
Optimal quantile
estimation for streams
Meghal Gupta, Mihir Singhal, Hongxun Wu

Input: Given parameters n, U, ε, receive a
stream x1, x2, x3,…, xn of numbers in {1,...,U}.

In memory: Store a running sketch of the data
that uses as little memory as possible.

Answering queries: Receive an element x of
{1,...,U} and output its rank in the stream, that
is, the number of elements that were less than
x, up to additive error εn.
● Equivalently: receive a rank r as a query,

and output the element whose rank is
between r – εn and r + εn

Quantile estimation problem

 x1 x2 x3 . . . xn

Query: element x
Output: rank of x (up to ±εn)

Input: Given parameters n, U, ε, receive a
stream x1, x2, x3,…, xn of numbers in {1,...,U}.

In memory: Store a running sketch of the data
that uses as little memory as possible.

Answering queries: Receive an element x of
{1,...,U} and output its rank in the stream, that
is, the number of elements that were less than
x, up to additive error εn.
● Equivalently: receive a rank r as a query,

and output the element whose rank is
between r – εn and r + εn

Quantile estimation problem

 3 2 2 4 1 2

Query: rank(3) = ?
Output: ?

Input: Given parameters n, U, ε, receive a
stream x1, x2, x3,…, xn of numbers in {1,...,U}.

In memory: Store a running sketch of the data
that uses as little memory as possible.

Answering queries: Receive an element x of
{1,...,U} and output its rank in the stream, that
is, the number of elements that were less than
x, up to additive error εn.
● Equivalently: receive a rank r as a query,

and output the element whose rank is
between r – εn and r + εn

Quantile estimation problem

 3 2 2 4 1 2

Query: rank(3) = ?
Output: 4 (±εn)

Applications of quantile estimation

● Estimating system reliability — for example, estimating the 99th percentile latency of a
system.

● User analytics for websites/online content.

○ Median or 90th percentile time for watching a YouTube video.

○ Estimating time a typical user spends on different screens in the app.

○ Companies like exist for this very purpose.

● There are many libraries for quantile sketches: Spark-SQL, Apache DataSketches project,
GoogleSQL, and XGBoost.

History of quantiles

Space (in words) Properties

MRL Sketch [1998] O(ε−1 log2 n) comparison-based, deterministic

GK Sketch [2001] O(ε−1 log n) comparison-based, deterministic

Q-digest [2004] O(ε−1 log U) deterministic

KLL Sketch [2016] O(ε−1 log log(1/δ)) comparison-based, randomized

This talk O(ε−1) deterministic

(This is optimal)

(1 word = log n + log U bits)

n = length of stream
U = size of universe
εn = additive error

Structure: binary tree, where each node is a
subinterval of [1, U]. Each node stores some subset
of stream elements. Each node has a “capacity” ɑ =
εn / log U.

Q-digest sketch
n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

[1, 4]

[3, 4][1, 2]

[1, 1] [2, 2] [4, 4][3, 3]

Insertion: insert each element into the tree into the
top-most node whose interval contains it, that is not
yet at its capacity.

[1, 4]

[1, 2] [3, 4]

[2, 2]

x2=2
x1=3

x5=1
x3=2

x4=4

x6=2

Stream: 3, 2, 2, 4, 1, 2
ɑ = 2

Storage: for each node, only store the number of
elements it has.

Q-digest sketch

[1, 4]

[3, 4][1, 2]

[1, 1] [2, 2] [4, 4][3, 3]

[1, 4]

[1, 2] [3, 4]

[2, 2]

C=2

C=2 C=1

C=1

Stream: 3, 2, 2, 4, 1, 2
ɑ = 2 Structure: binary tree, where each node is a

subinterval of [1, U]. Each node stores some subset
of stream elements. Each node has a “capacity” ɑ =
εn / log U.

n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

Insertion: insert each element into the tree into the
top-most node whose interval contains it, that is not
yet at its capacity.

Storage: for each node, only store the number of
elements it has.

Q-digest sketch
n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

[1, 4]

[3, 4][1, 2]

[1, 1] [2, 2] [4, 4][3, 3]

[1, 4]

[1, 2] [3, 4]

[2, 2]

C=2

C=2 C=1

C=1

Stream: 3, 2, 2, 4, 1, 2
ɑ = 2 Answering queries: To find the rank of x, add up the

counts of all nodes whose intervals contain only
elements less than x.

Query: x=3

[1, 2]

[2, 2][1, 1]

● The only possible missed elements are in
ancestors of x

● log U ancestors, so total error in rank is at most
ɑ log U = εn

Q-digest sketch

[1, 4]

[3, 4][1, 2]

[1, 1] [2, 2] [4, 4][3, 3]

[1, 4]

[1, 2] [3, 4]

[2, 2]

C=2

C=2 C=1

C=1

Stream: 3, 2, 2, 4, 1, 2
ɑ = 2 Space complexity: need to store list of all nonempty

nodes and their counts.

● Number of nonempty nodes: O(n/ɑ)
= O(ε-1 log U)

● List of all nodes: only need to store tree
topology, so 1 bit per node

● Counts: log ɑ ≈ O(log n) bits per node

● Total storage: O(ε-1 log U log n) bits

Goal of our algorithm: reduce the space needed to
store counts

n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

Reducing memory of counts
n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

Idea: Only store approximate counts of nodes

How do we insert an element if we only have approximate
counts?

● Consider intermediate stage of q-digest tree, and let
v1, ..., vm be children of nonempty nodes. Each
insertion will increment the count of some vi (or its
parent).

v4

v3

v2v1

C=ɑ

C=ɑ

C=ɑ

C=? C=?

C=?

C=?

C=0 C=0

C=0

C=0

C>0

C>0

C>0

● Process insertions in batches of size ɑ. After each
batch, increment counts of vi.

Reducing memory of counts
n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

Process insertions in batches of size ɑ. After each batch,
increment counts of vi.

How to process a batch?

● Each stream element will go into vi for some i.

● Need to obtain approximate counts Ci’ which are
close to the true counts Ci.

● Rank query adds up C1 to Ck for some k, so additional
error introduced to rank query is

C1’ + ... + Ck’ – (C1 + ... + Ck).

● In other words, need an approximation to
C1 + ... + Ck

for each k (must be accurate within εɑ).

This is just a
quantile sketch!

v4

v3

v2v1

C=ɑ

C=ɑ

C=ɑ

C=? C=?

C=?

C=?

C=0 C=0

C=0

C=0

C>0

C>0

C>0

● (Can recover C1, ..., Cm from their prefix sums.)

v3

v2v1

Reducing memory of counts
n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

v4

v3

v2v1

C=ɑ

C=ɑ

C=ɑ

C=? C=?

C=?

C=?

C=0 C=0

C=0

C=0

C>0

C>0

C>0

[v1,v4]

[v1,v2] [v3,v4]

[v1,v1] [v2,v2] [v3,v3] [v4,v4]

v1 v2 v3 v4

Reducing memory of counts
n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

Process insertions in batches of size n’ = ɑ. After each
batch, increment counts of vi.

● Obtain approximate counts from a smaller q-digest
on v1, ..., vm

● Parameters of inner q-digest:
○ n’ = ɑ ≤ n
○ U’ ≤ n / ɑ = O(ε-1 log U)
○ ε’ = ε
○ Total space: O((ε’)-1 log n’ log U’) =

Õ(ε-1 log n log log U) bits

● Outer q-digest stores counts in multiples of εɑ up to
ɑ, so O(log ε-1) = Õ(1) bits per node
○ Total space: Õ(ε-1 log U) bits

● Overall space: Õ(ε-1 log log U) words

v4

v3

v2v1

C=ɑ

C=ɑ

C=ɑ

C=? C=?

C=?

C=?

C=0 C=0

C=0

C=0

C>0

C>0

C>0

Reducing memory of counts
n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

Process insertions in batches of size n’ = ɑ. After each
batch, increment counts of vi.

Overall space: Õ(ε-1 log log U) words

Can recursively replace inner q-digest with another
instance of our algorithm

● Can do this roughly log* U times, but need to reduce
error parameter ε to ε / log* U per recursive layer

● Total space: Õ(ε-1 log* U) words

v4

v3

v2v1

C=ɑ

C=ɑ

C=ɑ

C=? C=?

C=?

C=?

C=0 C=0

C=0

C=0

C>0

C>0

C>0

Getting optimal space

● To get rid of log* U term, give each recursive layer a different error parameter
ε: the top and bottom layers get O(ε) and the rest are slightly smaller

● Losing the polylog(ε-1) term is harder

○ In order to have O(1) space per node instead of O(log ε-1), can only store
approximate values of C=0 and C=ɑ

○ Batches will then need to be much larger than ɑ, so will need to keep track
of the descendants of vi as well in case vi fills up during a batch

○ Finally, also need to change shape of q-digest from one tree of height
log(U) to 1/ε trees of height log(εU); will need this for the deeper layers of
recursion.

n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

Lower bounds

More precisely, our algorithm uses O(ε−1 (log(εU) + log(εn))) bits.

Easy lower bound of Ω(ε−1 log(εU)) bits, since if algorithm receives εn copies each
of 1/ε elements, it must remember them all.

Theorem [Wang, preprint via private communication]: Deterministic quantile
sketches require Ω(ε−1 log(εn)) bits.

n = length of stream
U = size of universe
εn = additive error
ɑ = εn / log U
 = capacity of each node

