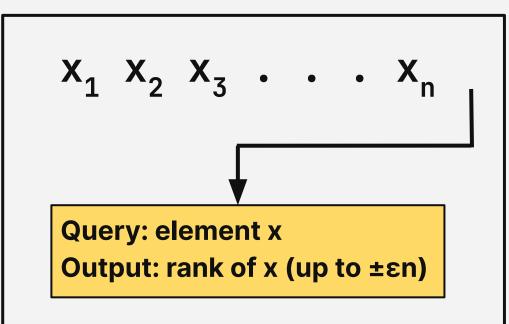
Optimal quantile estimation for streams

Meghal Gupta, Mihir Singhal, Hongxun Wu

Quantile estimation problem



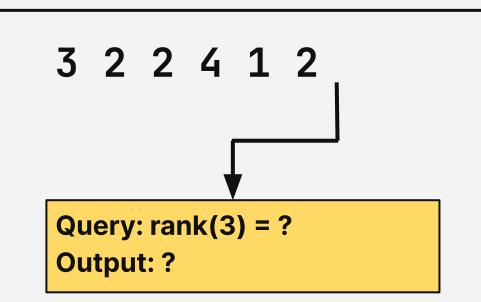
Input: Given parameters n, U, ε , receive a stream x₁, x₂, x₃,..., x_n of numbers in {1,...,U}.

In memory: Store a running sketch of the data that uses as little memory as possible.

Answering queries: Receive an element x of $\{1,...,U\}$ and output its rank in the stream, that is, the number of elements that were less than x, up to additive error εn .

 Equivalently: receive a rank r as a query, and output the element whose rank is between r – εn and r + εn

Quantile estimation problem



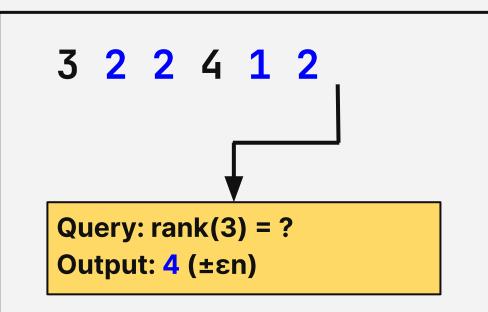
Input: Given parameters n, U, ε , receive a stream x₁, x₂, x₃,..., x_n of numbers in {1,...,U}.

In memory: Store a running sketch of the data that uses as little memory as possible.

Answering queries: Receive an element x of $\{1,...,U\}$ and output its rank in the stream, that is, the number of elements that were less than x, up to additive error ε n.

 Equivalently: receive a rank r as a query, and output the element whose rank is between r – εn and r + εn

Quantile estimation problem



Input: Given parameters n, U, ε , receive a stream x₁, x₂, x₃,..., x_n of numbers in {1,...,U}.

In memory: Store a running sketch of the data that uses as little memory as possible.

Answering queries: Receive an element x of $\{1,...,U\}$ and output its rank in the stream, that is, the number of elements that were less than x, up to additive error ε n.

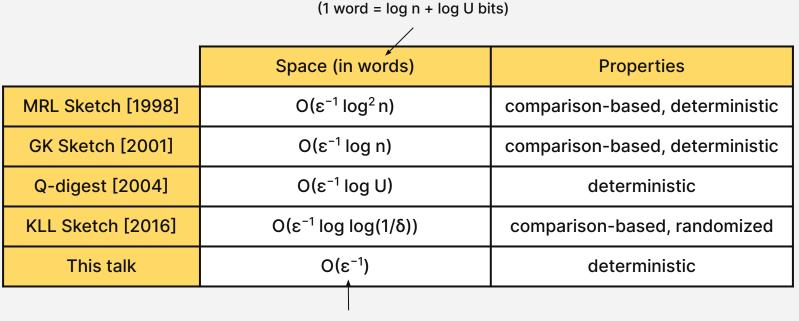
 Equivalently: receive a rank r as a query, and output the element whose rank is between r – εn and r + εn

Applications of quantile estimation

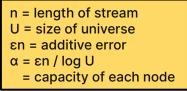
- Estimating system reliability for example, estimating the 99th percentile latency of a system.
- User analytics for websites/online content.
 - Median or 90th percentile time for watching a YouTube video.
 - Estimating time a typical user spends on different screens in the app.
 - Companies like Amplitude exist for this very purpose.
- There are many libraries for quantile sketches: Spark-SQL, Apache DataSketches project, GoogleSQL, and XGBoost.

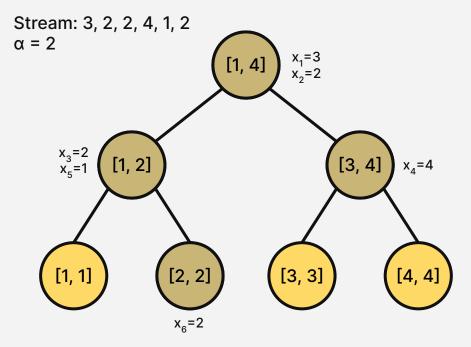
History of quantiles

n = length of stream U = size of universe εn = additive error



(This is optimal)

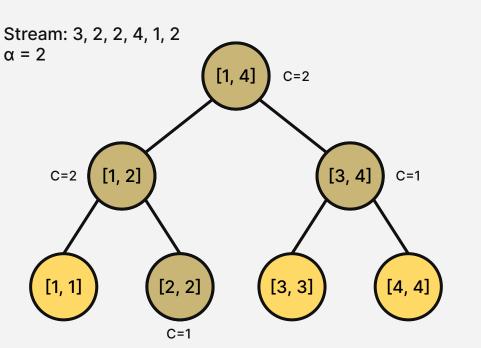




Structure: binary tree, where each node is a subinterval of [1, U]. Each node stores some subset of stream elements. Each node has a "capacity" $\alpha = \epsilon n / \log U$.

Insertion: insert each element into the tree into the top-most node whose interval contains it, that is not yet at its capacity.

Storage: for each node, only store the number of elements it has.

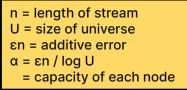


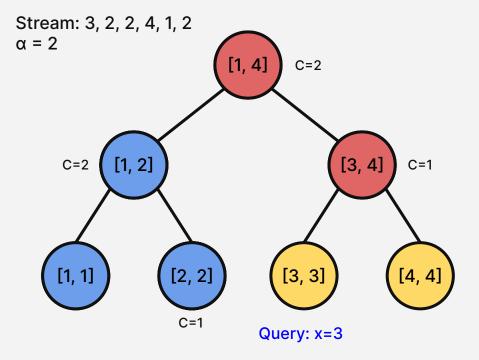
n = length of stream U = size of universe ϵn = additive error α = ϵn / log U = capacity of each node

Structure: binary tree, where each node is a subinterval of [1, U]. Each node stores some subset of stream elements. Each node has a "capacity" $\alpha = \epsilon n / \log U$.

Insertion: insert each element into the tree into the top-most node whose interval contains it, that is not yet at its capacity.

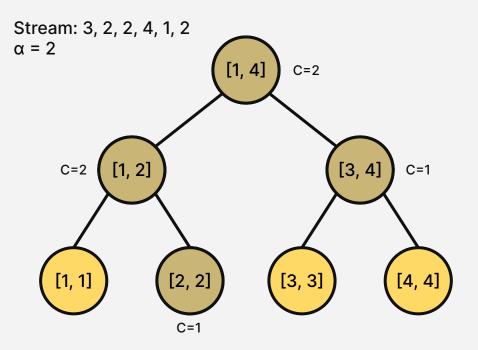
Storage: for each node, only store the number of elements it has.





Answering queries: To find the rank of x, add up the counts of all nodes whose intervals contain only elements less than x.

- The only possible missed elements are in ancestors of x
- log U ancestors, so total error in rank is at most α log U = εn



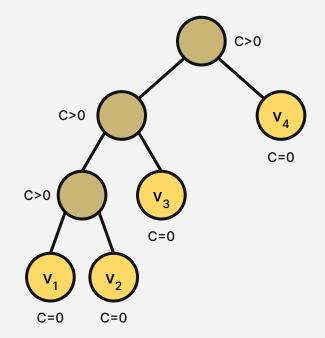
n = length of stream U = size of universe εn = additive error α = εn / log U = capacity of each node

Space complexity: need to store list of all nonempty nodes and their counts.

- Number of nonempty nodes: O(n/α)
 = O(ε⁻¹ log U)
- List of all nodes: only need to store tree topology, so 1 bit per node
- Counts: $\log \alpha \approx O(\log n)$ bits per node
- Total storage: O(ε⁻¹ log U log n) bits

Goal of our algorithm: reduce the space needed to store counts

n = length of stream U = size of universe εn = additive error $\alpha = \varepsilon n / \log U$ = capacity of each node

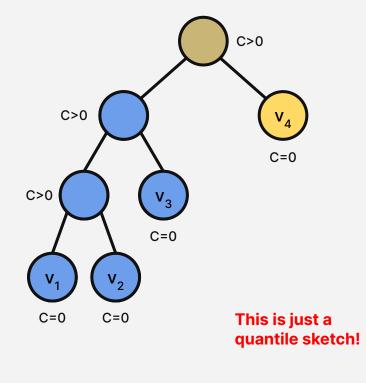


Idea: Only store approximate counts of nodes

How do we insert an element if we only have approximate counts?

- Consider intermediate stage of q-digest tree, and let v₁, ..., v_m be children of nonempty nodes. Each insertion will increment the count of some v_i (or its parent).
- Process insertions in **batches** of size α. After each batch, increment counts of v_i.

n = length of stream U = size of universe εn = additive error α = εn / log U = capacity of each node



Process insertions in **batches** of size α . After each batch, increment counts of v_i .

How to process a batch?

- Each stream element will go into v_i for some i.
- Need to obtain approximate counts C_i' which are close to the true counts C_i.
- Rank query adds up C_1 to C_k for some k, so additional error introduced to rank query is $C_1' + ... + C_k' - (C_1 + ... + C_k).$

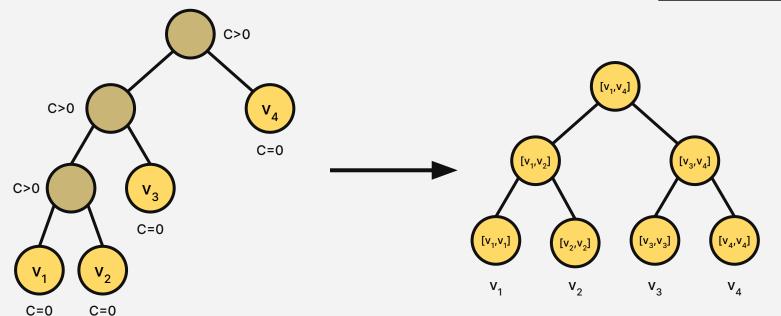
 $C_1 + ... + C_k$

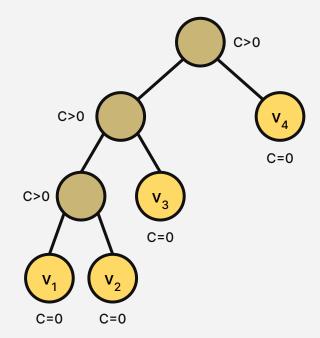
In other words, need an approximation to

for each k (must be accurate within $\epsilon \alpha$).

• (Can recover C₁, ..., C_m from their prefix sums.)

n = length of stream U = size of universe εn = additive error α = εn / log U = capacity of each node

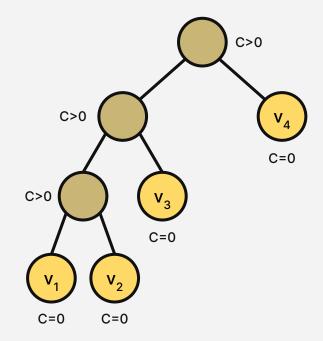




Process insertions in **batches** of size $n' = \alpha$. After each batch, increment counts of v_i .

- Obtain approximate counts from a smaller q-digest on v₁, ..., v_m
- Parameters of inner q-digest:
 - n' = α ≤ n
 - $\circ \qquad U' \leq n \; / \; \alpha = O(\epsilon^{-1} \log U)$
 - ο ε' = ε
 - Total space: $O((\epsilon')^{-1} \log n' \log U') = \tilde{O}(\epsilon^{-1} \log n \log \log U)$ bits
- Outer q-digest stores counts in multiples of $\epsilon \alpha$ up to α , so O(log ϵ^{-1}) = Õ(1) bits per node
 - Total space: $\tilde{O}(\epsilon^{-1} \log U)$ bits
- Overall space: Õ(ε⁻¹ log log U) words

n = length of stream U = size of universe εn = additive error α = εn / log U = capacity of each node



Process insertions in **batches** of size $n' = \alpha$. After each batch, increment counts of v_i .

Overall space: $\tilde{O}(\epsilon^{-1} \log \log U)$ words

Can recursively replace inner q-digest with another instance of our algorithm

- Can do this roughly log* U times, but need to reduce error parameter ε to ε / log* U per recursive layer
- Total space: Õ(ε⁻¹ log* U) words

Getting optimal space

- n = length of stream U = size of universe εn = additive error α = εn / log U = capacity of each node
- To get rid of log* U term, give each recursive layer a different error parameter
 ε: the top and bottom layers get O(ε) and the rest are slightly smaller
- Losing the polylog(ε^{-1}) term is harder
 - In order to have O(1) space per node instead of O(log ε^{-1}), can only store approximate values of C=0 and C= α
 - Batches will then need to be much larger than α , so will need to keep track of the descendants of v_i as well in case v_i fills up during a batch
 - Finally, also need to change shape of q-digest from one tree of height log(U) to 1/ɛ trees of height log(ɛU); will need this for the deeper layers of recursion.

Lower bounds

n = length of stream U = size of universe εn = additive error α = εn / log U = capacity of each node

More precisely, our algorithm uses $O(\epsilon^{-1} (\log(\epsilon U) + \log(\epsilon n)))$ bits.

Easy lower bound of $\Omega(\epsilon^{-1} \log(\epsilon U))$ bits, since if algorithm receives ϵn copies each of $1/\epsilon$ elements, it must remember them all.

Theorem [Wang, preprint via private communication]: Deterministic quantile sketches require $\Omega(\epsilon^{-1} \log(\epsilon n))$ bits.

