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Monotone hypergrid functions

7 7 7 7
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* Hypergrid: [n]¢ T
(includes line, tesseract, etc.) NN N N
* n = 2, Boolean Hypercube: {0,1}¢ > 1> : >
n-1,n-1, ...

e x <yiffx; < y;foralli

* fis monotone: if x <, f(x) < f(y)

e Equivalently, think of f as indicator for set
00...



The distance to monotonicity

* Make f monotone

\ 4

Add

Delete

e Distance to monotonicity = (min changes to make set monotone)/n¢?

*gin[0,1)
* Amen

* &= mingmonotonelf_glo/ ne



Monotonicity testing

X<y
f(x) = 1
f(y)=0

* [Bshouty-Tamon96, Lange-Vasilyan23] Learning monotone functions needs
> exp(vd)

* Given € and query access to f:
Distinguish monotone (g; = 0) vs far from monotone (g;> €) whp

* One-sided tester: given f such that &;> €, discover a “violation” whp
* Non-adaptive: all queries are made in advance



Big question

X<y
f(x) =1
fly)=0

* [Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Raskhonikova 99, Dodis-
Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky 99]

What is the (non-adaptive) complexity of monotonicity testing?
* Hypergrid domain, Boolean range

* > 20 papers and two decades of history



The Edge Tester

e [GGLRSO00, DGGLRSO00]
* Sample an edge of hypercube (x,y) u.a.r

* Query f(x), f(y)

* Reject if violation

Theorem: the probability of finding violation is > €; /d
So if & > €, O(d/e) samples suffice to detect violation whp

 [DGGLRS00] O(d log?d /€) monotonicity tester for hypergrids



Can we beat d?

e [Blais-Brody-Matulef 12] Q(d) lower bound when range is real
e [Chakrabarty-S 13a, Chakrabarty-S 13b]
Hypergrid domain, arbitrary range, the complexity is ©(d logn /¢)

* Non-adaptive, one-sided upper bound. Adaptive, two-sided lower bound
* Finis. End of story
* Optimal tester for hypercube is edge tester

* Does Boolean range make complexity lower?
* [Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02]

Q(Vd) one-sided lower bound
e Can one get o(d) complexities?




The mystery of root d, for hypercubes

[Chakrabarty-s 13] d’/8 query tester

[Chen-Servedio-Tan 14] d>/6 query tester

[Khot-Minzer-Safra 15] \/C_i query tester
* Essentially, same tester as before. All in the analysis

[Chen-De-Servedio-Tan 15, Chen-Waingarten-Xie 17] .Q(\/E) two-sided non-
adaptive lower bound

* The theory of Directed Isoperimetric Theorems
* Seemingly hypercube specific; can they generalize?
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Getting to root d, for hypergrids

* [DGGLRS00] O(d log?d /€) monotonicity tester for hypergrid

e [Berman-Raskhodnikova-Yaroslavtsev 17] O(d log d)

 [Black-Chakrabarty-S 18, BCS 20] d /6 guery tester
* [Braverman-Khot-Kindler-Minzer 23, BCS 23] poly(n) Vd query tester

e [BCS 24] d'/2t°() guery tester
e All results have different testers!
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The generality of hypergrids

* Hypergrid: [n]¢
Results for uniform distribution automatically
translate to any product distribution

e Otherwise uniform distribution on hypercube
looks like special case

 Can even set n = o0, so domain is R4

* Monotonicity testing for measurable functions
over product distributions
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Why did the baby grid not
get any sugar?

Because it would become a hypergrid.



Directed \soerimetry

Surfaces, volumes, and why o(d) is possible
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The Edge Tester

e [GGLRSO0O, DGLRRS99]
* Sample an edge of hypercube (x,y) u.a.r

* Query f(x), f(¥)

* Reject if violation

Theorem: the probability of finding violation is > &¢/d



A Geometric Interpretation

Violated ed
Abusing notation, S is the set of 1s. (We still use &¢ as before.) PIATEE ERES

Theorem: The number of violated hypercube edges
is = Q(gr - 29)
I f+ _ ‘E(S’ SC)‘
Nl = 2d
: + _
Theorem: Irlff = Q(¢r) A far from monotone function



Undirected Isoperimetry: Poincare

|E(S,S59)|
Zd

Inff —

NE A

Poincare Inequality/Edge Expansion/Influence Bound:
Forany f, Inf; = Q(vary)

=T

Surface area > (Function of) Volume

#1's #OS |S| |S|

vary =g g = - (1 —

a)

Influential Edges



GGLRS = Directed Poincare

Undirected Hypercube Directed Hypercube
* Poincare: Inf; = Q(vary) * GGLRS: Inff" = Q(¢f)
/ \

Directed expansion/ Directed volume...?
surface area




(Directed) Poincare is tight

. 1
e Distance = >

» Number of viol edges = 2¢-1

» Total edges=d - 2971

* Edge tester needs )(d) queries to
catch violation




Bypassing the (anti)-Dictator

e Sample x
 Walk “up” to gety
e Query f(x), f(y) and Test.

How long should we walk?



Square Root of Dimension

e Sample x
 Walk “up” to gety
e Query f(x), f(y) and Test.

Can’t walk more than =~ Vd



Analysis for the (capped) Anti-Djg

e Sample x
* Walk “up” to gety
* Query f(x), f(y) and Test.

* Prob[x isgreen] = 1/2

: : 1 1
* Problcrossing] = Vd'E ~ =
ST T
Number of steps Chance of crossing in

each step

The root to root d
is taking a longer
root.



How to analyze the “path tester”

Need structural insight
“far from monotone” functions/sets

How to “escape” S that is far from monotone?



Directed Isoperimetric Theorems

Undirected Hypercube Directed Hypercube Query
* Poincare: Infr = Q(vary) * [DGLRRS00, GGLRSOO]: d
Inf" = Q(ef)
* [Margulis74]: e [Chakrabarty-S 13]: d5/6
Inf; - Ir = Q(varfz) Inf - T = Q(g]?)
 [Talagrand 92]: * [Khot-Minzer-Safra 15]: Vd
E[v/Inf(x)] = QO (vary) E[/Inf*(x)] = O (&)




How to measure the
boundary?



Boundary as bipartite graph




Boundary as bipartite graph

RAL 9 @9




Directed boundary




Directed boundary

G+

Violating Edges




Directed Influence

W Inf*(x) = out-degree of x in directed G

E*(S,S¢)
7d — If

+

Expy.1[Inf*(x)] =

Expy.1 [Inf(x)]| = I;



A careful look into influence

Poincare: [¢: = Exp,.1[Inf(x)] = Q(vary)

N

~
~o

v

Iy =0(Vd) '

anti-dictator anti-majority

e

~y
~

Q..lH



Consider the Vertex Boundary

Q

b d

lg = Expy.1[Inf(x)]

¢

¢ @

“Edge boundary”



Consider the Vertex Boundary

Q

b d

/

¢ ¢

¢ @

If =

ExXp,.1 [Inf(x)] “Edge boundary”

“Vertex Boundary”

. {x: 1 such that it has at least one
influential edge incident on it}



Consider the Vertex Boundary

Q

b d

/ e

¢ ¢

¢ @

If — Expx:l[lnf(x)] “Edge boundary”

. {x: 1 such that it has at least one
influential edge incident on it}

EXPy:1 []I{Inf(x) > 0}



Vertex Boundaries

N

N

N

N
\\/

Lowest possible! .
. P anti-dictator
(By Poincare)

@ Edge boundary = (1) Edge boundary = @(Vd)

ible! o
Every vertex in the boundary I(.g;/vsztrﬁsrs)mble. Only 1/\/& fraction in boundary
Vertex boundary = 0(1)

@ Vertex boundary = 0(1/Vd)

anti-majority

Large




Margulis

Q

b d

[r =
Ff .

Expxﬂ
Eprﬂ

Margulis 1974:

¢ ¢

¢ @

[f -

Inf(x)] “Edge boundary”

H{Inf(X) > O}] “Vertex Boundary”

[ = Qvarf)

Both cannot be simultaneously small!



Vertex Boundaries

\

N

N

N
\\/

anti-dictator

@D 5. [Inf()] = 1

Every vertex in the boundary

Exp,.; [I{Inf(x) > 0}] = 1

anti-majority

B [nfC0] = 0(Va)

Only 1/\/& fraction in boundary
@D Exp... [Hnf(x) > 0}] = 0(1/VD)



Directed Margulis

Ii-fl_ = EXP x:1 [Inf * (.X' )] “Directed Edge boundary”

[ = Expea[I{Inf*(x) > 0}

“Dir. Vrtx. boundary”

Interior 1’s

2.0 0 0 9.8 .1 =0

[Chakrabarty-S 13]:

¢ 6 o © ¢ @



O ti-Dictator

By directed Margulis, if I7 = 0(1),
constant fraction of vertices on
directed boundary.

Analysis like this should work?

* Prob[x isgreen] = 1/2

* Prob[crossing] ® Vvd = =~ —
.oda ., Vd

Number of steps Chance of crossing in
each step




The Talagrand theorem

Tala gra nd 1993: “Notion of Surface Area”
Tals = Expy.1[+/Inf(x)]
Talf = Q(varf)

K b d

Interior 1’s

¢ ¢

Implies Margulis (by Cauchy-Schwartz),
which also implies Poincare

¢ @




Khot-Minzer-Safra

ﬁﬁ % ﬁ Talf = EXpy.[/Inf*(x)]
= Q(¢&r)
Interior 1’s
_ Actually, for any edge bicoloring

00009 "
Talf = minyE,[ J Infy (x)]

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed



Robustness

Talf = Expx:ll\/lanf(x)] = Q1) Talf = Expx:ol\/lanf(x)] = Q1)

I??? 999990908, & & &% 2verics
edges

Adversary 1 assigns each edge to 0 or 1, to minimize Talagrand “surface area”

Talf = mingyE,[ J Infy ()]



Robustness

Talf = Expx:ll\/lanf(x)] = Q1) Talf = Expx:ol\/lanf(x)] = Q1)

;”9 000000000, O O & 2verics
edges

Adversary 1 assigns each edge to 0 or 1, to minimize Talagrand “surface area”

Talf := minyE,

-\/Inflz(x)-

Zd
— F : \/E — 0(1/\/3)



Khot-Minzer-Safra

Actually, for any edge bicoloring

Tal{ = minyE, \/ Infy (x)| = Q(eyr)

Interior 1’s

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed



But what does it mean?
\ [nf) (x)] = Q(efr)

Assume g = (1)

W#verticesm”ﬂ If - T =Q(1) Dir. Margulis

I7 = Q1) Dir. Poincare

Tal! = minyE,[

# vertices = 24 /r

Forsomer>1,I7 =rand I =1/r



The most regular boundary

“Nicest case”

# vertices = 2% /r # vertices = 2% /r
2

All degrees =1

* Robust Talagrand theorem of KMS implies that’s exactly what
happens!



Boundaries are always regular!

T “Nicest case”
s

# vertices = 2% /r

All degrees = 2

There exists r > 1 such that boundary
contains regular bipartite graph with these
parameters.

Assume & = Q(1) + (Up to d°W factors)



Our usual examples

\
N
N
N
\
\v

anti-dictator

29 vertices on boundary,
each with degree 1

Boundary size = 2% /r

All degrees = 1?

anti-majority

2% /7/d vertices on
boundary,
each with degree d



But what about
monotonicity testing?



How to analyze the “path tester”

How to “escape” S that is far from monotone?



Be persistent!

* x is £-persistent, if £-length (directed walk)
stays within f(x)-region whp

Ji

Pr[single step changes value] = r

I
Pr[one of £-steps changes value] < ¥ - Ef

I
Fraction of NON £-persistent vertices = O (f : Ef)

Iy = 0(Vd) ; O(i)
Vd

If I > Vd then I;r > Vd Edge tester itself good

51



The analysis, in one slide

. ?
By (robust) Directed Frac. non-persistent = O (\/_E )
Talagrand, boundary is
8 Y Set £ < Vd/r

sofrac. K 1/r

Non- £-persistent # vertices = 2% /r

All degrees = 1*

By regularity
of boundary

# vertices = 2% /r
All degrees = 1°

All £-persistent



The analysis, in enre two slides

@y
With prob ~ 1/7", start Persistent! B]Y geguljrlty
with f(x) = 1 in this part ot botnhdary
o # vertices = 24 /r
With prOb = TZ/'g = T/\/C_l, All degrees = 72
relevant bit is flipped All -persistent

X

When both happen, f(y) =0 ¢ =o(d/r)

1
Total prob = i

Sl

T
Vd



The challenge of hypergrids




What is a boundary?

Move in a direction. But for “how much”?
What is influence?

How to define a path tester? What are upward
random walks?



The augmentation view

ﬁ%

Does directed

Talagrand
hold?

v

N

4

N

>2i

N

* Degree is now d logn
e Can we treat it a hypercube/product structure?

* [BCS18] Directed Margulis holds

. a@e boundaries in the graph theoretic way
. log@query tester, using path tester

Directed Margulis proofs more amenable to alternate
domains.

[KMS15] very intricate proof; doesn’t seem to
generalize
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Domain reduction

e Set k=2, and reduce to
hypercubes...?

e [BCS20] If k << d, sampled
function can be close to
monotone

Lt [BCS20] If k = poly(d),
[k] distance is preserved

s distance to monotonicity * So we can assume n = poly(d)

[n]4 oreserved? * Even reduces from
continuous

* [Harms-Yoshida 22]
Downsampling

57



he embedding method

{ojl}d'polY(n)

d Distance to monotonicity
] preserved

C—
Ml}pOZy(n)

* Embedding [n] into
hypercube

e [Braverman-Kindler-
Khot-Minzer 23]

* First Vd tester for any
n>2

* poly(n) dependence
necessary

58



Doing isoperimetry

# dimensions where X is

+ —_—
/ [nf™(x) = in violation
o Dimension contains

4 violation

[BCS23-1] Talf

= Expagef Mb )

“step” uarin [x; n]
X

* Also prove the robust version

* Direct tester analysis leads to nd query tester
* Path picks uniform random step in each direction



he final step

1

[BCS 23-2] Getting dz to(1) query tester y
* Tester does correlated walks y'

e Heavily used in analysis X ®

e Standard tester probably works Y

x’ Persistent!
* How to perform this analysis and not lose
n factor? -4)

* New combinatorial tools to analyze the walk
using the [BCS23-1] Talagrand theorem

60



# vertices = Zd/r

(Mostly) end of story

All degrees =

min, E, [\/Inflp(x)] Q(&f/ logn) — W

« d° |oss annoying, comes from one specific calculation

1
e dz T non-adaptive one-sided monotonicity tester
* Ends a 24 year odyssey

* Nearly matching (two-sided) lower bound

61



Some odds and ends

¢ Get rid of the d°™) factor

* Are hypergrids strictly harder than hypercubes?
* Only (log d) factors apart

* [Black-Kalemaj-Raskhodnikova 23] Tester for larger ranges, for
hypercube

* We can probably apply the methods for hypergrids



The big question

What is the adaptive complexity of monotonicity testing for
hypercubes/grids?

- [Blais-Belovs 16] Q(d'/*) lower bound

- [Chen-Waingarten-Xie 18] Q(d'/3) lower bound
* Every example has matching adaptive upper bound

e [Chakrabarty-S 16] O(If) qguery adaptive tester

* Proves adaptivity gap, for natural families
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More on directed isoperimetry

* [Black-Kalemaj-Raskhodnikova 23] Directed Talagrand for real-range

* [Pinto 23, Pinto 24] Differential functions f:[0,1]%— [0,1], with
access to derivatives

* Draws connections to optimal transport theory, based on undirected
Poincare/Talagrand inequalities

e [Canonne-Chen-Levi-Kamath-Waingarten 21] Applications of
robustness concept to distribution testing

* [Yoshida 24] Directed isoperimetry for general posets
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Generalizing hypercube results

 [Pallavoor-Raskhodnikova-Waingarten 20] Estimating distance to

monotonicity, vV d-approximations in poly(d) time for hypercube

e Can we get results for hypergrids? Also implies results for product
distributions...”?

* [Berman-Raskhodnikova-Yaroslavtsev 14] L, testing

65



Thank you!

Here, no bad pun
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