Improved streaming approximations for Max-DICUT via local snapshots Santhoshini Velusamy (TTIC)

Based on joint works with Raghuvansh Saxena, Noah Singer, and Madhu Sudan

CUT size = 4

Output largest CUT size

З

DICUT size = 3

Output largest DICUT size

Compute the size of the largest CUT/DICUT in small space

 $0 < \alpha < 1$, α approximation: outputs T such that: $\alpha \cdot OPT \leq T \leq OPT$

Folklore approximations

- Arbitrary constant approximation in $\tilde{O}(n)$ space:
 - sample $O(n/\epsilon^2)$ random edges
 - obtain (1ϵ) approximation
- Trivial approximation in $O(\log n)$ space:
 - Max-CUT: count the number of edges m and output m/2
 - Max-DICUT: output m/4

compute Max-CUT/Max-DICUT value (possibly in exponential time) to

What approximations are possible in o(n) space?

Max-CUT

- central problem for lower bounds
- [Kapralov Krachun 19] no non-trivial approximation in o(n) space
- [Chou Golovnev Sudan V 22] extension to several CSPs

Max-DICUT

- central problem for algorithms
- [Guruswami Vellingker V 17]
 "bias-based" algorithm with non-trivially approximation in
 O(log n) space
- [Chou Golovnev V 20] "biasbased" algorithm is optimal in $o(\sqrt{n})$ space
- [Chou Golovnev Sudan V 21] extension to all CSPs

Goals of this talk

- in $\tilde{O}(\sqrt{n})$ space
- o(n) space for bounded-degree graphs

Simulate local algorithms for Max-DICUT in the streaming setting by capturing local snapshots of the graph

[Saxena Singer Sudan V 23] beat "bias-based" algorithm for Max-DICUT

[Saxena Singer Sudan V upcoming] 1/2-approximation for Max-DICUT in optimal

Local algorithm I: oblivious algorithms

Introduced by Feige and Jozeph in 2015

• Bias of a vertex $v = \frac{\operatorname{out}(v) - \operatorname{in}(v)}{\operatorname{deg}(v)}$

• Oblivious algorithm \mathcal{O} : (randomly) assign every vertex based only on its bias

• Approximation ratio = $\mathbb{E}[DICUT(\mathcal{O})]$

$$(-)) \in [-1,1]$$

Oblivious approximations for Max-DICUT

- [FJ15] Oblivious algorithm with approximation ratio > 0.483
- [CGV20] Best $o(\sqrt{n})$ space streaming approximation for Max-DICUT is ≈ 0.44
- [SSSV23] Implement [FJ15] algorithm using only $\tilde{O}(\sqrt{n})$ space in the streaming setting

- [FJ15] algorithm has only constant number of bias classes
 - **Bias intervals**

 $-1 < b_0 < b_1 < \dots < b_{r-1} < 1$

- Suffices to compute a "constant-sized" snapshot of the graph

Collapse vertices within the same bias interval

• Goal: Output $\mathbb{E}[DICUT(\mathcal{O})]$ to get > 0.483 approximation to Max-DICUT

Computing snapshots: special cases

- Edges are randomly ordered:
 - biases of the vertices. Compute snapshot.
- Bounded-degree graphs:
 - Sample $O(\sqrt{n})$ random (non-isolated) vertices. Store the induced subgraph and track the biases. Compute snapshot.
 - Bounded-degree assumption is crucial!

• Take the first O(1) edges. Store the induced subgraph and track the

Snapshot estimation for arbitrary graphs

- "Layered Sampling of vertices"
 - Partition the degrees: $1 \le d_0 <$
 - min $\left\{ \tilde{O}\left(\frac{d}{\sqrt{n}}\right), 1 \right\}$ and store the induced subgraph
- stream

$$d_1 \cdots < d_{\log n} \le n$$
, where $d_{i+1}/d_i = 2$

• sample vertices of degree between $\frac{d}{2}$ and d with probability

Issue: We do not know the degree of the vertex when it first appears in the

Snapshot estimation for arbitrary graphs

- "Layered sampling of edges"
 - Subsample edges with probability $\tilde{O}\left(\frac{1}{d}\right)$
 - Degree d vertices have degree $\tilde{O}(1)$ in the above graph
 - Ignore vertices with degree $\gg \tilde{O}(1)$ or $\ll \tilde{O}(1)$; Subsample every vertex with probability min $\left\{ \tilde{O}\left(\frac{d}{\sqrt{n}}\right), 1 \right\}$ and store all the edges incident to it
- Issue: Can misclassify vertices and place them in wrong layers. Could also potentially make errors in bias computation

Snapshot estimation for arbitrary graphs

- Refined snapshot M((i, j), (k, l)): How many edges go from bias-interval B_i , degree-interval D_i to bias-interval B_k and degree-interval D_l ?
- Smoothed snapshot \widehat{M} : Average of M over a "window" of size w
- Pointwise estimate \widehat{M}
 - More accurate estimates with increasing w
 - Harder to "retrieve" M if w is too large

Why smoothed snapshots suffice?

Why don't misclassification errors matter?

- Degree misclassification errors do not affect snapshot computation
 - If there is no error in bias computation, snapshot computed from M and \widehat{M} are exactly the same
- Bias misclassification errors do not affect Max-DICUT value when w is small
 - Perturb the original graph G to get a new graph H with similar Max-DICUT value; Smoothed-snapshot(G) \approx Refined-snapshot(H)
 - If bias of v is off by ϵ , create a new isolated vertex and modify bias by creating at most ϵd new edges; Max-DICUT value does not change by more than ϵm

Local algorithm II: distributed algorithms

- Message-passing model:
 - In every round, each vertex receives a message from each of its neighbors
 - After k rounds, each vertex "locally" computes its assignment
- [Censor-Hillel Levy Shachnai 17] [Buchbinder Feldman Seffi Schwartz 15] distributed algorithm for Max-DICUT $\frac{1}{2}$ approximation (Δ + 1) rounds

[CLS17] [BFSS15] Distributed algorithm \mathscr{D}

- Obtain a proper Δ + 1 vertex coloring of the graph
- Assign vertices in batches
 - In the first round, assign vertices of color 1
 - In the second round, assign vertices of color 2, and so on
- At every round after a vertex is assigned, it sends a message to all higher color neighbors

• Approximation ratio = $\frac{\mathbb{E}[\mathsf{DICUT}(\mathcal{D})]}{\mathsf{OPT}}$

- Randomly color the graph using $O(1/\sqrt{\epsilon})$ colors
- With high probability, at most ϵ fraction of edges are monochromatic
- Delete the monochromatic edges \bullet
- Distributed algorithm $\mathscr{D}: \frac{1}{2} \epsilon$ approximation in $O(1/\sqrt{\epsilon})$ rounds
- Want to compute $\mathbb{E}[\mathsf{DICUT}(\mathcal{D})]$

$$\mathbb{E}[\mathsf{DICUT}(\mathcal{D})] = \sum_{e \in E} \Pr[e \in \mathsf{DICUT}(\mathcal{D})]$$

• Sample O(1) random edges and compute their average probability of belonging to DICUT(\mathcal{D})

• Radius-*k* neighborhood of an edge

• Observation: radius- $O(1/\sqrt{\epsilon})$ neighborhood of *e* suffices to compute the probability that e belongs to $DICUT(\mathcal{D})$

- Type of an edge: Radius- $O(1/\sqrt{\epsilon})$ neighborhood
- $\Delta \leq d$
 - $N(d,\epsilon)$ possible types: estimate the type distribution to compute $\mathbb{E}[\mathsf{DICUT}(\mathcal{D})]$
- Sublinear space: For each type T
 - sample $O(n^{1-f(\epsilon,d,T)})$ random (non-isolated) vertices. Store the induced subgraph and the degrees of all the vertices.
 - consider edges whose entire radius- $O(1/\sqrt{\epsilon})$ neighborhood is contained within the stored graph
 - compute the number of edges of type T (and appropriately rescale)

- Random ordering $O(\log n)$ space
 - [Monemizadeh Muthukrishnan Peng Sohler 17]
 - High-level idea: Track the types of O(1) random edges via BFS
 - compute the "visible" type distribution \mathcal{V} and infer the "true" distribution \mathcal{T} from \mathcal{V}

• $\mathcal{V} = M\mathcal{T}$

• *M* is invertible

•
$$\mathcal{T} = M^{-1} \mathcal{V}$$

Streaming

Open problem I

- Extending 1/2-approximation to general unbounded degree graphs
 - [SSSV upcoming] $O(1/\sqrt{\epsilon})$ pass $O(\log n)$ space algorithm
 - distributed algorithm: for high-degree vertices, suffices to sample messages from d random neighbors
 - Challenge: implementing in fewer passes, even with a randomly ordered stream

Open problem II

- Extension to other CSPs \bullet
- Max-k-AND
 - [CGSV 22] o(n) space approximation is
 - achieved by "bias" algorithm
 - algorithm
 - smallest open case: Max-2AND (not sub-modular)

between
$$\left[\frac{1}{2}^k, \frac{1}{2}^{k-1}\right]$$

• [Boyland-Hwang-Prasad-Singer V 22] closed form expression for the approximation ratio

• [Singer 23] established that for every k, there exists an oblivious algorithm that beats "bias"

• Challenge: Is it possible to achieve $\frac{1}{2}^{k-1}$ -approximation for Max-k-AND in sublinear space?

Thanks for your attention!