Interpreting Emergent Communication

Yonatan Belinkov

Decoding Communication in Non-Human Species III Simons Institute, June 29, 2024

Emergent communication

Flashback to 2020: iteration 1 of this workshop

Emergent Communication in Al Agents

- Challenges in understanding the emergent language
 - How to segment messages into units (words, sentences, etc.)?
 - What are the referents of different units?
 - Are the messages consistent?
- "The enterprise is akin to linguistic fieldwork, except that we are dealing with an alien race, with no guarantees that universals of human communication will apply." (Lazaridou & Baroni 2020)
- In terms of analysis, much work on compositionality
 - Can agent express novel concepts composed of familiar parts?

MORE VIDEOS

DEALING WITH ALIEN

Powered by Zoom

Emergent Communication in Al Agents

- Challenges in understanding the emergent language
 - How to segment messages into units (words, sentences, etc.)?
 - What are the referents of different units?
 - Are the messages consistent?
- "The enterprise is akin to linguistic fieldwork, except that we are dealing with an alien race, with no guarantees that universals of human communication will apply." (Lazaridou & Baroni 2020)
- In terms of analysis, much work on compositionality
 - Can agent express novel concepts composed of familiar parts?

MORE VIDEOS

DEALING WITH ALIEN

Powered by Zoon

Most common: just evaluate accuracy on the task

Compositionality of emergent language?

• Topographic similarity (global, opaque, not correlated with accuracy)

We want: interpretable, specific metric

(a) bi-partite graph of concepts and messages

(a) play a (multi-target) game Turn-1) Targets: Blue Triangle I Turn-1) Distractors Turn-2) Targets: Red Triangle Turn-2) Distractors (b) collect EC messages Turn-1): w1:w2 Sender Receiver Turn-2): w2:w3

(a) bi-partite graph of concepts and messages

(d) best match

Best-match graph

Desiderata from a communication system

Works well – agents succeed in the task

Interpretable – humans can understand it ("good best-match graph")

Supports compositional generalization

Desiderata from a communication system

Works well – agents succeed in the task
Interpretable – humans can understand it
Supports compositional generalization

Composition through Decomposition

"Break down to build up"

Composition through Decomposition

"Break down to build up"

Communication with a discrete codebook

Communication with a discrete codebook

 CB_{θ}

concepts

0.2	0.1	0.7
0.5	0.3	0.1 0.3
0.1	0.4	0.6

hidden dim

Communication with a discrete codebook

 CB_{θ}

concepts

Codebook training based on ideas from VQ-VAEs

Objective balances task performance with codebook 'quality'

0.5
0.2

 0.2
 0.1
 0.7

 0.5
 0.3
 0.1

 0.2
 0.9
 0.3

 0.1
 0.4
 0.6

hidden dim

Composition through Decomposition works

Zero-shot compositional generalization

	THING		Shape		Mnist		Coco		QRC	
Method	$\overline{ m Acc}$	CBM	$\overline{\mathrm{Acc}}$	CBM	$\overline{\mathrm{Acc}}$	CBM	$\overline{\mathrm{Acc}}$	CBM	$\overline{\mathrm{Acc}}$	CBM
$\overline{\mathrm{C/D}}$	$\overline{0.25}$	0.25	0.26	0.47	$\overline{0.41}$	0.58	0.61	0.56	0.98	0.17
CtD	1.00	1.00	0.99	1.00	0.81	0.95	0.66	0.64	0.95	0.17
CtD ZS	1.00	1.00	0.81	1.00	0.89	0.96	0.74	0.68	0.48	0.52

Zero-shot: no training on composite phrases

Zero-shot compositional generalization

	THING		Shape		Mnist		Coco		QRC	
Method	$\overline{\text{Acc}}$	CBM	Acc	CBM	Acc	CBM	Acc	CBM	Acc	CBM
$\overline{\mathrm{C/D}}$	$\overline{0.25}$	0.25	0.26	0.47	$\overline{0.41}$	0.58	0.61	0.56	0.98	0.17
CtD	1.00	1.00	0.99	1.00	0.81	0.95	0.66	0.64	0.95	0.17
CtD ZS	1.00	1.00	0.81	1.00	0.89	0.96	0.74	0.68	0.48	0.52

Zero-shot: no training on composite phrases

Zero-shot compositional generalization

	THING		Shape		Mnist		Coco		QRC	
Method	Acc	CBM	Acc	CBM	Acc	CBM	Acc	CBM	Acc	CBM
$\overline{\mathrm{C/D}}$	0.25	0.25	0.26	0.47	0.41	0.58	0.61	0.56	0.98	0.17
CtD	1.00	1.00	0.99	1.00	0.81	0.95	0.66	0.64	0.95	0.17
CtD ZS	1.00	1.00	0.81	1.00	0.89	0.96	0.74	0.68	0.48	0.52

Zero-shot: no training on composite phrases

But: when the dataset isn't compositional, we cannot decompose!

Targets

Distractors

What is required for meaningful communication to emerge?

A surprising result

Some EC agents can generalize to noise! (Bouchacourt & Baroni 2018)

A surprising result

Some EC agents can generalize to noise! (Bouchacourt & Baroni 2018)

Implication: some properties of natural language are not necessary for task success

→ What drives **meaningful** communication?

Common EC setups

Message 0.2 Receiver Sender Discrimination loss = -log 0.7

Message

Reconstruction

The communication protocol is a many-to-one mapping

Semantic consistency

Similar objects are mapped to the same message

$$S_{\theta}(\mathbf{S}) = S_{\theta}(\mathbf{S}) = m^{1}$$

$$S_{\theta}(\mathbf{v}) = S_{\theta}(\mathbf{v}) = m^2$$

$$S_{\theta}(\blacksquare) = m^3$$

Definition: Semantic consistency

A communication protocol S_{θ} is **semantically consistent** if

$$\mathbb{E}_{m \sim S_{\theta}(X)} \left[\operatorname{Var} \left[X \mid S_{\theta}(X) = m \right] \right] < \operatorname{Var} \left[X \right]$$

Equivalently:

$$\mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \mid S_{\theta}(x_1) = S_{\theta}(x_2) \right] < \mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \right]$$

Inputs mapped to the same message are more similar than random inputs

Theorem: Assuming receiver Φ is unrestricted and sender space Θ contains at least one semantically consistent protocol, every optimal communication protocol is semantically consistent

Discrimination

Theorem: Assuming receiver Φ is unrestricted and sender space Θ contains at least one semantically consistent protocol, every optimal communication protocol is semantically consistent

Discrimination

Theorem: There exists a game where receiver Φ is unrestricted and sender space Θ contains at least one semantically consistent protocol, in which not all the optimal communication protocols are semantically consistent.

Theorem: Assuming receiver Φ is unrestricted and sender space Θ contains at least one semantically consistent protocol, every optimal communication protocol is semantically consistent

$$loss^*(S_{\theta}) = \sum_{m \in M} P(S_{\theta}(X) = m) \cdot Var[X \mid S_{\theta}(X) = m]$$

Discrimination

Theorem: There exists a game where receiver Φ is unrestricted and sender space Θ contains at least one semantically consistent protocol, in which not all the optimal communication protocols are semantically consistent.

$$loss^*(S_{\theta}) = \sum_{m \in M} P(S_{\theta}(X) = m)^2$$

Discrimination

Every optimal communication is consistent

There exists an optimal communication that is not consistent

*Assuming Receiver is perfectly optimized with an unrestricted hypothesis class

Spatial meaningfulness

Semantic consistency requires hard equality of messages

$$\mathbb{E}_{x_1, x_2 \sim X} \Big[\|x_1 - x_2\|^2 \, \Big| \, S_{\theta}(x_1) = S_{\theta}(x_2) \Big] < \mathbb{E}_{x_1, x_2 \sim X} \Big[\|x_1 - x_2\|^2 \Big]$$

Spatial meaningfulness

Semantic consistency requires hard equality of messages

$$\mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \mid S_{\theta}(x_1) = S_{\theta}(x_2) \right] < \mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \right]$$

Definition ignores distances between messages

Ideally, we want: objects mapped to similar messages should be similar

Spatial meaningfulness

To consider distance between messages, define:

A communication protocol S_{θ} is ε_0 -spatially meaningful if $\forall 0 < \varepsilon \leq \varepsilon_0$

$$\mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \mid \|S_{\theta}(x_1) - S_{\theta}(x_2)\| \le \varepsilon \right] < \mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \right]$$

Spatial meaningfulness

To consider distance between messages, define:

A communication protocol S_{θ} is ε_0 -spatially meaningful if $\forall 0 < \varepsilon \leq \varepsilon_0$

$$\mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \mid \|S_{\theta}(x_1) - S_{\theta}(x_2)\| \le \varepsilon \right] < \mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \right]$$

Need assumptions on receiver:

- simple: $||R_{\varphi}(x_1) R_{\varphi}(x_2)|| \le k \cdot ||x_1 x_2||$
- non-degenerate: better than any constant receiver

Reconstruction

Theorem: Assuming receiver Φ is unrestricted, if receiver $\mathbf{R}_{\varphi} \in \Phi$ is (I,M)-simple and non-degenerate, then every S_{θ^*} that is conditionally optimal for R_{φ} is spatially meaningful with $\varepsilon_0 = \min_{m_1 \neq m_2} ||m_1 - m_2||$.

Discrimination

Theorem: There exists a game, receiver R_{φ} and sender S_{θ} such that Θ is unrestricted, R_{φ} is (I, M)-simple and non-degenerate, S_{θ} is conditionally optimal matching R_{φ} , and S_{θ} is not spatially meaningful.

Back to reality

- Limited agents, with optimization problems
- No oracle natural language concepts
- No examples of emergent messages and parallel natural concepts

How can we decipher emergent communications?

A Theory of Unsupervised Translation Motivated by Understanding Animal Communication

Shafi Goldwasser*

UC Berkeley & Project CETI shafi.goldwasser@berkeley.edu

Adam Tauman Kalai*

Microsoft Research & Project CETI adam@kal.ai

David F. Gruber*

City University of New York & Project CETI david@projectceti.org

Orr Paradise*

UC Berkeley & Project CETI orrp@eecs.berkeley.edu

"[...] unsupervised translation of animal communication may be feasible if the communication system is sufficiently complex."

Unsupervised MT of emergent communication

- 1. Train agents to play a game
- 2. Collect many emergent messages
- 3. Separately, collect many English texts
 - From same domain
 - But not parallel
- 4. Train unsupervised machine translation from messages to English

Unsupervised MT of emergent communication

- 1. Train agents to play a game
- 2. Collect many emergent messages
- 3. Separately, collect many English texts
 - From same domain
 - But not parallel
- 4. Train unsupervised machine translation from messages to English

Experiment: agents describe images from MS COCO

Two people are standing in front of a bus

A bunch of food that are on a plate

A train is traveling down the tracks near a platform

A child sitting on a bed with a stuffed animal

Quantitative evaluation

Model	Category	Supercategory	Random	Inter-category	Baseline
Novelty (%)	58.74 ± 7.81	70.00 ± 1.68	60.54 ± 4.25	57.36 ± 5.83	100.0
BLEU Score	7.41 ± 0.47	6.08 ± 0.31	6.85 ± 0.34	9.21 ± 0.45	0.071
BERTScore	0.734 ± 0.001	0.730 ± 0.001	0.729 ± 0.001	0.730 ± 0.001	0.543
METEOR Score	0.295 ± 0.06	0.276 ± 0.06	0.289 ± 0.06	$\boldsymbol{0.310}\pm0.07$	0.115
ROUGE-L	0.361 ± 0.001	0.343 ± 0.006	0.352 ± 0.003	$\boldsymbol{0.370}\pm0.002$	0.173
Jaro Similarity	0.678 ± 0.02	0.673 ± 0.02	0.676 ± 0.02	$\textbf{0.682}\pm0.02$	0.601
CLIP Score	0.180 ± 0.018	0.176 ± 0.019	0.183 ± 0.020	0.191 ± 0.019	0.151
TTR (%)	0.42 ± 0.05	0.71 ± 0.14	0.58 ± 0.11	0.59 ± 0.15	0.19

Quantitative evaluation

Model	Category	Supercategory	Random	Inter-category	Baseline
Novelty (%)	58.74 ± 7.81	70.00 ± 1.68	60.54 ± 4.25	57.36 ± 5.83	100.0
BLEU Score	7.41 ± 0.47	6.08 ± 0.31	6.85 ± 0.34	9.21 ± 0.45	0.071
BERTScore	$\boldsymbol{0.734}\pm0.001$	0.730 ± 0.001	0.729 ± 0.001	0.730 ± 0.001	0.543
METEOR Score	0.295 ± 0.06	0.276 ± 0.06	0.289 ± 0.06	$\boldsymbol{0.310}\pm0.07$	0.115
ROUGE-L	0.361 ± 0.001	0.343 ± 0.006	0.352 ± 0.003	$\boldsymbol{0.370}\pm0.002$	0.173
Jaro Similarity	0.678 ± 0.02	0.673 ± 0.02	0.676 ± 0.02	$\textbf{0.682}\pm0.02$	0.601
CLIP Score	0.180 ± 0.018	$0.176\pm$ 0.019	0.183 ± 0.020	0.191 ± 0.019	0.151
TTR (%)	0.42 ± 0.05	0.71 ± 0.14	0.58 ± 0.11	0.59 ± 0.15	0.19

Modest translation quality

Seems to capture main theme of the image, but not details

Next step: how does game complexity affect language richness

Contributions

- Emergent communication: playground for deciphering "alien" language
- Discrete codebook enables interpretable communication
- Theory: game complexity affects "naturalness" of emergent language
- Unsupervised translation: initial positive signs
 - ➤ Time to try on animal communication?

Collaborators

Boaz Carmeli, Rom Meir, Rotem Ben-Zion, Ido Levy, Orr Paradise

