Planar Partition Oracles in poly(1/¢e) time

« July 31, Simons Institute
« Workshop on Sublinear Graph Simplification
« Akash Kumar (lIT Bombay)

¥
?

J |

C. Seshadhri Andrew Stolman
(UCSC) (Katana Labs)

What are planar graphs?

What are planar graphs?

<2n/3

e Balanced Separator Theorem
* [Lipton-Tarjan 70]

* Facilitates Divide and Conquer Algorithms

Few
/ - End
Small
< g2

Hyperfinite Decompositions: Recursively use Planar Sep Theorem
e [Elek 08, BSS 08, AST 94]

* Intuitively, hyperfinite decomposition enables approximation algos for
various graph parameters.

To reiterate:

Bdd degree planar graphs are (g,k)-Hyperfinite with k =

O(1/c)?
Can break V(G) into subsets of size O(1/€)? by deleting only

an e-fraction of edges.

Goal: Assuming adjacency list query model

Build an Oracle which returns the component a vertex v

belongs to with respect to some hyperfinite decomposition.

Annoyance: Multiple hyperfinite decompositions

Goal: A little more detailed

(Read only random tape)

Goal: Build a primitive which

runs in time poly(1/€) and
returns P(v) forany v € V.

Goal: A little more detailed

(Read only random tape)

Goal: Build a primitive which

runs in time poly(1/€) and

returns P(v) forany v € V.

1. [P(v)| < poly(1/e)
2. G[P(v)] connected
3. Pr(#Edges Cut<€|E|)>2/3

Why care about this primitive/goal?

» Gives property testers for planarity [HKNO 10, LR 15].
» Can estimate various graph parameters eg, max

independent set, min vertex cover etc.
> Yields exp (1/¢)? testers for all planar properties [NS 13,

BKS 22].

Previous Implementations of Partition Oracles.

» [HKNO 10]: An exp(d/g) time implementation.
» [LR 15]: exp(O(log?(d/g)) time implementation.

(Refines HKNO 10 analysis)

Key principle in [HKNO 10, LR 15]

» Describe a global poly(n)-time algo first to find a

hyperfinite decomposition.
» Simulate Locally.

Previous Implementations of Partition Oracles.

Global (g,k) Partition Oracle of [LR 15]. (A rough sketch)

1. Set/= O(log(d/e)).
2. SetG%=aG.
3. Perform /iterations.

> Pick some random ec

n ith iteration

ges and contract. Merge end points.

» |If any piece violates t

ne size bound, unmerge.

Sketch of [LR 15] analysis.

1. #Edges Cutin G' < 0.99 x #Edges Cut in G'*
2. After /iterations, #Edges Cut in G < O(sdn)
3. Time taken to find piece of v in G': O(k?')

Random Walks on planar graphs: A different starting point

Let p, , = M1,

What is ||pv,I||%?

One notes that ||p, |5 = 1/I

Random Walks on planar graphs: A different starting point

Lemma: Let G be a bdd degree planar graph. Then for at least
(1 —1//) fraction of vertices v € V, it holds that ||p, /| |5 > /10

Think a = €2/100 |

E [[Number of Cut Edgeson W] < al=¢2/100
v~tt W-~W,,

Random Walks on planar graphs: A different starting point

Lemma: Let G be a bdd degree planar graph. Then for at least
(1 —1//) fraction of vertices v € V, it holds that ||p, /| |5 > /10

Think a = €2/100 |

= ||py |15 = poly(e)

E [[Number of Cut Edgeson W] < al=¢2/100
v~tt W-~W,,

By a Markov Bound, for at least (1 — €) fraction of vertices,
the probability W never leaves is at least 1-¢.

Random Walks on planar graphs: A different starting point
Call such vertices non-leaky (||p, /|5 = poly(g)).

S, Lf sis leaky
l, heavy hitters of pv,o/w

Define procedure C(s) = {

We are ready for our global algorithm.

Few Leaky Vertices Lemma = A global algorithm

Few Leaky Vertices Lemma = A global algorithm

Few Leaky Vertices Lemma = A global algorithm

Our Algorithm (crudely)

/* Random Tape holds a random
permutation of V */

Let F = free vertices in i-th iteration.
Pick smallest s € F

Find C(s)

Assign P(s) =C(s) N F

Update F=F \ P(s)

Few Leaky Vertices Lemma = A global algorithm

Our Algorithm (crudely)

/* Random Tape holds a random
permutation of V */

Let F = free vertices in i-th iteration.
Pick smallest s € F

Find C(s)

Assign P(s) =C(s) N F

Update F=F \ P(s)

Few Leaky Vertices Lemma = A global algorithm

Our Algorithm (crudely)

/* Random Tape holds a random
permutation of V */

Let F = free vertices in i-th iteration.

Pick smallest s € F

Find C(s)

Assign P(s) =C(s) N F

Update F = F \ P(s) Challenges in local impl.

Def: We say anchor(v) = s Need to find the “free vertex” s which
captures v.

where v € P(s) Need to find C(s) N F

Few Leaky Vertices Lemma = A global algorithm

Suppose you can find anchor(v) for any
VASAVA

Can handle both challenges now.

Challenges in local impl.

Def: We say anchor(v) = s Need to find the “free vertex” s which
captures v.

Need to find C(s) N F

where v € P(s)

Few Leaky Vertices Lemma = A global algorithm

Annoyance:

How do | find anchor(v)?

v has a list of potential anchors. Need
to know if any of those were already

captured.

Need to determine anchors recursively.

We could not analyze this process. Cha”enges in local |mp|-

Def: We say anchor(v) = s Need to find the “free vertex” s which
captures v.

where v € P(s) Need to find C(s) N F

A New global algorithm

Our Algorithm (still crudely)

/* Random Tape holds a random
permutation of V */

LetF =V

Fors=1ton

» Find C(s)

» AssignP(s)=C(s)NF

» Update F=F\ P(s) A danger

While C(s) has a small edge boundary.

Easy to implement locally. P(s) need not!

Way out: Amortize.

A New global algorithm

Handling Danger via Isoperimetry

Theorem: Suppose |F| = en. Then for at
least £2n vertices s € F, it holds that

|C(s) N F| 2€3|C(s)]

Using this theorem, you can show that
for every clustered vertex, on an
average you cut €d edges.

A danger

While C(s) has a small edge boundary.
P(s) need not!
Way out: Amortize.

More applications?

[Levi-Shoshan 21] Gave a tester for Hamiltonicity on Planar

Graphs using Partition Oracles.

[Basu-K-Seshadhri 22] Gave an exp(1/?) query tester for all

planar properties.

Open Problems

» Extending to unbounded degree planar graphs.

» Distributed applications?
» LCA for Hyperfinite Decompositions?

Thanks for your time

