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Correlation clustering

[Bansal, Blum, Chawla, 2002, 2004]

Input:
n objects

dissimilar similar Similarity function
(a, b) = {similar, dissimilar}

Goal:

A clustering that aligns with
as much as possible.

Application:

* Aggregating accounts
* Semi-supervised learning

Cost=2+1



History (an overview)

e [Bansal, Blum, Chawla, 2002, 2004]
e [Charikar, Guruswami, Wirth, 2003] — APX-hard, 4 approximation
* [Demaine, Emanuel, Fiat, Immorlica, 2006] — O(log n) approximation for weighted

* [Ailon, Charikar, Newman, 2005, 2008] — 3 approximation, Pivot

e [Chawla, Makarychev, Schramm, Yaroslavtsev, 2014] — 2.06 approximation
* [Cohen-Addad, Lee, Newman, 2022] — 1.994 approximation

* [Cohen-Addad, Lee, Li, Newman, 2023] — 1.73 approximation

e [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024] — 1.437 approximation



History (big data regimes)
I B e

n = number of vertices in the input graph

A = maximum vertex degree

Centralized Oo(m) [Ailon, Charikar, Newman, 2005]
3 MPC 0(log? n) [Blelloch, Fineman, Shun, 2012]
3+¢ MPC O(lognlogA) [Chierichetti, Dalvi, Kumar, 2014]
3 MPC O(logn) [Fischer, Noever, 2018]
3 MPC O(logAloglogn) [Cambus, Choo, Miikonen, Uitto, 2021]
~700 MPC 0(1) [Cohen-Addad, Lattanzi, M, Norouzi-Fard, Parotsidis, Tarnawski, 2021]
3+¢ MPC 0(1/e) [Behnezhad, Charikar, Ma, Tan, 2022]
3+¢ MPC o(1)* [Cambus, Kuhn, Lindy, Pai, Uitto, 2023]
3+€ MPC O(log1/e) this work
1.846 MPC 0(1) [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]
3+¢ LCA Ao(%) [Behnezhad, Charikar, Ma, Tan, 2022] Not complete picture.
34e LCA 0(A/e) this work We will return to this.
3+e Dynamic O(log®nlog?A)  [Behnezhad, Derakhshan, Hajiaghayi, Stein, Sudan, 2019]
3+ Dynamic 0(log* n) [Chechik, Zhang, 2019]
3+€ Dynamic 0(1/e) this work
2.997 Dynamic polylogn [Behnezhad, Charikar, Cohen-Addad, Ghafari, Ma, 2024]



Recent History
in semi-streaming single pass

5 [Behnezhad, Charikar, Ma, Tan, 2023]
3+¢ [Cambus, Kuhn, Lindy, Pai, Uitto ,2023]
3+¢ [Chakrabarty, Makarychev, 2023]

3+¢ this work



Outline

Pivot (ailon, charikar, Newman, 2005]

Our approach (Pruned Pivot)
Implementations

Implications on Maximal Independent Set

Analysis
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P j_VOt [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph pivot 8

/ Pivot \

Input: G =(V, E)

1. Let m be a random ordering of V piYOt

2. Fori=1ton

a. If (i) is not clustered piZo 7
a. Cluster mt(i) and its un-clustered
5

\ neighbors together. / 9

Claim: In expectation, Pivot outputs a 3-approximate correlation clustering.

2
pivot
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4 Our approach (Pruned Pivot)

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
Gives a 3+0(g) approximation.
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P1vot — Recursive Query View

Vertex v is a pivot iff

none of its smaller-rt-value neighbors is a pivot. [Behnezhad, Charikar, Ma, Tan, 2022]
Tree-depth = O(1/¢)

+
[Chakrabarty, Makarychev, 2023]
Vertex-width = O(1/¢)

Tree-size = 1/g0(1/¢)

4 Our approach (Pruned Pivot) )

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
\_ Gives a 3+0(g) approximation. )
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4 Our approach (Pruned Pivot)

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
\_ Gives a 3+0(g) approximation. )




Pruned Pivot:
Why to expect it works?

pivot
w 6
not cut by Pivot,
but cut by Pruned Pivot
pivot
1
1 Charge the blue to the red
query-edges cut by Pivot! pivo
4
O O
5 2
" Our approach (Pruned Pivot) ) pivot

If the query tree for v has size greater
than 1/g, make v a singleton cluster.
\_ Gives a 3+0(g) approximation. )
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LCA(v)

1. Perform LCA gueries from v.
2. If the number of queries exceeds 1/g, make v singleton.




MPC

1. Reduce the degree of each vertex to (at most) 1/«.
2. Collect 1/e-hop neighborhood of each vertex.
3. Simulate the algorithm for each vertex locally.




Dynamic

1. An edge is in expectation in O(1) many query trees.
2. k-highest-ranked neighbors can be accessed in expected
O(k) time.




Dynamic

1. An edge is in expectation in O(1) many query trees. TBC (To Be Convinced)
2. k-highest-ranked neighbors can be accessed in expected
O(k) time.
l l l
| | |
Bucket 1 | Bucket 2 | ' Bucket d(v)
| | |
\ ) \

| |
i d(v)) [dé)’%&)) ) - 1)al( % J
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Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

A = maximum degree

A = average degree

204 Expectation from any vertex [Nguyen, Onak, 2008]

0(A) Expectation from a random vertex [Yoshida, Yamamoto, Ito, 2009]
AO(Alog ) polylogn Any vertex, whp [Rubinfeld, Tamir, Vardi, Xie, 2011]
A0 (log? A)poly logn Any vertex, whp [Levi, Rubinfeld, Yodpinyanee, 2017]

AOP) Jog* n Any vertex, whp [Levi, Medina, 2017]
A©og A)poly logn Any vertex, whp [Ghaffari, 2016]
A9Uoglogd)y 51y 1ogn Any vertex, whp [Ghaffari, Uitto, 2019]
poly(A) logn Any vertex, whp [Ghaffari, 2022]

o(A) Expectation from a random vertex this work
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v can be settled before its rank is revealed.

1.
2.

Reveal ranks one at the time.
How large is the in-tree to a vertex?
How many times an edge is queried?
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Formalizing

Query path

_
Wk

v can be settled before its rank is revealed.

1. Reveal ranks one at the time.
How many times edge (a, b) is queried?

If among ¢, e, w1, w,, ..., Wy, the rank of

c is set next, then:

* newQuerypathe—=>c—->b—-a

* Potentially many w;-es query e —
¢ —» b — a; new Dangerous query

eroY @ >~ non-settled
par® - W3 pathsw; - e - ¢ - b — a (BAD)
a @ @ 2. Otherwise, e never queries c! (GREAT)

With probability ﬁ:

+1 query path and k Dangerous query paths
With probability 1: -1 Dangerous query path

2 * #[Dangerous query paths for (a, b)]

+ #[Query paths for (a, b)] is a supermartingale.
At t = 0, that sum equals 2 for each edge (a, b).



Open questions

Other applications of this analysis.

MIS in poly A LCA queries in expectation
from any vertex.
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