Optimal quantile
estimation for streams

Meghal Gupta, Mihir Singhal, Hongxun Wu \

Quantile estimation problem

Input: Given parameters n, U, €, receive a

X X X X stream x., X.,, X.,..., X of numbers in {1,...,U}.
1 2 3 [) [) [) n 1 2" 73 n

In memory: Store a running sketch of the data
that uses as little memory as possible.

Answering queries: Receive an element x of
{1,...,U} and output its rank in the stream, that
is, the number of elements that were less than
Query: e|ement X X, up to additive error €n.
e Equivalently: receive a rank r as a query,
OUtPUt: rank of x (UP to £en) and output the element whose rank is
betweenr—-enandr + €n

O

Quantile estimation problem

352241 2

v

Query: rank(3) =?
Output: ?

Input: Given parameters n, U, €, receive a

stream X, X,, X,,..., X, of numbers in {1,...,U}.

In memory: Store a running sketch of the data
that uses as little memory as possible.

Answering queries: Receive an element x of
{1,...,U} and output its rank in the stream, that
is, the number of elements that were less than
X, up to additive error €n.
e Equivalently: receive a rank r as a query,
and output the element whose rank is

betweenr—-enandr + €n

Quantile estimation problem

322 41 2

v

Query: rank(3) =?
Output: 4 (xen)

Input: Given parameters n, U, €, receive a

stream X, X,, X,,..., X, of numbers in {1,...,U}.

In memory: Store a running sketch of the data
that uses as little memory as possible.

Answering queries: Receive an element x of
{1,...,U} and output its rank in the stream, that
is, the number of elements that were less than
X, up to additive error €n.
e Equivalently: receive a rank r as a query,
and output the element whose rank is

betweenr—-enandr + €n

Applications of quantile estimation

e Estimating system reliability — for example, estimating the 99th percentile latency of a
system.

e User analytics for websites/online content.
o Median or 90th percentile time for watching a YouTube video.
o Estimating time a typical user spends on different screens in the app.
o Companies like @9 Amplitude exist for this very purpose.

e There are many libraries for quantile sketches: Spark-SQL, Apache DataSketches project
GoogleSQL, and XGBoost.

1

O

History of quantiles

n = length of stream
U = size of universe
en = additive error

(1 word = log n + log U bits)

4
Space (in words)

Properties

MRL Sketch [1998] O(e"log?n) comparison-based, deterministic
GK Sketch [2001] O(e™'log n) comparison-based, deterministic
Q-digest [2004] O(e"log U) deterministic

KLL Sketch [2016]

O(e™"log log(1/6))

comparison-based, randomized

This talk

O(e™

deterministic

(This is optimal)

Q-digest sketch

Stream: 3, 2, 2,4,1, 2
a=2

n = length of stream
U = size of universe
en = additive error
a=¢en/logU
= capacity of each node

Structure: binary tree, where each node is a
subinterval of [1, U]. Each node stores some subset
of stream elements. Each node has a “capacity” a =
en/log U.

Insertion: insert each element into the tree into the
top-most node whose interval contains it, that is not
yet at its capacity.

Storage: for each node, only store the number of
elements it has.

Q-digest sketch

Stream: 3, 2, 2,4,1, 2
a=2

n = length of stream
U = size of universe
en = additive error
a=¢en/logU
= capacity of each node

Structure: binary tree, where each node is a
subinterval of [1, U]. Each node stores some subset
of stream elements. Each node has a “capacity” a =
en/log U.

Insertion: insert each element into the tree into the
top-most node whose interval contains it, that is not
yet at its capacity.

Storage: for each node, only store the number of
elements it has.

Q-digest sketch

Stream: 3, 2, 2,4,1, 2
a=2

Query: x=3

n = length of stream
U = size of universe
en = additive error
a=¢en/logU
= capacity of each node

Answering queries: To find the rank of x, add up the
counts of all nodes whose intervals contain only
elements less than x.

e The only possible missed elements are in
ancestors of x

e log U ancestors, so total error in rank is at most
alogU =en

n = length of stream

[J
Q_dlgest SketCh U=size9funiverse
€n = additive error
a=¢en/logU
= capacity of each node

Stream: 3, 2, 2,4,1, 2
a=2

Space complexity: need to store list of all nonempty
nodes and their counts.

e Number of nonempty nodes: O(n/a)
= O(e" log U)

e List of all nodes: only need to store tree
topology, so 1 bit per node

e Counts: log a = O(log n) bits per node
e Total storage: O(s™" log U log n) bits

Goal of our algorithm: reduce the space needed to

store counts

Reducing memory of counts |itzsimes

a=¢en/logU
= capacity of each node

Idea: Only store approximate counts of nodes

How do we insert an element if we only have approximate
counts?

e Consider intermediate stage of g-digest tree, and let
V,, ..., V. be children of nonempty nodes. Each
insertion will increment the count of some v, (orits
parent).

e Process insertions in batches of size a. After each
batch, increment counts of v..

n = length of stream

Reducing memory of counts D

a=¢en/logU
= capacity of each node

Process insertions in batches of size a. After each batch,
increment counts of v..

How to process a batch?
e Each stream element will go into v, for some i.

e Need to obtain approximate counts C. which are
close to the true counts C..

e Rank query adds up C, to C, for some k, so additional
error introduced to rank query is
C/+..+C/—(C,+..+C).

Cc=0 Cc=0 Thisis just a e Inother words, need an approximation to
quantile sketch! — —» C,+..+C,

for each k (must be accurate within €a).

e (Canrecover C,, ..., C, from their prefix sums.)

n = length of stream

Reducing memory of counts D

a=¢en/logU
= capacity of each node

n = length of stream

Reducing memory of counts D

a=¢en/logU
= capacity of each node

Process insertions in batches of size n’ = a. After each
batch, increment counts of v..

e Obtain approximate counts from a smaller g-digest

onv, .., V_

e Parameters of inner g-digest:
o n=asn
o U=n/a=0(g"log V)
o €g=¢
o Total space: O((€')"log n’ log U’) =
O(e" log n log log U) bits

e Outer g-digest stores counts in multiples of ea up to
a, so O(log ") = O(1) bits per node
o Total space: O(e" log U) bits

e Overall space: O(¢™ log log U) words O

n = length of stream

Reducing memory of counts D

a=¢en/logU
= capacity of each node

Process insertions in batches of size n’ = a. After each
batch, increment counts of v..

Overall space: O(e™ log log U) words

Can recursively replace inner g-digest with another
instance of our algorithm

e Can do this roughly log* U times, but need to reduce
error parameter € to € / log* U per recursive layer

e Total space: O(e" log* U) words

n = length of stream

Getting optimal space o T

a=¢en/logU
= capacity of each node

e To getrid of log* U term, give each recursive layer a different error parameter
e: the top and bottom layers get O(g) and the rest are slightly smaller

e Losing the polylog(e™) term is harder

o In order to have O(1) space per node instead of O(log £"), can only store
approximate values of C=0 and C=a

o Batches will then need to be much larger than a, so will need to keep track
of the descendants of v, as well in case v. fills up during a batch

o Finally, also need to change shape of g-digest from one tree of height
log(U) to 1/ trees of height log(gU); will need this for the deeper layers of

recursion. /\)

Lower bounds

More precisely, our algorithm uses O(s™" (log(gU) + log(gn))) bits.

n = length of stream
U = size of universe
en = additive error
a=¢en/logU
= capacity of each node

Easy lower bound of Q(s7" log(gU)) bits, since if algorithm receives €n copies each

of 1/ elements, it must remember them all.

Theorem [Wang, preprint via private communication]: Deterministic quantile

sketches require Q(s7" log(en)) bits.

O

