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CUT size = 4

Output largest CUT size
3



Max-DICUT

4



Max-DICUT

DICUT size = 3

Output largest DICUT size
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Streaming setting
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Compute the size of the largest CUT/DICUT in small space

,  approximation: outputs  such that:   0 < α < 1 α T α ⋅ OPT ≤ T ≤ OPT



Folklore approximations
• Arbitrary constant approximation in  space: 


• sample  random edges 


• compute Max-CUT/Max-DICUT value (possibly in exponential time) to 
obtain  approximation


• Trivial approximation in  space: 


• Max-CUT: count the number of edges  and output 


• Max-DICUT: output 

Õ(n)

O(n/ϵ2)

(1 − ϵ)

O(log n)

m m/2

m/4

What approximations are 
possible in  space?o(n)



Max-CUT Max-DICUT
• central problem for lower 

bounds


• [Kapralov Krachun 19] no 
non-trivial approximation in 

 space


•  [Chou Golovnev Sudan V 22] 
extension to several CSPs

o(n)

• central problem for algorithms


• [Guruswami Vellingker V 17] 
“bias-based” algorithm with non-
trivially approximation in 

 space


• [Chou Golovnev V 20] “bias-
based” algorithm is optimal in 

 space


• [Chou Golovnev Sudan V 21] 
extension to all CSPs

O(log n)

o( n)



Goals of this talk
• [Saxena Singer Sudan V 23] beat “bias-based” algorithm for Max-DICUT 

in  space


• [Saxena Singer Sudan V upcoming] -approximation for Max-DICUT in 
 space for bounded-degree graphs

Õ( n)

1/2
o(n)

optimal

Simulate local algorithms for Max-DICUT in the streaming setting by 
capturing local snapshots of the graph



Local algorithm I: oblivious algorithms
• Introduced by Feige and Jozeph in 2015


• Bias of a vertex  = 


• Oblivious algorithm : (randomly) assign every vertex based only on its 
bias


• Approximation ratio = 

v
out(v) − in(v)

deg(v)
∈ [−1,1]

𝒪

𝔼[DICUT(𝒪)]
OPT



Oblivious approximations for Max-DICUT

• [FJ15] Oblivious algorithm with approximation ratio 


• [CGV20] Best  space streaming approximation for Max-DICUT is 



• [SSSV23] Implement [FJ15] algorithm using only  space in the 
streaming setting

> 0.483

o( n)
≈ 0.44

Õ( n)



Streaming implementation
• [FJ15] algorithm has only constant number of bias classes


•  Bias intervals


• Goal: Output  to get  approximation to Max-DICUT


• Suffices to compute a “constant-sized” snapshot of the graph

𝔼[DICUT(𝒪)] > 0.483

p0 p1 pr

−1 1b0 b1 br−1
−1 < b0 < b1 < ⋯ < br−1 < 1

Collapse vertices within the 
same bias interval



Computing snapshots: special cases
• Edges are randomly ordered: 


• Take the first  edges. Store the induced subgraph and track the 
biases of the vertices. Compute snapshot.


• Bounded-degree graphs: 


• Sample  random (non-isolated) vertices. Store the induced 
subgraph and track the biases. Compute snapshot.


• Bounded-degree assumption is crucial!

O(1)

O( n)



Snapshot estimation for arbitrary graphs
• “Layered Sampling of vertices”


• Partition the degrees: , where 


• sample vertices of degree between   and  with probability 

 and store the induced subgraph


• Issue: We do not know the degree of the vertex when it first appears in the 
stream

1 ≤ d0 < d1⋯ < dlog n ≤ n di+1/di = 2

d
2 d

min {Õ ( d

n ) ,1}

18



Snapshot estimation for arbitrary graphs
• “Layered sampling of edges”


• Subsample edges with probability 


• Degree  vertices have degree  in the above graph


• Ignore vertices with degree  or ; Subsample every vertex with 

probability and store all the edges incident to it


• Issue: Can misclassify vertices and place them in wrong layers. Could also potentially 
make errors in bias computation

Õ ( 1
d )

d Õ(1)

≫ Õ(1) ≪ Õ(1)

min {Õ ( d

n ) ,1}
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Snapshot estimation for arbitrary graphs

• Refined snapshot : How many edges go from bias-interval 
, degree-interval  to bias-interval  and degree-interval ?


• Smoothed snapshot : Average of  over a “window’’ of size 


• Pointwise estimate 


• More accurate estimates with increasing 


• Harder to “retrieve”  if  is too large

M((i, j), (k, l))
Bi Dj Bk Dl

̂M M w

̂M

w

M w
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Why smoothed snapshots suffice?
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Why don’t misclassification errors matter?
• Degree misclassification errors do not affect snapshot computation


• If there is no error in bias computation, snapshot computed from  and  
are exactly the same


• Bias misclassification errors do not affect Max-DICUT value when  is small


• Perturb the original graph  to get a new graph  with similar Max-DICUT 
value; Smoothed-snapshot   Refined-snapshot 


• If bias of  is off by , create a new isolated vertex and modify bias by creating 
at most  new edges; Max-DICUT value does not change by more than 

M ̂M

w

G H
(G) ≈ (H)

v ϵ
ϵd ϵm
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Local algorithm II: distributed algorithms
• Message-passing model:


• In every round, each vertex receives a message from each of its 
neighbors


• After  rounds, each vertex “locally” computes its assignment


• [Censor-Hillel Levy Shachnai 17] [Buchbinder Feldman Seffi Schwartz 15] 
distributed algorithm for Max-DICUT -  approximation -  rounds

k

1
2 (Δ + 1)



[CLS17] [BFSS15] Distributed algorithm 𝒟
• Obtain a proper  vertex coloring of the graph


• Assign vertices in batches


• In the first round, assign vertices of color 


• In the second round, assign vertices of color , and so on


• At every round after a vertex is assigned, it sends a message to all higher color 
neighbors


• Approximation ratio = 

Δ + 1

1

2

𝔼[DICUT(𝒟)]
OPT



Streaming implementation
• Randomly color the graph using  colors


• With high probability, at most  fraction of edges are monochromatic


• Delete the monochromatic edges


• Distributed algorithm :  approximation in  rounds


• Want to compute 


• 


• Sample  random edges and compute their average probability of belonging to 

O(1/ ϵ)

ϵ

𝒟 1
2 −ϵ O(1/ ϵ)

𝔼[DICUT(𝒟)]

𝔼[DICUT(𝒟)] = ∑
e∈E

Pr[e ∈ DICUT(𝒟)]

O(1) DICUT(𝒟)



Streaming implementation
• Radius-  neighborhood of an edge


• Observation: radius-  neighborhood of  suffices to compute the 
probability that  belongs to 

k

O(1/ ϵ) e
e DICUT(𝒟)

Red > Blue > Green

e

e



Streaming implementation
• Type of an edge: Radius-  neighborhood


• 


•  possible types:  estimate the type distribution to compute 


• Sublinear space: For each type T


• sample  random (non-isolated) vertices. Store the induced subgraph and the 
degrees of all the vertices.


• consider edges whose entire radius-  neighborhood is contained within the stored 
graph


• compute the number of edges of type T (and appropriately rescale)

O(1/ ϵ)

Δ ≤ d

N(d, ϵ) 𝔼[DICUT(𝒟)]

O(n1−f(ϵ,d,T))

O(1/ ϵ)



Streaming implementation
• Random ordering  space


• [Monemizadeh Muthukrishnan Peng Sohler 17]


• High-level idea: Track the types of  random edges via BFS


• compute the “visible” type distribution  and infer the “true” 
distribution  from 

O(log n)

O(1)

𝒱
𝒯 𝒱



Streaming 
3 4 5

1

2

6

True type Visible type

• 


•  is invertible


•

𝒱 = M𝒯

M

𝒯 = M−1𝒱



Open problem I
• Extending -approximation to general unbounded degree graphs


• [SSSV upcoming]  pass  space algorithm


• distributed algorithm: for high-degree vertices, suffices to sample 
messages from  random neighbors


• Challenge: implementing in fewer passes, even with a randomly ordered 
stream

1/2

O(1/ ϵ) O(log n)

d



Open problem II
• Extension to other CSPs


• Max- -AND


• [CGSV 22]  space approximation is between 


• [Boyland-Hwang-Prasad-Singer V 22] closed form expression for the approximation ratio 
achieved by “bias” algorithm


• [Singer 23] established that for every , there exists an oblivious algorithm that beats “bias” 
algorithm


• Challenge: Is it possible to achieve -approximation for Max- -AND in sublinear space? 
smallest open case: Max-2AND (not sub-modular)

k

o(n) [1
2

k
, 1

2

k−1]

k

1
2

k−1
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Thanks for your attention!


