1, … , 𝜆 

and a sequence Ԧ𝑔 𝑥 = 𝑔0 𝑥 , 𝑔1 𝑥 , … , 𝑔𝜆 𝑥

Proof:
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The interleaving property

If 𝑔 is monotone and datasets 𝑥 ⊂ 𝑥′ are neighbors,           

then Ԧ𝑔 𝑥  and Ԧ𝑔 𝑥′  are interleaved:

𝑔𝜆 𝑥 ≤ 𝑔𝜆 𝑥′ ≤ ⋯ ≤ 𝑔1 𝑥 ≤ 𝑔1 𝑥′ ≤ 𝑔0 𝑥 ≤ 𝑔0 𝑥′

𝒙
𝒙′

𝒋 + 𝟏𝒋

(1) 𝑔𝑗+1 𝑥′ ≤ 𝑔𝑗 𝑥  for all 𝑗

𝒩𝑗+1
↓ 𝑥′ ⊃ 𝒩𝑗

↓ 𝑥

We are taking the minimum over the corresponding down−neighborhoods.



ShI mechanism: analysis  [Fang Dong Yi 22]

• Let 𝑔: 𝒰∗ → 𝒴, where 𝒴 is a finite subset of ℝ, be a monotone function.

• Define  𝑔𝑗 𝑥 = min 𝑔 𝑧 : 𝑧 ∈ 𝒩𝜆
↓(𝑥)  for each depth 𝑗 = 0,1, … , 𝜆 

and a sequence Ԧ𝑔 𝑥 = 𝑔0 𝑥 , 𝑔1 𝑥 , … , 𝑔𝜆 𝑥

Proof:

The interleaving property

If 𝑔 is monotone and datasets 𝑥 ⊂ 𝑥′ are neighbors,           

then Ԧ𝑔 𝑥  and Ԧ𝑔 𝑥′  are interleaved:

𝑔𝜆 𝑥 ≤ 𝑔𝜆 𝑥′ ≤ ⋯ ≤ 𝑔1 𝑥 ≤ 𝑔1 𝑥′ ≤ 𝑔0 𝑥 ≤ 𝑔0 𝑥′

𝒙
𝒙′

𝒋
𝒋

⇒ 𝒈𝒋 𝒙 ≤ 𝒈 𝒛′ = 𝒈𝒋(𝒙′)

⇒ 𝒈𝒋 𝒙 ≤ 𝒈 𝒛 ≤ 𝒈(𝒛′) = 𝒈𝒋(𝒙′) by monotonicity of 𝑔

(2) 𝑔𝑗 𝑥 ≤ 𝑔𝑗 𝑥′  for all 𝑗

Suppose 𝑥′ = 𝑥 ∪ {𝑘} and let 𝑧′ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔 𝑧 : 𝑧 ∈ 𝒩𝑗
↓(𝑥′) , i.e., 𝑔𝑗 𝑥′ = 𝑔(𝑧′)

Then either z′ ∈ 𝒩𝑗
↓ 𝑥  

              or 𝑧′ = 𝑧 ∪ 𝑘



𝒈𝟎(𝒙)𝒈𝝀(𝒙)

ShI mechanism: analysis  [Fang Dong Yi 22]

• Interleaving ⇒ privacy

𝑠𝑐𝑜𝑟𝑒𝑥 𝑦 − 𝑠𝑐𝑜𝑟𝑒𝑥′ 𝑦 ≤ 1

• Accuracy

     With probability at least 1 − 𝛽, ShI outputs
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𝑦 with 𝑠𝑐𝑜𝑟𝑒𝑥 𝑦 = 𝑂
1

𝜖
log

|𝒴|

𝛽

The interleaving property

If 𝑔 is monotone and datasets 𝑥 ⊂ 𝑥′ are neighbors, then Ԧ𝑔 𝑥  and Ԧ𝑔 𝑥′  are interleaved:

𝑔𝜆 𝑥 ≤ 𝑔𝜆 𝑥′ ≤ ⋯ ≤ 𝑔1 𝑥 ≤ 𝑔1 𝑥′ ≤ 𝑔0 𝑥 ≤ 𝑔0 𝑥′

𝒙

𝝀

𝒚

𝑦 ∈ [𝑔 𝑥 − D𝑆𝜆
𝑓

(𝑥), 𝑔 𝑥 ] for  sufficiently large 𝜆 ∈ Θ
1

𝜖
log

|𝒴|

𝛽



Modified ShI [this work]: abstracting ShI

• Interior Point Problem: Given a dataset 𝑥, return 𝑦 ∈ ℎ𝑢𝑙𝑙(𝑥)                                         
(with the usual definition of DP)

• Generalized Interior Point Problem [Bun Dwork Rothblum Steinke 18, Cohen Lyu Nelson 

Sarlόs Stemmer 23]: Given a dataset 𝑥, construct Ԧ𝑎 and return 𝑦 ∈ ℎ𝑢𝑙𝑙(𝑎)                     
(DP if for all neighbors 𝑥 and 𝑥′,                                                                                                               

the corresponding sequences Ԧ𝑎 and 𝑎′ are interleaved) 
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Idea: Abstract the original version of ShI 

as a reduction to the Generalized Interior Point problem

Given a sequence Ԧ𝑎 of numbers, define ℎ𝑢𝑙𝑙 Ԧ𝑎 = min Ԧ𝑎 , max Ԧ𝑎  



Modified ShI [this work]

• Generalized Interior Point Problem [Bun Dwork Rothblum Steinke 18, Cohen Lyu Nelson 

Sarlόs Stemmer 23]: Given a dataset 𝑥, construct Ԧ𝑎 and return 𝑦 ∈ ℎ𝑢𝑙𝑙(𝑎)                     

(DP if for all neighbors 𝑥 and 𝑥′, the corresponding sequences Ԧ𝑎 and 𝑎′ are interleaved)

• Modified ShI: Instead of using the exponential mechanism for the median on Ԧ𝑔 𝑥 ,                                         
we use the state-of-the-art 𝜖, 𝛿 -DP algorithms for Generalized Interior Point.
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This improves the dependence on 𝑟 = 𝒴  in locality 𝜆 from log 𝑟 to log
1

𝛿
⋅ 2𝑂 log∗ 𝑟  

at the price of having an (𝜖, 𝛿)-DP with positive 𝛿 instead of 𝜖, 0 -DP

Modified ShI runs the best of the two algorithms for a given parameter setting.

With probability at least 1 − 𝛽, it outputs 𝑦 ∈ [ min
𝑧∈𝒩𝜆

↓ 𝑥
𝑔(𝑧) , 𝑔 𝑥 ]

Accuracy of these algorithms translates into locality 𝜆 for Modified ShI



What’s missing for a black-box wrapper?

Issue

• Privacy guarantees of ShI [Fang Dong Yi 22] and our Modified ShI [this work] 
require monotonicity everywhere

• But Curi gets a black box that computes 𝑓

Solution

• Locally transform to 𝑓 get monotonicity

27



Enforcing monotonicity locally
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Monotonization operator 𝑀ℓ

For each ℓ ∈ ℤ, the level-ℓ monotonization of a function 𝑓: 𝒰∗ → 𝒴 
is a function 𝑀ℓ[𝑓] defined by

𝑀ℓ 𝑓 𝑥 = max 𝑓 𝑧 :  𝑧 ⊆  𝑥, 𝑧 ≥ ℓ ∪ {inf 𝒴}

𝒙

ℓ

Properties of monotonization (for all ℓ and 𝑓)

1. Function 𝑀ℓ 𝑓 𝑥  is monotone

2. If 𝑓 is monotone, then 𝑀ℓ 𝑓 = 𝑓. 

3. The value 𝑀ℓ 𝑓 𝑥  can be computed by querying 𝑓 on all subsets of 𝑥 of size at least ℓ. 

Idea: Pick ℓ randomly, aiming to get ℓ ≈ 𝑥 − 𝜆

𝝀

𝒩𝑥 −ℓ
↓ (𝑥)



Privacy wrapper with automated sensitivity detection (GenShI)

Privacy analysis:  

• Step 2 runs the Laplace mechanism with parameter 
𝜖

2
 to release a function with GS=1

• Step 3 runs an 
𝜖

2
, 𝛿 -DP mechanism

• By composition, GenShI is (𝜖, 𝛿)-DP

29

GenShI (Input: dataset 𝑥, privacy parameters 𝜖, 𝛿, failure probability 𝛽, finite range 𝒴 ⊂ ℝ;

       query access to a function 𝑓: 𝒰∗ → 𝒴)

1. Set 𝜆 to twice the depth needed to run Modified ShI with parameters 
𝜖

2
, 𝛿,

𝛽

2
and 𝒴

2. Release ℓ ← 𝑥 −
3

4
𝜆 + 𝑍  where 𝑍 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒

2

𝜖

3. Run Modified ShI with parameters 
𝜖

2
, 𝛿,

𝛽

2
and 𝒴

and query access to the monotonization 𝑀ℓ[𝑓] and return its answer.



Privacy wrapper with automated sensitivity detection (GenShI)

Proof:  Bad events: (1) noise magnitude |𝑍| is large; (2) Modified ShI fails

• Condition on bad events not occurring. Then 𝑥 − 𝜆 ≤ ℓ ≤ 𝑥 − 𝜆/2 and

𝒲𝑓 𝑥 = ShIMℓ 𝑓 (𝑥)

    Upper bound: 𝒲𝑓 𝑥  ≤ 𝑀ℓ[𝑓](𝑥)
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≤ 𝑀ℓ[𝑓](𝑥) min
𝑧∈𝒩𝜆/2

↓ 𝑥
𝑀ℓ 𝑓 (𝑧) ≤

𝒲:

= max 𝑓 𝑧 :  𝑧 ⊆  𝑥, 𝑧 ≥ ℓ  by definition of monotonization 

𝒙

𝝀𝝀/𝟐
ℓ

≤ max 𝑓 𝑧 :  𝑧 ∈ 𝒩𝜆
↓(𝑥)  since ℓ ≥ 𝑥 − 𝜆

Accuracy claim for GenShI  privacy wrapper

With probability at least 1 − 𝛽, GenShI outputs 𝑦 ∈ ℎ𝑢𝑙𝑙 𝑓 𝑧 :  𝑧 ∈ 𝒩𝜆
↓(𝑥)



Privacy wrapper with automated sensitivity detection (GenShI)

Proof (continued):  Condition on bad events not occurring. Then

𝒲𝑓 𝑥 = ShIMℓ 𝑓 (𝑥)

Lower bound: 𝒲𝑓 𝑥 ≥ min
𝑧∈𝒩𝜆/2

↓ 𝑥
𝑀ℓ 𝑓 (𝑧)

≤ 𝑀ℓ[𝑓](𝑥) min
𝑧∈𝒩𝜆/2

↓ 𝑥
𝑀ℓ 𝑓 (𝑧) ≤

𝒙

𝝀𝝀/𝟐
ℓ

≥ min
𝑧′∈𝒩𝜆

↓ 𝑥
𝑓(𝑧′)

Monotonization 𝑀ℓ 𝑓 𝑧 = 𝑓 𝑧′  for some 𝑧′ ⊂ 𝑧, 𝑧′ ≥ ℓ

Since ℓ ≥ 𝑥 − 𝜆, this 𝑧′ ∈ 𝒩𝜆
↓ 𝑥

𝒲:

Accuracy claim for GenShI  privacy wrapper

With probability at least 1 − 𝛽, GenShI outputs 𝑦 ∈ ℎ𝑢𝑙𝑙 𝑓 𝑧 :  𝑧 ∈ 𝒩𝜆
↓(𝑥)



Our results for the automated sensitivity detection setting 

The starting point for our algorithm is the Shifted Inverse (ShI) mechanism [Fang Dong Yi 22]

• It is not a privacy wrapper, because it is private only for monotone functions.

• It works for real-valued functions with a finite range 𝒴 ⊂ ℝ.
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Algorithm Privacy Accuracy 𝜶 Down locality 𝝀

[Fang Dong Yi 22] 𝜖, 0 -DP only for 

monotone 

functions

down 

sensitivity     

at depth 𝜆,

 D𝑆𝜆
𝑓

(𝑥)

𝜆 𝜖,0 ≔ 𝑂
1

𝜖
log

|𝒴|

𝛽

Modified ShI 𝜖, 𝛿 -DP 𝜆 𝜖,𝛿 ≔
1

𝜖
log

1

𝛿
⋅ 2𝑂 log∗ |𝒴|

Generalized 

ShI
𝜖, 𝛿 -DP

all 

functions
D𝑆𝜆

𝑓
(𝑥) min 𝜆 𝜖,0 , 𝜆 𝜖,𝛿

Lower bound 𝜖, 𝛿 -DP
all 

functions
D𝑆𝜆

𝑓
(𝑥) Ω

1

𝜖
log min

|𝒴|

𝛽
,
1

𝛿
 ⇒



Plan

✓ Background on differential privacy and definition of privacy wrappers

✓Quantitative statement of results

✓ Privacy wrapper for the automated sensitivity detection setting

• Extension to graphs and other types datasets
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1. ShI mechanism [Fang Dong Yi 22] for monotone functions

2. Modified ShI (with better dependence on 𝑟, the size of the range)

3. From monotone to general functions
𝒓𝒂𝒏𝒈𝒆(𝒇)



General domains

Our privacy wrappers can be implemented                                                                                      
for any partially ordered domain of datasets (𝐷, ≼) that satisfies:    

• There exists a unique minimum element in 𝐷 denoted ∅.       

• There is a function 𝑠𝑖𝑧𝑒: 𝐷 → ℤ≥0 such that,                                                                             
for all 𝑢 ∈ D, the partial order on the down neighborhood of 𝑢                                                      

is isomorphic to a hypercube 0,1 𝑠𝑖𝑧𝑒 𝑢 . 

• There exists a neighbor relation ∼ such that                                                                                          
if 𝑢, 𝑣 ∈  𝐷; 𝑣 ≼  𝑢; and 𝑠𝑖𝑧𝑒(𝑣) = 𝑠𝑖𝑧𝑒(𝑢) − 1 then 𝑢 ∼  𝑣 . 

Example: Datasets can be graphs (or hypergraphs) with ``node-neighbor’’ relationship

34

G: G′:



Summary of our contributions

• Formulated the automated sensitivity detection setting in the context of black-box 
privacy.

• Formalized notions of accuracy in both automated sensitivity detection and claimed 
sensitivity bound settings, appropriate for dealing with large/infinite universe.

• Reinterpreted and analyzed existing constructions, fitting them in the black-box 
privacy setting.

• Gave nearly optimal privacy wrappers and lower bounds for both settings                   
for black-box functions with real range.
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Open questions

• Can the dependence on the size of the range be avoided                                        
in the automated sensitivity detection setting?

• Can we design privacy wrappers for functions with more complicated outputs           
(e.g., vector outputs)?

• Our accuracy guarantees are instance-based. Potentially one can consider 
different notions of sensitivity/accuracy. Which notions are the best?

• Query complexity 𝑥 𝜆 ≈ 𝑛O(log 𝑛/𝜀) is too large for practice.                             
Are there practical alternatives (e.g., for important function classes,                      
or in combination with formal methods)?

36
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