

QUANTUM PROGRAM VERIFICATION AN AUTOMATA-BASED APPROACH

Yu-Fang Chen (陳郁方) Institute of Information Science, Academia Sinica

Joint work with Parosh Aziz Abdulla, Yo-Ga Chen, Kai-Min Chung, Lukáš Holík, Ondrej Lengal, Fang-Yi Lo, Jyun-Ao Lin, Wei-Lun Tsai

Games and Equilibria in System Design and Analysis

Why Quantum Computing Is Important?

Promises:

- Solve conventional unsolvable problems.
- Example: break cryptography
- ▶ Algorithms for solving practical problems are under fast developing:
	- Machine learning
	- Optimization
	- Quantum chemistry

The quantum computer Jiuzhang manipulates light via a complex arrangement of optical devices (shown HANSEN ZHONG

Quantum Software Stack

- Classical software handles tasks like control flow, algorithm design, and data preprocessing.
- The synergy between quantum and classical systems is essential for potential applications.

 $U1^{\theta}$, $U2^{\theta_1,\theta_2}$, $U3^{\theta_1,\theta_2,\theta_3}$, CX Ion **IBM**

 R_x^{θ} , R_y^{θ} , R_z^{θ} ,

3

Quantum Software Stack

- Quantum computers are not standalone; they require classical software support.
- Classical software handles tasks like control flow, algorithm design, and data preprocessing.
- The synergy between quantum and classical systems is essential for potential applications.

 $U1^{\theta}$, $U2^{\theta_1,\theta_2}$, $U3^{\theta_1,\theta_2,\theta_3}$, CX Ion **IBM**

Quantum Software Correctness

5

- **Challenges in Software Development**
	- Software complexity grows, making correctness harder to ensure.
	- Debugging costs exceed half of software development expenses.
- **Quantum Software Development**
	- Traditional methods struggle due to quantum's probabilistic nature.
	- Quantum states collapse upon observation, hampering traditional testing.

4**Formal Verification**

• Provides a highly effective means of ensuring the quality of quantum software.

Verification via Examples

 \triangleright Pre: The default initial state.

 \triangleright Post: Found the hidden string (110 in this case).

Bernstein Vazirani Algorithm

Verification via Examples

4Post: |110−⟩.

Bernstein Vazirani Algorithm

EADEMIA SINICA

Screenshots of AutoQ

Screenshots of AutoQ

Outline

- **Quantum Background**
- Quantum Circuit Verification
- Quantum Program Verification

A 3-Bit Classical State

A 3-Qubit Quantum State

Tree as a Quantum State

▶ A 3-bit quantum state

Quantum Gate and Tree Transformation

An example of apply X gate (negation) on qubit x_1 .

Quantum Gate and Tree Transformation

An example of apply H gate on qubit x_1 .

Quantum Gate and Tree Transformation

An example of apply CX gate on control qubit x_1 and target qubit x_2 .

Quantum Parallelism

• One gate updates an exponential number of classical states

18

Quantum Circuit

Quantum Simulation

Multi-Terminal Binary Decision Diagram (MTBDD)

The EPR circuit

 x_1

0

1

Quantum Simulation

Multi-Terminal Binary Decision Diagram (MTBDD)

In classical verification

BDDs encodes a set of states In quantum, it encodes one state - how to encode a set of state?

The EPR circuit

Compress

Outline

- ▶ Quantum Background
- 4**Quantum Circuit Verification**
- 4Quantum Program Verification

Classical Hoare triple

 \triangleright For any predicates P and Q and any program S,

{P} S {Q} Precondition $\{P\}$ $\{ \}$ $\{ \}$ Postcondition

says that if S is started in (a state satisfying) P, then it terminates in Q.

Quantum Circuit Verification

Need a symbolic representation of a set of quantum states (trees).

\therefore \triangle $\{P\}$ C $\{Q\}$ \triangle

Set of trees \rightarrow Regular tree language (Tree automata) From automata theory: Set of words \rightarrow Regular language (Finite automata)

Three Components for Symbolic Verification

- **1. Symbolic representation of sets of states**
- 2. Algorithm to compute the post image
- 3. Algorithm to check containment

Examples: Tree Automata Encoding of Quantum States

 χ_1

 χ_2

 \triangleright This TA accepts all 3-qubit basis quantum states {|000⟩, |001⟩, |010⟩, |011⟩,

|100⟩, |101⟩, |110⟩, |111⟩}

BDD + non-deterministic branching

TA as Compact Representation of Quantum States **ACADEMIA SINICA**

- \triangleright This TA accepts all $2ⁿ$ basis states.
- \triangleright # of transitions: $3n+1$

Why it can be some compact? Merge shared structures.

How about this

$$
\left\{\tfrac{1}{\sqrt{2}}(|0b_2b_3\ldots b_n\rangle+|1\bar{b}_2\bar{b}_3\ldots\bar{b}_n\rangle)\,\,\big|\,\,b_2b_3\ldots b_n\in\mathbb{B}^{n-1}\right\}
$$

- \blacktriangleright A common pattern of reachable set of quantum states.
- \blacktriangleright Need at least 2^{n-1} root transitions.

Level Synchronized Tree Automata (under submission)

- Transitions are labeled with "choices" $\{1\}, \{2\}, \text{ or } \{1,2\}$
- A run only allows transitions with common choice at the same level.
- Choices of transitions from one state must be disjoint.

$\{\frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle), \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)\| \pm \in \{+,-\}\}\$

Level Synchronized Tree Automata (under submission)

- Incomparable expressiveness compared with standard TA.
- Language inclusion is decidable.

ACADEMIA SINICA

Level Synchronized Tree Automata (under submission)

 $\{|0^n\rangle | n \geq 1\}$

Take **choice 1** to make a next level or **choice 2** to leaves

BDD + non-deterministic branching + cycle

ACADEMIA SINICA

Three Components for Symbolic Verification

- 1. Symbolic representation of sets of states
- **2. Algorithm to compute the post image**
- 3. Algorithm to check containment

Examples of Gate Operations: X gate on qubit 2.

 $q-(x_1)$ \rightarrow (q_0, q_0) $q_0-(x_2)$ + (q_1,q_2)

 $q_1 - 1$ q_2 –(0)+()

 $(x_1) (q_0, q_0)$ q_0 $\left(x_2\right)$ + $\left(q_2, q_1\right)$

 q_1 -

Example of Gate Operations: Z, S, T gates on qubit 1.

\blacktriangleright Multiply the right subtree of x_1 with some constant c.

$$
q - (x_1) \rightarrow (q_0^1, q_1^1) \qquad q_1^1 - (x_2) \rightarrow (q_0^2, q_1^2) \qquad q_1^2 - (x_3) \rightarrow (q_0, q_1) \qquad q_0 - (0) \rightarrow ()
$$

\n
$$
q - (x_1) \rightarrow (q_1^1, q_0^1) \qquad q_1^1 - (x_2) \rightarrow (q_1^2, q_0^2) \qquad q_1^2 - (x_3) \rightarrow (q_1, q_0) \qquad q_1 - (1) \rightarrow ()
$$

\n
$$
q_0^1 - (x_2) \rightarrow (q_0^2, q_0^2) \qquad q_0^2 - (x_3) \rightarrow (q_0, q_0)
$$

\n
$$
q - (x_1) \rightarrow (q_0^1, q_1^1) \qquad q_1^1 - (x_2) \rightarrow (q_0^2, q_1^2) \qquad q_1^2 - (x_3) \rightarrow (q_0, q_1) \qquad q_0 - (c \times 0) \rightarrow ()
$$

\n
$$
q - (x_1) \rightarrow (q_1^1, q_0^1) \qquad q_1^1 - (x_2) \rightarrow (q_0^2, q_1^2) \qquad q_1^2 - (x_3) \rightarrow (q_0, q_1) \qquad q_1 - (c \times 1) \rightarrow ()
$$

\n
$$
q_0^1 - (x_2) \rightarrow (q_0^2, q_0^2) \qquad q_0^2 - (x_3) \rightarrow (q_0, q_0)
$$

Three Components for Symbolic Verification

- 1. Symbolic representation of sets of states
- 2. Algorithm to compute the post image
- **3. Algorithm to check containment**

43

Symbolic Extension

\blacktriangleright Note this is different from symbolic automata

Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, AUTOQ: An Automata-Based Quantum Circuit Verifier (CAV 2023)

Outline

- ▶ Quantum Background
- 4Quantum Circuit Verification
- 4**Quantum Program Verification (on-going)**

Quantum Programs

Quantum program =

Quantum circuit + Conditional statement + Loop

 H_1 ; CX_2^1 ; **if** $M_1 = 0$ then $\{X_1\}$; while $M_1 = 0$ do $\{X_1; H_1; CX_2^1\};$

Conditional Statement 央研究院 **ACADEMIA SINICA** H_1 ; C) x_1 x_1 $= 0$ then $\{X_1\};$ x_1 x_2 $x₂$ x_2 $\frac{-a_1}{\sqrt{2}}$ $\frac{-a_0}{\sqrt{2}}$ $rac{a_1}{\sqrt{2}}$ $rac{a_0}{\sqrt{2}}$ $rac{a_0}{\sqrt{2}}$ $rac{a_1}{\sqrt{2}}$ $\bf{0}$ 0 0 $\bf{0}$

(c) $M_1 = 0$

(b) Applied H_1 ; CX_2^1

Normalize?

(d) $M_1 = 1$

 x_{2}

 $\overline{0}$

 x_1

 χ_2

 a_1

 $a₀$

Loop Statement

Algorithm 2: " $-X_2$ "

- 1 Pre: $\{(a_0 | 10 \rangle + a_1 | 11 \rangle + 0 | * \rangle)\};$
- 2 H_1 ; CX_2^1 ;
- 3 Inv: $\left\{\frac{a_0^2}{\sqrt{2}}|00\rangle + \frac{a_1}{\sqrt{2}}|01\rangle \frac{a_1}{\sqrt{2}}|10\rangle \frac{a_0}{\sqrt{2}}|11\rangle\right\};$
- 4 while $M_1 = 0$ do $\{X_1; H_1; CX_2^1\};$

5 Post: $\{(-a_1 | 10\rangle - a_0 | 11\rangle + 0 | *\rangle)\};$

Reference

- ▶ An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits (PLDI 2023) https://dl.acm.org/doi/10.1145/359127
- 4 AUTOQ: An Automata-Based Quantum Circuit Verifier (CAV 2023) https://link.springer.com/chapter/10.1007/978-3-031-37709-9_7
- ▶ Verifying Quantum Circuits with Level-Synchronized Tree Automata submission)
- 4 AutoQ 2.0: From Verification of Quantum Circuits 2 to Verification of Quantum Programs (working draft)

Summary:

• Quantum computers are not standalone; they require classical software support.

49

- Formal verification is a promising approach for ensuring quantum software quality.
- Plenty of new research problems.