Sublinear algorithms for
correlation clustering

Slobodan Mitrovic
(UC Davis)

Mina Dalirrooyfard Konstantin Makarychev
Morgan Stanley Research Northwestern University

Correlation clustering

[Bansal, Blum, Chawla, 2002, 2004]

Input:
n objects

Similarity function
(a, b) = {similar, dissimilar}

Correlation clustering

[Bansal, Blum, Chawla, 2002, 2004]

Input:
n objects
dissimilar similar Similarity function
(a, b) = {similar, dissimilar}

Correlation clustering

[Bansal, Blum, Chawla, 2002, 2004]

Input:
n objects
dissimilar similar Similarity function
(a, b) = {similar, dissimilar}

Goal:

A clustering that aligns with
as much as possible.

Correlation clustering

[Bansal, Blum, Chawla, 2002, 2004]

Input:
n objects
dissimilar similar Similarity function
(a, b) = {similar, dissimilar}

Goal:

A clustering that aligns with
as much as possible.

Cost=2+1

Correlation clustering

[Bansal, Blum, Chawla, 2002, 2004]

Input:
n objects

dissimilar similar Similarity function
(a, b) = {similar, dissimilar}

Goal:

A clustering that aligns with
as much as possible.

Application:

e Aggregating accounts

Cost=2+1

Correlation clustering

[Bansal, Blum, Chawla, 2002, 2004]

Input:
n objects

dissimilar similar Similarity function
(a, b) = {similar, dissimilar}

Goal:

A clustering that aligns with
as much as possible.

Application:

* Aggregating accounts
* Semi-supervised learning

Cost=2+1

History (an overview)

e [Bansal, Blum, Chawla, 2002, 2004]
e [Charikar, Guruswami, Wirth, 2003] — APX-hard, 4 approximation
* [Demaine, Emanuel, Fiat, Immorlica, 2006] — O(log n) approximation for weighted

* [Ailon, Charikar, Newman, 2005, 2008] — 3 approximation, Pivot

e [Chawla, Makarychev, Schramm, Yaroslavtsev, 2014] — 2.06 approximation
* [Cohen-Addad, Lee, Newman, 2022] — 1.994 approximation

* [Cohen-Addad, Lee, Li, Newman, 2023] — 1.73 approximation

e [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024] — 1.437 approximation

History (big data regimes)
I B e

n = number of vertices in the input graph

A = maximum vertex degree

Centralized Oo(m) [Ailon, Charikar, Newman, 2005]
3 MPC 0(log? n) [Blelloch, Fineman, Shun, 2012]
3+¢ MPC O(lognlogA) [Chierichetti, Dalvi, Kumar, 2014]
3 MPC O(logn) [Fischer, Noever, 2018]
3 MPC O(logAloglogn) [Cambus, Choo, Miikonen, Uitto, 2021]
~700 MPC 0(1) [Cohen-Addad, Lattanzi, M, Norouzi-Fard, Parotsidis, Tarnawski, 2021]
3+¢ MPC 0(1/e) [Behnezhad, Charikar, Ma, Tan, 2022]
3+¢ MPC o(1)* [Cambus, Kuhn, Lindy, Pai, Uitto, 2023]
3+€ MPC O(log1/e) this work
1.846 MPC 0(1) [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]
3+¢ LCA Ao(%) [Behnezhad, Charikar, Ma, Tan, 2022] Not complete picture.
34e LCA 0(A/e) this work We will return to this.
3+e Dynamic O(log®nlog?A) [Behnezhad, Derakhshan, Hajiaghayi, Stein, Sudan, 2019]
3+ Dynamic 0(log* n) [Chechik, Zhang, 2019]
3+€ Dynamic 0(1/e) this work
2.997 Dynamic polylogn [Behnezhad, Charikar, Cohen-Addad, Ghafari, Ma, 2024]

Recent History
in semi-streaming single pass

5 [Behnezhad, Charikar, Ma, Tan, 2023]
3+¢ [Cambus, Kuhn, Lindy, Pai, Uitto ,2023]
3+¢ [Chakrabarty, Makarychev, 2023]

3+¢ this work

Outline

Pivot (ailon, charikar, Newman, 2005]

Our approach (Pruned Pivot)
Implementations

Implications on Maximal Independent Set

Analysis

Pj_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph

/ Pivot \

Input: G =(V, E)

_ /

Pj_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph

/ Pivot \

Input: G =(V, E)

1. Let m be a random ordering of V

_ /

Pj_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph

/ Pivot \

Input: G =(V, E)

1. Let m be a random ordering of V
2. Fori=1ton
a. If (i) is not clustered
a. Cluster mt(i) and its un-clustered

\ neighbors together. /

edge =similar
no-edge = dissimilar

P j_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph 8

/ Pivot \ :

Input: G =(V, E)

1. Let mt be a random ordering of V 1
2. Fori=1ton

a. If it(i) is not clustered . 7
a. Cluster mt(i) and its un-clustered
5

\ neighbors together. /

edge =similar
no-edge = dissimilar

Pj_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph 8

/ Pivot \

Input: G =(V, E)

1. Let m be a random ordering of V
2. Fori=1ton
a. If (i) is not clustered
a. Cluster mt(i) and its un-clustered

\ neighbors together. /

edge =similar
no-edge = dissimilar

Pj_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph 8

/ Pivot \

Input: G =(V, E)

1. Let m be a random ordering of V
2. Fori=1ton
a. If (i) is not clustered
a. Cluster mt(i) and its un-clustered

\ neighbors together. /

edge =similar
no-edge = dissimilar

Pj_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph 8

/ Pivot \

Input: G =(V, E)

1. Let m be a random ordering of V
2. Fori=1ton
a. If (i) is not clustered
a. Cluster mt(i) and its un-clustered

\ neighbors together. /

edge =similar
no-edge = dissimilar

Pj_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph

/ Pivot \
Input: G =(V, E)

1. Let m be a random ordering of V
2. Fori=1ton
a. If (i) is not clustered
a. Cluster mt(i) and its un-clustered

\ neighbors together. /

edge =similar
no-edge = dissimilar

P j_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph pivot 8

/ Pivot \

Input: G =(V, E)

1. Let m be a random ordering of V piYOt

2. Fori=1ton

a. If (i) is not clustered piZo 7
a. Cluster mt(i) and its un-clustered
5

\ neighbors together. / 9

Claim: In expectation, Pivot outputs a 3-approximate correlation clustering.

2
pivot

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot. 3

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot. 3

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot. 3

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff
none of its smaller-rt-value neighbors is a pivot.

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot. 3

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot.

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot.

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot. 3

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot.

pivo

pivo

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot.

pivo

pivo

edge =similar
no-edge = dissimilar

P1vot — Recursive Query View

Vertex v is a pivot iff 8
none of its smaller-rt-value neighbors is a pivot.

pivo

pivo

P1vot — Recursive Query View

Vertex v is a pivot iff

none of its smaller-rt-value neighbors is a pivot.

\-

4 Our approach (Pruned Pivot)

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
Gives a 3+0(g) approximation.

~

j

pivo

edge =similar
no-edge = dissimilar

8

pivo

P1vot — Recursive Query View

Vertex v is a pivot iff

none of its smaller-rt-value neighbors is a pivot. [Behnezhad, Charikar, Ma, Tan, 2022]
Tree-depth = O(1/¢)

+
[Chakrabarty, Makarychev, 2023]
Vertex-width = O(1/¢)

Tree-size = 1/g0(1/¢)

4 Our approach (Pruned Pivot))

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
_ Gives a 3+0(g) approximation.)

Pruned Pivot:
Why to expect it works?

not cut by Pivot,
but cut by Pruned Pivot

~

4 Our approach (Pruned Pivot)

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
_ Gives a 3+0(g) approximation.)

Pruned Pivot:
Why to expect it works?

pivot
w 6
not cut by Pivot,
but cut by Pruned Pivot
pivot
1
1 Charge the blue to the red
query-edges cut by Pivot! pivo
4
O O
5 2
" Our approach (Pruned Pivot)) pivot

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
_ Gives a 3+0(g) approximation.)

Outline

* Implementations
* Implications on Maximal Independent Set

* Analysis

LCA(v)

1. Perform LCA gueries from v.
2. If the number of queries exceeds 1/g, make v singleton.

MPC

1. Reduce the degree of each vertex to (at most) 1/«.
2. Collect 1/e-hop neighborhood of each vertex.
3. Simulate the algorithm for each vertex locally.

Dynamic

1. An edge is in expectation in O(1) many query trees.
2. k-highest-ranked neighbors can be accessed in expected
O(k) time.

Dynamic

1. An edge is in expectation in O(1) many query trees. TBC (To Be Convinced)
2. k-highest-ranked neighbors can be accessed in expected
O(k) time.
l l l
| | |
Bucket 1 | Bucket 2 | ' Bucket d(v)
| | |
\) \

| |
i d(v)) [dé)’%&))) - 1)al(% J

Outline

* Implications on Maximal Independent Set

* Analysis

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

A = maximum degree

A = average degree

204 Expectation from any vertex [Nguyen, Onak, 2008]

0(A) Expectation from a random vertex [Yoshida, Yamamoto, Ito, 2009]

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

A = maximum degree

A = average degree

204 Expectation from any vertex [Nguyen, Onak, 2008]

0(A) Expectation from a random vertex [Yoshida, Yamamoto, Ito, 2009]
AO(Alog) polylogn Any vertex, whp [Rubinfeld, Tamir, Vardi, Xie, 2011]
A0 (log? A)poly logn Any vertex, whp [Levi, Rubinfeld, Yodpinyanee, 2017]

AOP) Jog* n Any vertex, whp [Levi, Medina, 2017]
A©og A)poly logn Any vertex, whp [Ghaffari, 2016]
A9Uoglogd)y 51y 1ogn Any vertex, whp [Ghaffari, Uitto, 2019]

poly(A) logn Any vertex, whp [Ghaffari, 2022]

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

A = maximum degree

A = average degree

204 Expectation from any vertex [Nguyen, Onak, 2008]

0(A) Expectation from a random vertex [Yoshida, Yamamoto, Ito, 2009]
AO(Alog) polylogn Any vertex, whp [Rubinfeld, Tamir, Vardi, Xie, 2011]
A0 (log? A)poly logn Any vertex, whp [Levi, Rubinfeld, Yodpinyanee, 2017]

AOP) Jog* n Any vertex, whp [Levi, Medina, 2017]
A©og A)poly logn Any vertex, whp [Ghaffari, 2016]
A9Uoglogd)y 51y 1ogn Any vertex, whp [Ghaffari, Uitto, 2019]
poly(A) logn Any vertex, whp [Ghaffari, 2022]

o(A) Expectation from a random vertex this work

Outline

PivOt [ailon, Charikar, Newman, 2005]

Our approach (Pruned Pivot)
Implementations

Implications on Maximal Independent Set

Analysis

1. Reveal ranks one at the time.

1. Reveal ranks one at the time.

pivot =inMIS |

1. Reveal ranks one at the time.

pivot =inMIS |

settled

pivot =inMIS |

v can be settled before its rank is revealed.

1.

Reveal ranks one at the time.

settled

settled

pivot

pivot =inMIS |

v can be settled before its rank is revealed.

1.

Reveal ranks one at the time.

settled

settled

pivot

pivot =inMIS |

v can be settled before its rank is revealed.

1.

Reveal ranks one at the time.

settled

pivot =inMIS |

v can be settled before its rank is revealed.

1.

Reveal ranks one at the time.

settled

pivot =inMIS |

v can be settled before its rank is revealed.

1.

Reveal ranks one at the time.

settled

pivot =inMIS |

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How large is the in-tree to a vertex?
How many times an edge is queried?

An attempt

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

An attempt

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

An attempt

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

An attempt

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

An attempt

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

Idea:

Condition on this state
Ask how many e’s (non-settled) neighbors
will query e at time t =10, 11, ..., n.

An attempt

@ > non-settled

_
Wk

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

Idea:

Condition on this state
Ask how many e’s (non-settled) neighbors
will query e at time t =10, 11, ..., n.

An attempt

@ > non-settled

_
Wk

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

Idea:

e Condition on this state

* Ask how many e’s (non-settled) neighbors
will query e at time t =10, 11, ..., n.

Why is this not an issue in the entire process?

v can be settled before its rank is revealed.

An attempt

@ > non-settled

_
Wk

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

Idea:

e Condition on this state

* Ask how many e’s (non-settled) neighbors
will query e at time t =10, 11, ..., n.

Why is this not an issue in the entire process?

It is unlikely e will query c in the first place!

v can be settled before its rank is revealed.

An attempt (and an idea)

e @ > non-settled

_
Wk

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

Idea:

e Condition on this state

* Ask how many e’s (non-settled) neighbors
will query e at time t =10, 11, ..., n.

Why is this not an issue in the entire process?

It is unlikely e will query c in the first place!

Very likely that wy or w, or w3 or ... or wy,
will have rank higher than c.

v can be settled before its rank is revealed.

An attempt (and an idea)

&
O,

W»
settled
c w
3
pivot

(in MIS)

d e C d @
® -O
®

Wk

v can be settled before its rank is revealed.

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

Idea:

e Condition on this state

* Ask how many e’s (non-settled) neighbors
will query e at time t =10, 11, ..., n.

Why is this not an issue in the entire process?

It is unlikely e will query c in the first place!

Very likely that wy or w, or w3 or ... or wy,
will have rank higher than c.

Formalizing

a

(.

e @ > non-settled

>—O0—Q @

Query path
7

Wk

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

Formalizing

pange Y e @ > non-settled
W3
5 /@ @

Query path

_
Wk

v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

Formalizing

1. Reveal ranks one at the time.
How many times edge (a, b) is queried?

If among c, e, wy, w,, ..., Wi, the rank of
c is set next, then:

w
@1)\ * newQuerypathe > c—>b —a
¢ * Potentially many w;-es query e —
ery ¥@ & .
Qu @ ¢ —» b — a; new Dangerous query

erous > non-settled
Dang c W pathsw; - e - ¢ = b - a (BAD)
a OING,).

Query path
t=5 —

Wk

v can be settled before its rank is revealed.

Formalizing

s auery path @WZ
gero > non-settled

Query path
7

Wk

v can be settled before its rank is revealed.

Reveal ranks one at the time.
How many times edge (a, b) is queried?

If among c, e, wy, w,, ..., Wi, the rank of

c is set next, then:

* newQuerypathe—=>c—->b—-a

* Potentially many w;-es query e —
¢ —» b — a; new Dangerous query
pathsw; - e - ¢ = b - a (BAD)

Otherwise, e never queries c! (GREAT)

Formalizing

1. Reveal ranks one at the time.
How many times edge (a, b) is queried?
If among ¢, e, w1, w,, ..., Wy, the rank of
c is set next, then:

w
@1)\ * newQuerypathe—>c—->b—-a
pat“ W * Potentially many w;-es query e —
¥O SQueN @ i > non-settled ¢ = b — a; new Dangerous query

erou
par® - W3 pathsw; = e = c - b = a (BAD)
a @ @ 2. Otherwise, e never queries c! (GREAT)
With probability ﬁ:
@ @ +1 query path and k Dangerous query paths

{ e
\Qn
®

Query path
t=5 L

Wi

v can be settled before its rank is revealed. | o

Formalizing

1. Reveal ranks one at the time.
How many times edge (a, b) is queried?
If among ¢, e, w1, w,, ..., Wy, the rank of
c is set next, then:

w
@1)\ * newQuerypathe—>c—->b—-a
ath W * Potentially many w;-es query e —
Yo So_ueNP @ i “~ non-settled ¢ = b = a; new Dangerous query

e u
par® - W3 pathsw; - e - ¢ - b — a (BAD)
a @ @ 2. Otherwise, e never queries c! (GREAT)
: 1
With probability PwL

@ @ +1 query path and k Dangerous query paths
With probability 1: -1 Dangerous query path

{®-
k@n
®

Query path
t - 5 — °

Wk

v can be settled before its rank is revealed. | o

Formalizing

Query path

_
Wk

v can be settled before its rank is revealed.

1. Reveal ranks one at the time.
How many times edge (a, b) is queried?

If among ¢, e, w1, w,, ..., Wy, the rank of

c is set next, then:

* newQuerypathe—=>c—->b—-a

* Potentially many w;-es query e —
¢ —» b — a; new Dangerous query

eroY @ >~ non-settled
par® - W3 pathsw; - e - ¢ - b — a (BAD)
a @ @ 2. Otherwise, e never queries c! (GREAT)

With probability ﬁ:
+1 query path and k Dangerous query paths
With probability 1: -1 Dangerous query path

2 * #[Dangerous query paths for (a, b)]
+ #[Query paths for (a, b)] is a supermartingale.

Formalizing

Query path

_
Wk

v can be settled before its rank is revealed.

1. Reveal ranks one at the time.
How many times edge (a, b) is queried?

If among ¢, e, w1, w,, ..., Wy, the rank of

c is set next, then:

* newQuerypathe—=>c—->b—-a

* Potentially many w;-es query e —
¢ —» b — a; new Dangerous query

eroY @ >~ non-settled
par® - W3 pathsw; - e - ¢ - b — a (BAD)
a @ @ 2. Otherwise, e never queries c! (GREAT)

With probability ﬁ:

+1 query path and k Dangerous query paths
With probability 1: -1 Dangerous query path

2 * #[Dangerous query paths for (a, b)]

+ #[Query paths for (a, b)] is a supermartingale.
At t = 0, that sum equals 2 for each edge (a, b).

Open questions

Other applications of this analysis.

MIS in poly A LCA queries in expectation
from any vertex.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: History (an overview)
	Slide 10: History (big data regimes)
	Slide 11: Recent History in semi-streaming single pass
	Slide 12: Outline
	Slide 13: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 14: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 15: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 16: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 17: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 18: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 19: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 20: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 21: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 22: Pivot – Recursive Query View
	Slide 23: Pivot – Recursive Query View
	Slide 24: Pivot – Recursive Query View
	Slide 25: Pivot – Recursive Query View
	Slide 26: Pivot – Recursive Query View
	Slide 27: Pivot – Recursive Query View
	Slide 28: Pivot – Recursive Query View
	Slide 29: Pivot – Recursive Query View
	Slide 30: Pivot – Recursive Query View
	Slide 31: Pivot – Recursive Query View
	Slide 32: Pivot – Recursive Query View
	Slide 33: Pivot – Recursive Query View
	Slide 34: Pivot – Recursive Query View
	Slide 35: Pruned Pivot: Why to expect it works?
	Slide 36: Pruned Pivot: Why to expect it works?
	Slide 37: Outline
	Slide 38: LCA(v)
	Slide 39: MPC
	Slide 40: Dynamic
	Slide 41: Dynamic
	Slide 42: Outline
	Slide 43: Maximal Independent Set (MIS)
	Slide 44: Maximal Independent Set (MIS)
	Slide 45: Maximal Independent Set (MIS)
	Slide 46: Maximal Independent Set (MIS)
	Slide 47: Maximal Independent Set (MIS)
	Slide 48: Outline
	Slide 49: Setup
	Slide 50: Setup
	Slide 51: Setup
	Slide 52: Setup
	Slide 53: Setup
	Slide 54: Setup
	Slide 55: Setup
	Slide 56: Setup
	Slide 57: Setup
	Slide 58: An attempt
	Slide 59: An attempt
	Slide 60: An attempt
	Slide 61: An attempt
	Slide 62: An attempt
	Slide 63: An attempt
	Slide 64: An attempt
	Slide 65: An attempt
	Slide 66: An attempt (and an idea)
	Slide 67: An attempt (and an idea)
	Slide 68: Formalizing
	Slide 69: Formalizing
	Slide 70: Formalizing
	Slide 71: Formalizing
	Slide 72: Formalizing
	Slide 73: Formalizing
	Slide 74: Formalizing
	Slide 75: Formalizing
	Slide 76
	Slide 77

