Improved streaming approximations for Max-DICUT via local snapshots Santhoshini Velusamy (TTIC)

Based on joint works with Raghuvansh Saxena, Noah Singer, and Madhu Sudan

 CUT size $= 4$

Output largest CUT size

3

$DICUT$ size $= 3$

Output largest DICUT size

-
-

Compute the size of the largest CUT/DICUT in small space

 $0 < \alpha < 1$, α approximation: outputs T such that: $\alpha \cdot \text{OPT} \leq T \leq \text{OPT}$

Folklore approximations

• compute Max-CUT/Max-DICUT value (possibly in exponential time) to

- Arbitrary constant approximation in $O(n)$ space: ˜ (*n*)
	- sample $O(n/\epsilon^2)$ random edges
	- obtain (1ϵ) approximation
- Trivial approximation in $O(\log n)$ space:
	- Max-CUT: count the number of edges m and output $m/2$
	- Max-DICUT: output *m*/4

What approximations are possible in *o*(*n*) space?

- central problem for lower bounds
- [Kapralov Krachun 19] no non-trivial approximation in $o(n)$ space
- [Chou Golovnev Sudan V 22] extension to several CSPs

Max-CUT Max-DICUT

- central problem for algorithms
- [Guruswami Vellingker V 17] "bias-based" algorithm with nontrivially approximation in space *O*(log *n*)
- [Chou Golovnev V 20] "biasbased" algorithm is optimal in $o(\sqrt{n})$ space
- [Chou Golovnev Sudan V 21] extension to all CSPs

Goals of this talk

- in $O(\sqrt{n})$ space ˜ (\sqrt{n})
- $o(n)$ space for bounded-degree graphs

• [Saxena Singer Sudan V 23] beat "bias-based" algorithm for Max-DICUT

• [Saxena Singer Sudan V upcoming] 1/2-approximation for Max-DICUT in optimal

Simulate local algorithms for Max-DICUT in the streaming setting by capturing local snapshots of the graph

Local algorithm I: oblivious algorithms

• Introduced by Feige and Jozeph in 2015

• Oblivious algorithm \mathcal{O} : (randomly) assign every vertex based only on its bias

• Approximation ratio = $[DICUT(\mathcal{O})]$ **OPT**

 $\in [-1,1]$

 \bullet Bias of a vertex $v =$ $out(v) - in(v)$ deg(*v*)

Oblivious approximations for Max-DICUT

- [FJ15] Oblivious algorithm with approximation ratio > 0.483
- [CGV20] Best $o(\sqrt{n})$ space streaming approximation for Max-DICUT is ≈ 0.44
- [SSSV23] Implement [FJ15] algorithm using only $O(\sqrt{n})$ space in the streaming setting ˜ (\sqrt{n})

- [FJ15] algorithm has only constant number of bias classes
	- Bias intervals

-
- Suffices to compute a "constant-sized" snapshot of the graph

• Goal: Output $\mathbb{E}[\text{DICUT}(\mathcal{O})]$ to get > 0.483 approximation to Max-DICUT

Collapse vertices within the **same bias interval**

Computing snapshots: special cases

- Edges are randomly ordered:
	- biases of the vertices. Compute snapshot.
- Bounded-degree graphs:
	- subgraph and track the biases. Compute snapshot.
	- Bounded-degree assumption is crucial!

• Take the first $O(1)$ edges. Store the induced subgraph and track the

• Sample $O(\sqrt{n})$ random (non-isolated) vertices. Store the induced

Snapshot estimation for arbitrary graphs

d $\frac{a}{2}$ and d

- "Layered Sampling of vertices"
	-
	- sample vertices of degree between $\frac{a}{2}$ and d with probability $\min \Big\{ |O\left(\frac{1}{\sqrt{n}}\right)|, 1 \Big\}$ and store the induced subgraph ˜ $\sqrt{2}$ *d* $\frac{1}{n}$, 1 }
- stream

• Issue: We do not know the degree of the vertex when it first appears in the

• Partition the degrees:
$$
1 \leq d_0 < d_1 \cdots < d_{\log n} \leq n
$$
, where $d_{i+1}/d_i = 2$

Snapshot estimation for arbitrary graphs

$\sqrt{2}$ 1 *d*)

- "Layered sampling of edges"
	- Subsample edges with probability *O* ˜
	- Degree d vertices have degree $O(1)$ in the above graph ˜ (1)
	- Ignore vertices with degree $\gg O(1)$ or $\ll O(1)$; Subsample every vertex with probability $\min \Set{O(\frac{1}{\sqrt{n}})}$, 1 $}$ and store all the edges incident to it ˜ (1) or $\ll 0$ ˜ (1) ˜ $\sqrt{2}$ *d* $\frac{1}{n}$, 1 }
- Issue: Can misclassify vertices and place them in wrong layers. Could also potentially make errors in bias computation

Snapshot estimation for arbitrary graphs

- Refined snapshot $M((i, j), (k, l))$: How many edges go from bias-interval B_i , degree-interval D_j to bias-interval B_k and degree-interval D_l ?
- Smoothed snapshot M : Average of M over a "window" of size w
- Pointwise estimate *M*
	- More accurate estimates with increasing *w*
	- Harder to "retrieve" M if w is too large

Why smoothed snapshots suffice?

Why don't misclassification errors matter?

- Degree misclassification errors do not affect snapshot computation
	- If there is no error in bias computation, snapshot computed from M and M are exactly the same
- Bias misclassification errors do not affect Max-DICUT value when w is small
	- Perturb the original graph G to get a new graph H with similar Max-DICUT value; Smoothed-snapshot (G) \thickapprox Refined-snapshot (H)
	- If bias of v is off by ϵ , create a new isolated vertex and modify bias by creating at most ϵd new edges; Max-DICUT value does not change by more than ϵm

Local algorithm II: distributed algorithms

- Message-passing model:
	- In every round, each vertex receives a message from each of its neighbors
	- After k rounds, each vertex "locally" computes its assignment
- [Censor-Hillel Levy Shachnai 17] [Buchbinder Feldman Seffi Schwartz 15] distributed algorithm for Max-DICUT - $\frac{1}{2}$ approximation - $(\Delta + 1)$ rounds 1 $\frac{1}{2}$ approximation - $(\Delta + 1)$

[CLS17] [BFSS15] Distributed algorithm

- Obtain a proper $\Delta + 1$ vertex coloring of the graph
- Assign vertices in batches
	- In the first round, assign vertices of color 1
	- In the second round, assign vertices of color 2, and so on
- At every round after a vertex is assigned, it sends a message to all higher color neighbors

• Approximation ratio $=$ $E[DICUT(\mathcal{D})]$ **OPT**

- Randomly color the graph using $O(1/\sqrt{\epsilon})$ colors
- With high probability, at most ϵ fraction of edges are monochromatic
- Delete the monochromatic edges
- Distributed algorithm $\mathscr{D} \colon \frac{1}{2} \epsilon$ approximation in $O(1/\sqrt{\epsilon})$ rounds 1 $\frac{1}{2}$ − ϵ approximation in $O(1/\sqrt{\epsilon})$
- Want to compute $\mathbb{E}[\text{DICUT}(\mathcal{D})]$

$$
\mathsf{E}[DICUT(\mathcal{D})] = \sum_{e \in E} \Pr[e \in DICUT(\mathcal{D})]
$$

• Sample $O(1)$ random edges and compute their average probability of belonging to DICUT(\mathscr{D})

 \bullet Radius- k neighborhood of an edge

• Observation: radius- $O(1/\sqrt{\epsilon})$ neighborhood of e suffices to compute the probability that e belongs to DICUT($\mathcal D$)

- Type of an edge: Radius- $O(1/\sqrt{\epsilon})$ neighborhood
- Δ ≤ *d*
	- $N(d, \epsilon)$ possible types: estimate the type distribution to compute $\mathbb{E}[\mathsf{DICUT}(\mathcal{D})]$
- Sublinear space: For each type T
	- sample $O(n^{1-f(\epsilon,d,T)})$ random (non-isolated) vertices. Store the induced subgraph and the degrees of all the vertices.
	- consider edges whose entire radius- $O(1/\sqrt{\epsilon})$ neighborhood is contained within the stored graph
	- compute the number of edges of type T (and appropriately rescale)

- Random ordering $O(\log n)$ space
	- [Monemizadeh Muthukrishnan Peng Sohler 17]
	- High-level idea: Track the types of $O(1)$ random edges via BFS
		- compute the "visible" type distribution $\mathcal V$ and infer the "true" distribution $\mathcal T$ from $\mathcal V$

Streaming

$$
\bullet \ \mathscr{V}=M\mathscr{T}
$$

• *M* is invertible

$$
\bullet \ \mathcal{T} = M^{-1} \mathcal{V}
$$

Open problem I

- \bullet Extending $1/2$ -approximation to general unbounded degree graphs
	- [SSSV upcoming] $O(1/\sqrt{\epsilon})$ pass $O(\log n)$ space algorithm
		- distributed algorithm: for high-degree vertices, suffices to sample messages from d random neighbors
	- Challenge: implementing in fewer passes, even with a randomly ordered stream

Open problem II

• [Boyland-Hwang-Prasad-Singer V 22] closed form expression for the approximation ratio

• [Singer 23] established that for every k , there exists an oblivious algorithm that beats "bias"

• Challenge: Is it possible to achieve $\frac{1}{2}$ -approximation for Max-k-AND in sublinear space? *k*

- Extension to other CSPs
- Max- k -AND
	- [CGSV 22] $o(n)$ space approximation is between [
	- achieved by "bias" algorithm
	- algorithm
	- smallest open case: Max-2AND (not sub-modular) 1 2 *k*−1

$$
\text{between } \left[\frac{1}{2}^k, \frac{1}{2}^{k-1}\right]
$$

Thanks for your attention!