
of 24July 31, 2024 Sparsification @ Simons 1

Joint work with
Sanjeev Khanna@Penn and Aaron (Louie) Putterman@Harvard

Madhu Sudan
Harvard University

Sparsification: Graphs, Codes, CSPs

of 24

Sparsification

 Lossy compression ≤ Sparsification ≤ Compression

 Compression:𝑋𝑋 ↦ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋 ↦ 𝑋𝑋

 Noisy compression: 𝑋𝑋 ↦ 𝑁𝑁𝑁𝑁 𝑋𝑋 ↦ �𝑋𝑋 s.t. 𝛿𝛿 𝑋𝑋, �𝑋𝑋 → 0
 Preserves most of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋) queries

 Sparsification (for class 𝐶𝐶 of ℝ+-valued queries):
𝑋𝑋 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 ↦ 1 ± 𝜖𝜖 𝑞𝑞 𝑋𝑋 𝑞𝑞∈𝐶𝐶

 Approximately preserves all of |𝐶𝐶| queries
(usually exponentially many)

July 31, 2024 Sparsification @ Simons 2

of 24

Benczur-Karger Cut Sparsification

 Thm [Karger 94, BK97]: Every graph on 𝑛𝑛
vertices can be sparsified to �𝑂𝑂(𝑛𝑛) bits while
estimating all (2𝑛𝑛−1) cuts to within 1 ± 𝜖𝜖
 (Note – full information = 𝑂𝑂 𝑛𝑛2 bits).

 Key ingredient: Karger’s cut counting bound
 Lemma [K]: in unweighted graph 𝐺𝐺

#{cuts of size ≤ 𝛼𝛼 ⋅ mincut(𝐺𝐺)} ≤ 𝑛𝑛2𝛼𝛼

 Random sample of �𝑂𝑂 𝑚𝑚
𝑐𝑐

edges suffices.

 [BK] Non-uniform sampling reduces to �𝑂𝑂(𝑛𝑛)
samples (How?)

July 31, 2024 Sparsification @ Simons 3

of 24

What else can be sparsified?
 “Structure” ≔ data + set of queries …
 What other structures can be sparsified?

 Graph Laplacians wrt quadratic form queries
 Data = 𝐿𝐿𝐺𝐺 ; Query = 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 ; Ans: 𝑥𝑥𝑇𝑇𝐿𝐿𝐺𝐺𝑥𝑥

 Hypergraph Cut Sparsifiers
 Data = (𝑉𝑉,𝐸𝐸) ; Query = 𝑆𝑆 ⊆ 𝑉𝑉 ; Ans: 𝐸𝐸 𝑆𝑆, 𝑆𝑆

 SAT sparsifier
 Data = Sat formula; Query = assignment ; Ans = #

clauses satisfied by assignment.
 CSP(P) sparsifier? [Kogan-Krauthgamer]

 Data = P constraints on n vars ; Query = assignment …
 [FK, BZ]: Classification of binary predicates with near

linear sparsifiers
 XOR-SAT sparsifier?

 Data = XOR-SAT formula ….

July 31, 2024 Sparsification @ Simons 4

of 24

This talk:

 Code sparsification (more generally – additive
codes over abelian groups):
 Data = (generator matrix of) linear code.
 Query = message
 Ans = (Hamming) weight of its encoding.

 Motivation: Generalizes graph- and hypergraph-
sparsification.

 Applications to CSP sparsification:
 Classification of ternary Boolean CSPs
 Classification of all symmetric Boolean CSPs
 Classification* of all Boolean CSPs with non-

trivial sparsification
July 31, 2024 Sparsification @ Simons 5

of 24

Some theorems

 Thm 1: Every linear code 𝐸𝐸:𝔽𝔽𝑞𝑞𝑘𝑘 → 𝔽𝔽𝑞𝑞𝑛𝑛 can be
sparsified to �𝑂𝑂 𝑘𝑘2 log2 𝑞𝑞 bits.
 More specifically, ∃ weighted sample of �𝑂𝑂 𝑘𝑘 log 𝑞𝑞

coordinates s.t. weighted hamming weights in sampled
coordinates approximate original weight.

 Thm 2: Every code 𝐸𝐸:ℤ𝑘𝑘 → 𝐺𝐺𝑛𝑛 can be sparsified to
�𝑂𝑂 𝑘𝑘 log2 |𝐺𝐺| coordinates, ∀ abelian group 𝐺𝐺.

 Thm 3: Every degree 𝑡𝑡 poly function 𝐸𝐸:ℤ𝑘𝑘 → 𝐺𝐺𝑛𝑛
can be sparsified to �𝑂𝑂 𝑘𝑘𝑡𝑡 log2 |𝐺𝐺| coordinates

July 31, 2024 Sparsification @ Simons 6

of 24

Some CSP theorems

 Thm 4: ∀𝑃𝑃: 0,1 3 → 0,1 CSP(P) is �𝑂𝑂 𝑛𝑛𝑡𝑡 -
sparsifiable iff 𝑃𝑃 does not project to AND𝑡𝑡+1

 𝑃𝑃: 0,1 𝑟𝑟 → {0,1} projects to 𝑄𝑄: 0,1 𝑠𝑠 → 0,1 if
∃Π: 𝑟𝑟 → {𝑌𝑌1 …𝑌𝑌𝑠𝑠} ∪ {𝑌𝑌1 …𝑌𝑌𝑠𝑠} ∪ {0,1} s.t.

𝑄𝑄 𝑌𝑌1 …𝑌𝑌𝑠𝑠 = 𝑃𝑃 Π 1 …Π 𝑟𝑟
 Thm 5: ∀ symmetric 𝑃𝑃: 0,1 𝑟𝑟 → 0,1 CSP(P) is

near-linear sparsifiable iff 𝑤𝑤𝑤𝑤 𝑃𝑃−1 0 form
arithmetic progression.

 Thm 6: ∀𝑃𝑃: 0,1 𝑟𝑟 → 0,1 CSP(P) is sparsifiable to
�𝑂𝑂 𝑛𝑛𝑟𝑟−1 constraints iff 𝑃𝑃−1 1 ≥ 2

 Bonus/Addendum: Everything algorithmic!!

July 31, 2024 Sparsification @ Simons 7

of 24

Proofs

July 31, 2024 Sparsification @ Simons 8

of 24

Graph Sparsification

July 31, 2024 Sparsification @ Simons 9

of 24

Why does a random sample not work?

 Pick 𝑡𝑡 = �𝑂𝑂 𝑛𝑛 constraints uniformly at random
 Output 𝑚𝑚

𝑡𝑡
. (#"𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 & 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

 Gives additive (±𝜖𝜖𝜖𝜖) approximation;
 … but not multiplicative (1 ± 𝜖𝜖) approximation

July 31, 2024 Sparsification @ Simons 10

of 24

Karger’s cut counting bound

 Fix a cut 𝑆𝑆 w. ≤ 𝛼𝛼 ⋅ 𝑐𝑐 edges

 Contract 𝑛𝑛 − 1 ≤ 2𝑚𝑚
𝑐𝑐

random edges (till #vertices = 2)

 Pr 𝑖𝑖𝑖𝑖 edge from end crosses 𝑆𝑆 ≤ 2 𝛼𝛼⋅𝑐𝑐
𝑖𝑖.𝑐𝑐

= 2𝛼𝛼
𝑖𝑖

 Pr no edge crosses 𝑆𝑆 ≥ ∏𝑖𝑖 1 − 2𝛼𝛼
𝑖𝑖

≥ 𝑛𝑛−2𝛼𝛼

 Pr[S final cut] ≥ 𝑛𝑛−2𝛼𝛼

 ⇒ # {cuts w. ≤ 𝛼𝛼𝛼𝛼 edges} ≤ 𝑛𝑛2𝛼𝛼

July 31, 2024 Sparsification @ Simons 11

of 24

Graph Sparsifiers from c.c. bound
 [K]: Sample 10𝑚𝑚

𝑐𝑐
log𝑛𝑛 edges …

 Pr [cut 𝑆𝑆 of size 𝛼𝛼𝛼𝛼 not sampled well] ≤ 𝑛𝑛−10𝛼𝛼

 Pr [∃ cut of size 𝛼𝛼𝛼𝛼 not sampled well] ≤ 𝑛𝑛−8𝛼𝛼

 Now union over 𝛼𝛼

 [BK] Define strength of edges ; sample edges
w.p. prop. to strength …

 [Our simpler proof (loses log factors)]:

 Given 𝐺𝐺, let 𝐺𝐺0 be union of cuts of size 𝑚𝑚
𝑐𝑐𝑐𝑐

; 𝐺𝐺1 …𝐺𝐺𝑡𝑡 be

c.c.s of the rest;

 𝑚𝑚 𝐺𝐺0 ≤ 𝑚𝑚𝑚𝑚
𝑐𝑐

; 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝐺𝐺𝑖𝑖 ≥ 𝑚𝑚
𝑐𝑐𝑐𝑐

; 𝑚𝑚
𝑐𝑐

better in all!

 Recurse+weight appropriately (by mincut)!

July 31, 2024 Sparsification @ Simons 12

of 24

Code Sparsification

July 31, 2024 Sparsification @ Simons 13

of 24

Aside: Hypergraph Sp. ≤ Code Sp.

 Hypergraph: Say 𝑟𝑟-uniform hypergraph on 𝑛𝑛
vertices. Edge 𝑒𝑒 cut by (𝑆𝑆, 𝑆𝑆) if 𝑒𝑒 ∩ 𝑆𝑆, 𝑒𝑒 ∩ 𝑆𝑆 ≠ 𝜙𝜙.

 Q: ∃ �𝑂𝑂(𝑛𝑛) hypergraph cut sparsifiers?
 [KK’15]: �𝑂𝑂(𝑛𝑛𝑛𝑛)- sparsifiers exist
 [CKN’20] Improve to �𝑂𝑂(𝑛𝑛)

 Our proof:
 Let 𝑞𝑞 ≈ 𝑛𝑛 prime, map edge 𝑒𝑒 to row vector in
𝔽𝔽𝑞𝑞𝑛𝑛 with nnz entries 1,1,1, …− (𝑟𝑟 − 1)

 Consider code generated by columns of matrix
with a row for each edge.

 Sparsifying code sparsifies hypergraph!

July 31, 2024 Sparsification @ Simons 14

of 24

Code Sparsification

 Need an analog of cut counting bound …
 “In every code 𝐶𝐶 of min dist 𝑑𝑑,

#{codewords of wt ≤ 𝛼𝛼𝛼𝛼} ≤ 𝑘𝑘𝛼𝛼 ” ?
 Patently false: Asymptotically good code has

𝑑𝑑,𝑘𝑘 = Ω(𝑛𝑛), and so 2Ω(𝑛𝑛) words of weight 𝑂𝑂(𝑑𝑑)
(Aside: Hypergraph cut counting bound also fails
similarly!! Obstacle to prior work.)

 But asymptotically good code is already
sparsified! So not obstacle to sparsification.

 Needs a modified “cut counting bound”

July 31, 2024 Sparsification @ Simons 15

of 24

Code counting Lemma

 Informally, every code has a good subcode
supported on few coordinates, or satisfies
Karger-style counting bound.

 Lemma: ∀𝑡𝑡 ∈ ℤ+,𝐶𝐶 ⊆ 𝔽𝔽𝑞𝑞𝑛𝑛 we have:
1. ∀𝛼𝛼 #{codewords of wt ≤ 𝛼𝛼 ⋅ 𝑡𝑡} ≤ 𝑞𝑞𝛼𝛼 𝑛𝑛

𝛼𝛼 OR
2. ∃𝐶𝐶′ ≤ 𝐶𝐶, s.t. supp(𝐶𝐶′) ≤ dim 𝐶𝐶′ ⋅ 𝑡𝑡

 Corollary: ∀𝑡𝑡 ∈ ℤ+,𝐶𝐶 ⊆ 𝔽𝔽𝑞𝑞𝑛𝑛,∃𝑆𝑆 ⊆ 𝑛𝑛 , 𝑆𝑆 ≤ dim 𝐶𝐶 . 𝑡𝑡 s.t.
∀𝛼𝛼 #{codewords of 𝐶𝐶|𝑆𝑆 of wt ≤ 𝛼𝛼 ⋅ 𝑡𝑡} ≤ 𝑞𝑞𝛼𝛼 𝑛𝑛

𝛼𝛼

July 31, 2024 Sparsification @ Simons 16

of 24

Code Counting ⇒ Sparsification

 Sparsify(𝐶𝐶)

 Let 𝑡𝑡 = 𝑛𝑛
𝑘𝑘

where 𝑘𝑘 = dim𝐶𝐶

 Apply Corollary and let 𝐶𝐶1 = 𝐶𝐶|𝑆𝑆 and 𝐶𝐶2 = 𝐶𝐶|𝑆𝑆
 Return Sparsify 𝐶𝐶1 ∪ 𝑡𝑡 ⋅ Sparsify(𝐶𝐶2)
 QED

July 31, 2024 Sparsification @ Simons 17

of 24

Proof of Code Counting

 Contract(𝐶𝐶, 𝑡𝑡):
 If supp 𝐶𝐶 ≤ 𝑡𝑡 ⋅ dim(𝐶𝐶) stop “Case 2”;
 If dim𝐶𝐶 > 𝛼𝛼

 Pick random coord. 𝑗𝑗 ∈ 𝑛𝑛 s.t. 𝐶𝐶| 𝑗𝑗 ≠ 0
 𝐶𝐶′ = 𝐶𝐶 − { 𝑐𝑐 ∈ 𝐶𝐶 s.t. 𝑐𝑐𝑗𝑗 ≠ 0}
 Contract(𝐶𝐶′, 𝑡𝑡)

 Else, output “Case 1” + random codeword of 𝐶𝐶
 Fix word 𝑐𝑐 ∈ 𝐶𝐶 of weight ≤ 𝛼𝛼𝛼𝛼
 Pr 𝑐𝑐 ∉ 𝐶𝐶′ ≤ 𝛼𝛼

dim 𝐶𝐶

 ⇒Pr[𝑐𝑐 survives and output at end] ≥ 𝑛𝑛
𝛼𝛼

−1𝑞𝑞−𝛼𝛼 ⋅

July 31, 2024 Sparsification @ Simons 18

of 24

Aside: Efficient Sparsification

 Bottleneck problem: Find subcode of moderately
high dimension with small support.
 Graph-theoretic setting: Solved using min-cut.
 Analogous problem: Min weight codeword (hard).

 Weaker problem suffices: Given 𝑑𝑑 find 𝑑𝑑𝑑𝑑
coordinates that include support of subcode.
 Sp’l case: Must include support of weight d codeword.

July 31, 2024 Sparsification @ Simons 19

of 24

Aside: Efficient Sparsification

 Bottleneck problem: Find subcode of moderately
high dimension with small support.
 Graph-theoretic setting: Solved using min-cut.
 Analogous problem: Min weight codeword (hard).

 Weaker problem suffices: Given 𝑑𝑑 find 𝑑𝑑𝑑𝑑
coordinates that include support of subcode.
 Sp’l case: Must include support of weight d codeword.
 Algorithm:

 Find 𝑆𝑆𝑖𝑖 ⊆ 𝑛𝑛 − ∪𝑗𝑗<𝑖𝑖 𝑆𝑆𝑗𝑗 of maximal rank for 1 ≤ 𝑖𝑖 ≤ 𝑑𝑑.
 Output ∪𝑖𝑖 𝑆𝑆𝑖𝑖

July 31, 2024 Sparsification @ Simons 20

of 24

Implications + Extensions

July 31, 2024 Sparsification @ Simons 21

of 24

Hypergraph Sparsification

 Hypergraph: Say 𝑟𝑟-uniform hypergraph on 𝑛𝑛
vertices. Edge 𝑒𝑒 cut by (𝑆𝑆, 𝑆𝑆) if 𝑒𝑒 ∩ 𝑆𝑆, 𝑒𝑒 ∩ 𝑆𝑆 ≠ 𝜙𝜙.

 Q: ∃ �𝑂𝑂(𝑛𝑛) hypergraph cut sparsifiers?
 [KK’15]: �𝑂𝑂(𝑛𝑛𝑛𝑛)- sparsifiers exist
 [CKN’20] Improve to �𝑂𝑂(𝑛𝑛)

 Our proof:
 Let 𝑞𝑞 ≈ 𝑛𝑛 prime, map edge 𝑒𝑒 to row vector in
𝔽𝔽𝑞𝑞𝑛𝑛 with nnz entries 1,1,1, …− (𝑟𝑟 − 1)

 Consider code generated by columns of matrix
with a row for each edge.

 Sparsifying code sparsifies hypergraph!

July 31, 2024 Sparsification @ Simons 22

of 24

Variations

 Can sparsify codes 𝐸𝐸:ℤ𝑘𝑘 → 𝐺𝐺𝑛𝑛, for finite abelian
group 𝐺𝐺, to �𝑂𝑂(𝑘𝑘 log𝐺𝐺) rows.
 Proof: Some linear algebra breaks down.

Replace dimension etc with actual counts,
Gaussian elimination with HNF.

 Can sparsify degree 𝑡𝑡 maps 𝑃𝑃:ℤ𝑘𝑘 → 𝐺𝐺𝑛𝑛 to
�𝑂𝑂 𝑘𝑘𝑡𝑡 log𝐺𝐺 coordinates.

 Applications:
 Classify all symmetric Boolean CSPs with near linear

sparsification
 Classify all 𝑟𝑟-ary Boolean CSPs with 𝑜𝑜 𝑛𝑛𝑟𝑟 -sparsification.

July 31, 2024 Sparsification @ Simons 23

of 24

Open Questions

 CSP Sparsification Classification:
 Only upper bound tool: our group-based-

polynomial sparsifier
 Only lower bound tool: Projection to 𝑡𝑡-AND.
 The two don’t meet 
 New ideas?

 What else is sparsifiable?

July 31, 2024 Sparsification @ Simons 24

of 24

Thank You!

July 31, 2024 Sparsification @ Simons 25

	Slide Number 1
	Sparsification
	Benczur-Karger Cut Sparsification
	What else can be sparsified?
	This talk:
	Some theorems
	Some CSP theorems
	Proofs
	Graph Sparsification
	Why does a random sample not work?
	Karger’s cut counting bound
	Graph Sparsifiers from c.c. bound
	Code Sparsification
	Aside: Hypergraph Sp. ≤ Code Sp.
	Code Sparsification
	Code counting Lemma
	Code Counting ⇒ Sparsification
	Proof of Code Counting
	Aside: Efficient Sparsification
	Aside: Efficient Sparsification
	Implications + Extensions
	Hypergraph Sparsification
	Variations
	Open Questions
	Thank You!

