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Distribution Learning

N
Given samples from an unknown distribution P*, we want to “learn” a distribution P which is “close to” P~.

Samples x(V, x®_ ... ~ p* Distribution Learner Predicted distribution }A)
R >
o AP, P)<ewp >1-90

. P should generally be “efficiently sampleable” (can return a sampler).

« May want P to have a specific structure. Assumptions (if any) about P*.

A P*(x)
d.,. (P* P)= P*(x)l
o ( ) Z (x)log Poo




Distribution Learning Contd.

M @ . px . L n
Samples x'"), x\“, ..., P> Distribution Learner Predicted distribution P .
=4 de (P*,P)<ewp >1-6

» Pertinent complexity measures for a distribution learning algorithm include:

e Sample complexity (# of samples needed for theoretical guarantees to hold)

e Time complexity (running time)

Algorithm design might involve trade-offs between these two factors.



Distribution Learning: Motivation

A lot of machine learning is implicitly distribution learning where the learnt distribution is on &,
given by the data/features distribution (over 2 and the classification or regression model

[: ¥ = 2D clustering problem

. e Induceg a distribution on
T s, e 0,117 x {0.1,2}.

o, ° oo o0®
eye N — —

0,67

...' g o Y . data labels

B AR S A R Learning this distribution gives a
Wit clustering method (after

L CF Ly ¥4 Tl marginalization, choose the marginal

with maximum likelihood).




Learning High Dimensional Distributions

- Distribution learning is non-trivial even with discrete distributions, when the domain is large, e.g [k]".

» Takes exponential number of samples and time in general.

r )

(k") samples are required for learning arbitrary distributions over [k] "

\_ ,

Many use cases involve high dimensional distributions:

* Machine Learning

* Program Analysis

Can we learn important subclasses?




Bayesian Networks

A distribution P over n variables X, ..., X, is a Bayesian Network on a DAG
G = ([n], E) if P factories as follows:

Y

Pe) = [ Pr (X =x1 V) € pa(i). X; = )
i=1 "

P(A =a,B = b’E= 6) =pB(b) pE(e) 'pA(a | b’e)

A Bayes net distribution P can be represented by <G, P = {p, <Xi | Xpa(i)> ] iem).

Representation requires O(nk*!) space.



Bayes Nets Contd.

Indegree, treewidth etc. of a Bayes net refers to the indegree, treewidth etc. of G.

Any distribution P(X}, ..., X,,) can be represented by a ‘@‘
Bayes net with indegree < n — 1.

(in)degree of G = maximum (in)degree of its vertices.

P(A=a,B=0b,E =e)=pg) - pgle) -psla|b,e)

P(x) = HXI,)Vrp <Xi =X | Xy =xp, .., X = i—1>

=1



Distribution Learning Variants

Samples x(, x®_ ... ~ p* Distribution Learner Predicted distribution P

> oA - >
AP*,P)<ewp >21-6

All Distributions on [k|"

Realizable Learning: P* = Cg %oncept class
P* arbit. (Agnostic)

. . . * . .
Agnostic Learning: P* arbitrary P* € % (Realizable) o
p ;pelgA(P ,P)

Proper Learning: P € € A
P € € (Proper)

Improper Learning: P is mixture of % distributions P ¢ © (improper)




Our results: Spotlight 1

Efficient learning algorithm for tree-structured distributions that requires 5(

samples respectively in the realizable and agnostic cases.

* First efficient algorithm that does not use the Chow-Liu approach.

. Sample complexity better in terms of k (k* vs k) compared to the Chow-Liu approach in the realizable

case.
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Our results: Spotlight 2

First efficient algorithm for learning chordal-structured distributions when the
37.d+1
n’k

~

skeleton is known. Sample complexity O 5
€

« Chordal-structured distributions form a large and interesting class of Bayes nets over [k] "

 Covers tree-structured distributions, polytree-structured distributions etc.

* Previously, no efficient algorithms for learning even if skeleton was known.
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Online Learning



Online Learning (Prediction)

- Before seeing outcome xD e X, learner predicts =1
HEeD.
- After prediction, learner sees x¥ and suffers loss _
2 t=2
£(f,x").

. x(l), ...,x(T) can be arbitrary.

Online Prediction

Learner

A

Si

Loss z,”(fl, x()

Learner

—’\ fz

Loss Z( fz, x@)

Learner

Loss £( fT, x 1)y
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Prediction with Expert Advice

« The online learning algorithm & is given a set of experts & = {E,, ..., Ey}.

- Suppose each E; corresponds to a prediction in .

. o predicts f, based on {E,, ..., Ey} before seeing x© .

« o suffers loss £( ft, xW) . E; suffers loss Z(E, x")..

Regret of learner &/ wrt & is:

T T
Reg(l: &)=Y £(P,x") - min Y C(E,x)

=1 =1

Total loss of #  Total loss of bext expert

14



Online Distribution Learning

. Before seeing x'¥, learner predicts }A’t.

_ 1
r=1 x( ) Learner
. After prediction, learner sees x") and
suffers loss (Pt,x(’)) . t=2 x@ Learner
. x(l), ...,x(T) are iid samples.
=T x(T) Learner

Every Expert will be a candidate distribution!

— | P

Loss £(P;,x(1)

[ |P
Loss £(P,, x®)

A 7

Loss £ (}A’T, x(D)
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Online Distribution Learning Contd.

Regret of an online distribution learning algorithm &f wrt class of distributions € is

Reg(d;6) = Z £(P,x?) — gggg} Z £(P,x")
=1

Total loss of #  Total loss of bext expert

« Useful to have algorithms with Reg (<, €) = o(T).

Reg(d,6)
. Average regret T = o(1).

No regret learning!
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Interplay of Distribution Learning & Online Learning

For Z(P, x) is log loss and x1, ..., x(1) ~ P*,

(" | )
E E [d P*P]g— E  [Ree(s: ©)| + mindy, (P* P

XD, xDpr t~Unif([T]) KL( | t) T xO,. xD [ gT( )] PE® KL( )
\_ Y,

Low regret online algorithms gives distribution learning algorithms!
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Interplay of Distribution Learning & Online Learning Contd.

11
E E [dKL(P*HPt)] <= E |Regded: ®)| +mindq (P* P)
D Pe%®

xD . xD~pr o t~Unif([T - T xD L x®D

o If we run & for large enough T, then

1 & -
*|| — . s«
O [dKL <P ”sz t>} <mindg (P* P)+e

=1

» Apply concentration bounds for high probability guarantee.
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Proof Sketch of Reg-AL Lemma

. 1
" k _ k
Lemma: x<1>,_..E<T>~p* tNUn[E([TD [dKL(P IIPt)] < T o) xm [RegT(.Qf %)] +m1n de (P* P)

1 1 4 1
phesn( e 6) = ;1 5P P(x (r)) T pes‘gzl = Pao)

T Px(x®) 1 T P#(x®)
Linearity of expectation & law of conditional expectation

= — 0O
Z o8 P(x®) " bew T . P(x")
4 PE(x®) /1 4 PH(x D)
log
1

— [E  Regnd,6)= 12 E E |log A xE=D - E min—
T xO®,_ . xO T - xM o xE=D xOpx pt(x(f)) xO.xD peg T . Pt(x(’))

1 < PE(x®)
—min— ) E |log
pee T = x® P(x®)

Jensen’s ineq. and linearity of
expectation

1 « P(x®
T x L x=D xOpx Pt(x(f))

=1

xD, L x=D

- E (P* P)—mind p+ p
D xD t~Unif([T]) KL ! Pe¥ KL( )

.....

Rearranging gives the lemma!
19



Our results



Learning Bayes nets Bounds

€ ={ Bayes nets of indegree < d over [k] "y | These algorithms
are time inefficient!

Sample Complexity

Realizable

Agnostic

Improper Learning

~ nkd+l
0 log —

| A pAg2a+2 1
0 log —
) e4 o8 )

&£

)

Proper Learning

3 <n2kd+1 )
O (BGPTV21)
82

~ n3kd+1
o €252

Lower bound

nkd+1
gz _
E

> (BCD20)
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Tree-structured Distributions

Let 7'be a tree on [n], and G be any rooted
orientation of 7 aka out-arborescence (all edges
directed outwards from a fixed root node).

A distribution P is tree-structured (aka a tree Bayes
net) if it is a Bayes net on G- for some tree T.

P(x) = pi(x)) - po(xy | x1) - p3(x3 | x1) - pa(y | X3) - ps(xs | Xp) - pe(x | X5)

22



Our results for Tree-struct. Distributions

1
Runs in Poly(n, —, —) time!
£ 0

Sample Complexity Realizable Agnostic

O nk? o n*k* | 1
I L i — 0og —
mproper Learning 5 -4 g 5
_ o nk? o nk?

Proper Learning T 2252

nk? n*\ (BGPTV21
Lower bound Q <T>(CDKS17) Q (Z) I(Z)P21) ’




Chordal-structured Distributions

G = undirected chordal graph (all cycles of length > 4 have chord edges).

G = any DAG with skeleton (underlying undirected graph) G.

Distribution Pis chordal-structured with skeleton G if it is a Bayes net on G.

Tree-structured Polytree-structured Chordal-structured
(tree skeleton, DAG oriented arbitrarily) (non-tree skeleton)

24



Our results for Chordal-structured distribution

G is undirected chordal graph.

‘€ ={ Bayes nets with skeleton G of indegree < d over [k] n}

Sample Complexity

Agnostic

Improper Learning

~ n4k2d+2 1
O log —
et g5

Runs in Poly(n, —, —) time!
g 0

Proper Learning

~ n3kd+1
0 €262

Lower bound

nkd+1
Q (CYBC24)
E
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Our Techniques



Our Algorithm Framework 1: Discreatization

For a class € of Bayes nets, discreatize distributions in € to
a finite set /#/° C C such that

o Clipping: —log P(x) is upper bounded for all P € V..

 Bucketing: Bound regret wrt ./ close to regret wrt 6.

0.5¢

Distribution over {0,1,2}
p = (x,y) in outer triangle

pO)y=1-x-y
p(l) =x
p2)=y

27



Our Algorithm Framework 2: Learning

Run an EWA / RWM-based online learning algorithm with ./ as the set of experts.

« EWA = Exponential Weighted Average (returns mixture of .// -distributions).

« RWM = Randomized Weighted Majority (returns single distribution in ./).

Use regret bounds of EWA/RWM to get learning guarantees.

28



EWA and RWM based

Learning Algorithms

Algorithm 1: EWA forecaster

Algorithm 2: RWM forecaster

Input: Experts £ ={FEy,...,En},
parameter 7, horizon 7.
1 wio < 1 for each ¢ € [N].
2 fort <+ 1toT do
B ﬁt . Zivzl wi,t—1 By

Z;'Vzl Wj,t—1 .

4 Output P,.

5 Observe outcome z®.
6 | forie|[N]do

7 Wit <

Wi t—1 - €XP (—77 - A(E;, x(t))).

Input: Experts &€ = {Es,...,En},
parameter 7, horizon 7.
1 w;o < 1 for each i € [N].
2 fort«+ 1toT do
3 Sample P, € € where

Pr[P; = Ej] = <52

D i Wit-1
4 Output P
5 Observe outcome z(%).
6 | foriec [N]do
7 Wit <

W; t—1 - €XP (—77 - L(E;, x(t))).

29



Regret Bounds of EWA & RWM

I T
Reg (o, &) = Z £(P, x0) — min Z 2P, x )

=1

£(P,x) = log <

For finite &, EWA forecaster gives

Reg(EWA; &) < O(logN)

1
P(x)

)

Ee&
< =1

For finite &, RWM algorithm gives

Reg(RWM; &)] < O(/T logN)

30



Our Algo Framework: Time Efficiency

Goal is to implement the EWA/RWM based algorithms efficiently.

EWA/RWM based algorithms use exponential space and time even when k and d are constant.

nk nkd+1
Number of candidate distribution is O <—> .
€

For trees, chordal graphs etc., one can take advantage of the product structure of the EWA/
RWM mixture distribution.

Can sample efficiently from it “edge-by-edge” (each element of ./ is a Bayes net (G, P)).

31



Efficient Learning of Tree-structured distributions

Consider ./ "REE the discretization of all tree-structured Bayes nets (T, P = { Dis s Dy}) -

« Each spanning tree T'of K is oriented (outwards) with root 1.

~

Algorithm
1. Sample p, (distribution at root node) from discretization.

2. Sample tree structure T.

3. Sample p(x; | x,,;) from discreatization for every i € {2,...,n}.

_J

. Steps (1) and (3) involve sampling from Poly(n, —) possibilities for constant k.
€



Tree-structured distributions Contd.

* The sampling step involves computing a normalization factor with exponential terms of the form

Y e

T ecT
out oriented

» Can efficiently compute this using a weighted version of Tutte’s matrix tree theorem as the
determinant of associated Laplacian matrix (DL 20).

« The probability of sampling an edge of 1 is the ratio of two Laplacian determinants.

33



Sampling Tree Structured Distribution Example

L0 — O —

(D O —
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Learning Chordal Distributions

« Unlike trees, not all orientations of a chordal skeleton G are acyclic.

* Need to compute weighted sums over all
partial acyclic orientations of G consistent
with a particular sub-orientation.

* This generalizes the problem of “counting acyclic
orientations of a chordal graph” (BS 22).

* The clique tree decomposition of a chordal graph
guides the DP computation and sampling.

Chordal-structured DAG
* DP table can be used to sample a random_>

acyclic orientation, giving a random DAG G with
appropriate probability.

35



(X~ <X

Sampling Chordal distribution Example



Conclusion

Designed the first efficient algorithm for learning chordal-structured distribution.
Our approach gives new algorithm for learning tree structured distributions.

Can our bounds be improved?

Can this approach be extended for other models?

Thank You!
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