
Improved streaming
approximations for Max-DICUT via

local snapshots
Santhoshini Velusamy (TTIC)

Based on joint works with Raghuvansh Saxena, Noah Singer, and Madhu Sudan

Max-CUT

2

Max-CUT

CUT size = 4

Output largest CUT size
3

Max-DICUT

4

Max-DICUT

DICUT size = 3

Output largest DICUT size
5

Streaming setting

6

Streaming setting

7

Streaming setting

8

Streaming setting

9

Streaming setting

10

Compute the size of the largest CUT/DICUT in small space

, approximation: outputs such that: 0 < α < 1 α T α ⋅ OPT ≤ T ≤ OPT

Folklore approximations
• Arbitrary constant approximation in space:

• sample random edges

• compute Max-CUT/Max-DICUT value (possibly in exponential time) to
obtain approximation

• Trivial approximation in space:

• Max-CUT: count the number of edges and output

• Max-DICUT: output

Õ(n)

O(n/ϵ2)

(1 − ϵ)

O(log n)

m m/2

m/4

What approximations are
possible in space?o(n)

Max-CUT Max-DICUT
• central problem for lower

bounds

• [Kapralov Krachun 19] no
non-trivial approximation in

 space

• [Chou Golovnev Sudan V 22]
extension to several CSPs

o(n)

• central problem for algorithms

• [Guruswami Vellingker V 17]
“bias-based” algorithm with non-
trivially approximation in

 space

• [Chou Golovnev V 20] “bias-
based” algorithm is optimal in

 space

• [Chou Golovnev Sudan V 21]
extension to all CSPs

O(log n)

o(n)

Goals of this talk
• [Saxena Singer Sudan V 23] beat “bias-based” algorithm for Max-DICUT

in space

• [Saxena Singer Sudan V upcoming] -approximation for Max-DICUT in
 space for bounded-degree graphs

Õ(n)

1/2
o(n)

optimal

Simulate local algorithms for Max-DICUT in the streaming setting by
capturing local snapshots of the graph

Local algorithm I: oblivious algorithms
• Introduced by Feige and Jozeph in 2015

• Bias of a vertex =

• Oblivious algorithm : (randomly) assign every vertex based only on its
bias

• Approximation ratio =

v
out(v) − in(v)

deg(v)
∈ [−1,1]

𝒪

𝔼[DICUT(𝒪)]
OPT

Oblivious approximations for Max-DICUT

• [FJ15] Oblivious algorithm with approximation ratio

• [CGV20] Best space streaming approximation for Max-DICUT is

• [SSSV23] Implement [FJ15] algorithm using only space in the
streaming setting

> 0.483

o(n)
≈ 0.44

Õ(n)

Streaming implementation
• [FJ15] algorithm has only constant number of bias classes

• Bias intervals

• Goal: Output to get approximation to Max-DICUT

• Suffices to compute a “constant-sized” snapshot of the graph

𝔼[DICUT(𝒪)] > 0.483

p0 p1 pr

−1 1b0 b1 br−1
−1 < b0 < b1 < ⋯ < br−1 < 1

Collapse vertices within the
same bias interval

Computing snapshots: special cases
• Edges are randomly ordered:

• Take the first edges. Store the induced subgraph and track the
biases of the vertices. Compute snapshot.

• Bounded-degree graphs:

• Sample random (non-isolated) vertices. Store the induced
subgraph and track the biases. Compute snapshot.

• Bounded-degree assumption is crucial!

O(1)

O(n)

Snapshot estimation for arbitrary graphs
• “Layered Sampling of vertices”

• Partition the degrees: , where

• sample vertices of degree between and with probability

 and store the induced subgraph

• Issue: We do not know the degree of the vertex when it first appears in the
stream

1 ≤ d0 < d1⋯ < dlog n ≤ n di+1/di = 2

d
2 d

min {Õ (d

n) ,1}

18

Snapshot estimation for arbitrary graphs
• “Layered sampling of edges”

• Subsample edges with probability

• Degree vertices have degree in the above graph

• Ignore vertices with degree or ; Subsample every vertex with

probability and store all the edges incident to it

• Issue: Can misclassify vertices and place them in wrong layers. Could also potentially
make errors in bias computation

Õ (1
d)

d Õ(1)

≫ Õ(1) ≪ Õ(1)

min {Õ (d

n) ,1}

19

Snapshot estimation for arbitrary graphs

• Refined snapshot : How many edges go from bias-interval
, degree-interval to bias-interval and degree-interval ?

• Smoothed snapshot : Average of over a “window’’ of size

• Pointwise estimate

• More accurate estimates with increasing

• Harder to “retrieve” if is too large

M((i, j), (k, l))
Bi Dj Bk Dl

̂M M w

̂M

w

M w

20

Why smoothed snapshots suffice?

21

Why don’t misclassification errors matter?
• Degree misclassification errors do not affect snapshot computation

• If there is no error in bias computation, snapshot computed from and
are exactly the same

• Bias misclassification errors do not affect Max-DICUT value when is small

• Perturb the original graph to get a new graph with similar Max-DICUT
value; Smoothed-snapshot Refined-snapshot

• If bias of is off by , create a new isolated vertex and modify bias by creating
at most new edges; Max-DICUT value does not change by more than

M ̂M

w

G H
(G) ≈ (H)

v ϵ
ϵd ϵm

22

Local algorithm II: distributed algorithms
• Message-passing model:

• In every round, each vertex receives a message from each of its
neighbors

• After rounds, each vertex “locally” computes its assignment

• [Censor-Hillel Levy Shachnai 17] [Buchbinder Feldman Seffi Schwartz 15]
distributed algorithm for Max-DICUT - approximation - rounds

k

1
2 (Δ + 1)

[CLS17] [BFSS15] Distributed algorithm 𝒟
• Obtain a proper vertex coloring of the graph

• Assign vertices in batches

• In the first round, assign vertices of color

• In the second round, assign vertices of color , and so on

• At every round after a vertex is assigned, it sends a message to all higher color
neighbors

• Approximation ratio =

Δ + 1

1

2

𝔼[DICUT(𝒟)]
OPT

Streaming implementation
• Randomly color the graph using colors

• With high probability, at most fraction of edges are monochromatic

• Delete the monochromatic edges

• Distributed algorithm : approximation in rounds

• Want to compute

•

• Sample random edges and compute their average probability of belonging to

O(1/ ϵ)

ϵ

𝒟 1
2 −ϵ O(1/ ϵ)

𝔼[DICUT(𝒟)]

𝔼[DICUT(𝒟)] = ∑
e∈E

Pr[e ∈ DICUT(𝒟)]

O(1) DICUT(𝒟)

Streaming implementation
• Radius- neighborhood of an edge

• Observation: radius- neighborhood of suffices to compute the
probability that belongs to

k

O(1/ ϵ) e
e DICUT(𝒟)

Red > Blue > Green

e

e

Streaming implementation
• Type of an edge: Radius- neighborhood

•

• possible types: estimate the type distribution to compute

• Sublinear space: For each type T

• sample random (non-isolated) vertices. Store the induced subgraph and the
degrees of all the vertices.

• consider edges whose entire radius- neighborhood is contained within the stored
graph

• compute the number of edges of type T (and appropriately rescale)

O(1/ ϵ)

Δ ≤ d

N(d, ϵ) 𝔼[DICUT(𝒟)]

O(n1−f(ϵ,d,T))

O(1/ ϵ)

Streaming implementation
• Random ordering space

• [Monemizadeh Muthukrishnan Peng Sohler 17]

• High-level idea: Track the types of random edges via BFS

• compute the “visible” type distribution and infer the “true”
distribution from

O(log n)

O(1)

𝒱
𝒯 𝒱

Streaming
3 4 5

1

2

6

True type Visible type

•

• is invertible

•

𝒱 = M𝒯

M

𝒯 = M−1𝒱

Open problem I
• Extending -approximation to general unbounded degree graphs

• [SSSV upcoming] pass space algorithm

• distributed algorithm: for high-degree vertices, suffices to sample
messages from random neighbors

• Challenge: implementing in fewer passes, even with a randomly ordered
stream

1/2

O(1/ ϵ) O(log n)

d

Open problem II
• Extension to other CSPs

• Max- -AND

• [CGSV 22] space approximation is between

• [Boyland-Hwang-Prasad-Singer V 22] closed form expression for the approximation ratio
achieved by “bias” algorithm

• [Singer 23] established that for every , there exists an oblivious algorithm that beats “bias”
algorithm

• Challenge: Is it possible to achieve -approximation for Max- -AND in sublinear space?
smallest open case: Max-2AND (not sub-modular)

k

o(n) [1
2

k
, 1

2

k−1]

k

1
2

k−1
k

Thanks for your attention!

