

QUANTUM PROGRAM VERIFICATION AN AUTOMATA-BASED APPROACH

Yu-Fang Chen (陳郁方) Institute of Information Science, Academia Sinica

Joint work with Parosh Aziz Abdulla, Yo-Ga Chen, Kai-Min Chung, Lukáš Holík, Ondrej Lengal, Fang-Yi Lo, Jyun-Ao Lin, Wei-Lun Tsai

Games and Equilibria in System Design and Analysis

Why Quantum Computing Is Important?

Promises:

- Solve conventional unsolvable problems.
- Example: break cryptography
- Algorithms for solving practical problems are under fast developing:
 - Machine learning
 - Optimization
 - Quantum chemistry

HANSEN ZHONG

Quantum Software Stack

- Quantum computers are not standalone; they require classical software support.
- Classical software handles ullettasks like control flow, algorithm design, and data preprocessing.
- The synergy between quantum and classical systems is essential for potential applications.

IBM

 $U1^{\theta}, U2^{\theta_1, \theta_2}, U3^{\theta_1, \theta_2, \theta_3}, CX$ Ion

3

Quantum Software Stack

- Quantum computers are not standalone; they require classical software support.
- Classical software handles ullettasks like control flow, algorithm design, and data preprocessing.
- The synergy between quantum and classical systems is essential for potential applications.

IBM

Quantum Software Correctness

- Challenges in Software Development
 - Software complexity grows, making correctness harder to ensure.
 - Debugging costs exceed half of software development expenses.
- Quantum Software Development
 - Traditional methods struggle due to quantum's probabilistic nature.
 - Quantum states collapse upon observation, hampering traditional testing.

Formal Verification

• Provides a highly effective means of ensuring the quality of quantum software.

Verification via Examples

Pre: The default initial state.

Post: Found the hidden string (110 in this case).

Bernstein Vazirani Algorithm

Verification via Examples

▶ Post: |110−⟩.

Bernstein Vazirani Algorithm

CADEMIA SINICA

Screenshots of AutoQ

•		(
	File Edit Selection View Go Run …	\leftarrow \rightarrow	AutoQ [SSH: ytclab2.iis.sinica.edu.tw]	
()	≡ pre.hsl U ×	··· ≡ circuit.qasm M ×		≣ post.hsl U X ຖື
5 🛃 🖏 💑 🕉 🕉	benchmarks > BernsteinVazirani > 03 > ≣ pre.hsl 1 Extended Dirac 2 0000>	benchmarks > Bernst You, 1 second OPENQASM 2 include " 3 greg gubi 4 5 h gubits[6 h gubits[7 h gubits[8 h gubits[9 z qubits] 10 cx qubits 11 cx qubits 12 h qubits[13 h qubits[14 h qubits] 15	<pre>einVazirani > 03 ></pre>	benchmarks > BernsteinVazirani > 03 > ≣ post.hsl 1 Constants 2 c = 1 / V2 3 4 Extended Dirac 5 c 1100> - c 1101>
	PROBLEMS 8 DEBUG CONSOLE TERMINAL • alan23273850@yfclab2.iis.sinica.edu.tw: The quantum program has [4] qubits and The verification process [passed] with • alan23273850@yfclab2.iis.sinica.edu.tw:	~/AutoQ/benchmarks/Bernstein\ [10] gates. a running time of [0.1s] and ~/AutoQ/benchmarks/Bernstein\	/azirani/03\$ autoq_cav24 pre.hsl circuit.qasm po a memory usage of [39MB]. /azirani/03\$	() bash-03 + ∨ □ ₪ … ∧ ×
\bigcirc				
×1				
£73				
× SS⊦	H: yfclab2.iis.sinica.edu.tw 🤌 CAV24* 😯 🐉 🛞 0 🛆	0 (1) 8 (2) 0	Ln 3,	Col 1 Spaces: 4 UTF-8 LF Plain Text 🔐 ✓ Spell 🗘

Screenshots of AutoQ

≺	File Edit Selection	n View Go Ru	ın ···	\leftrightarrow \rightarrow	ب ب Au	ıtoQ [SSH: yfclab2.iis.si	nica.edu.tw]					- D	×
(J)	≣ pre.hsl U ×				≣ circuit.qasm M ×		११ ↔ ↔ ↔ (Ð 🗉 …	≡ post.hsl ।	л×			
	benchmarks > Ber 1 Extende 2 0000>	benchmarks > BernsteinVazirani > 03 > ≡ pre.hsl 1 Extended Dirac 2 0000>		<pre>You 1 second ago 1 author (You) OPENQASM 2.0; include "gelib1.inc"; greg gubits[4]; h gubits[0]; h gubits[1]; h gubits[2]; h gubits[3]; z qubits[3]; cx qubits[1], qubits[3]; k qubits[0]; h qubits[1]; y z qubits[1]; x qubits[2]; You, 1 second You 1 second</pre>		uit.qasm ond ago • Uncomm	nd ago • Uncommitt		benchmarks > BernsteinVazirani > 0 1 Constants 2 c = 1 / V2 3 4 Extended Dirac 5 c 1100> - c 1101>				
	PROBLEMS 8	DEBUG CONSOLE	TERMINAL	/AutoQ/be	nchmarks/BernsteinVazir	ani/03\$ autoq_ca	v24 pre.hsl circu	uit.qasm pos	st.hsl	🍞 bash -	03 + ~ [□ 逾 …	^ X
	The verificat: o alan23273850@y	ion process [fa /fclab2.iis.sin	iled] with a	running	time of [0.1s] and a men nchmarks/BernsteinVazir.	mory usage of [4 ani/03\$	OMB].						
8													
£67													
× ss	H: vfclab2.iis.sinica.edu.t	w ₽ CAV24* ↔	lle ⊗ 0 ∧ 0) (i) 8 (k) (i)		6 You, 1 second a	ago In 14. Co	ol 2 Spaces: 4	UTF-8 LF	Plain Text	🔒 \Lambda 8 Sp	ell Δ

Outline

Quantum BackgroundQuantum Circuit Verification
Quantum Program Verification

A 3-Bit Classical State

A 3-Qubit Quantum State

Tree as a Quantum State

A 3-bit quantum state

Quantum Gate and Tree Transformation

An example of apply X gate (negation) on qubit x₁.

Quantum Gate and Tree Transformation

An example of apply H gate on qubit x_1 .

Quantum Gate and Tree Transformation

An example of apply CX gate on control qubit x₁ and target qubit x_{2.}

Quantum Parallelism

One gate updates an exponential number of classical states

Quantum Circuit

Quantum Simulation

1

Multi-Terminal Binary Decision Diagram (MTBDD)

The EPR circuit

Quantum Simulation

Multi-Terminal Binary Decision Diagram (MTBDD)

In classical verification

 H_1

BDDs encodes a set of states
In quantum, it encodes one state
how to encode a set of state?

The EPR circuit

Compress

Outline

- Quantum Background
 Quantum Circuit Verification
- Quantum Program Verification

Classical Hoare triple

For any predicates P and Q and any program S,

Precondition $\{P\} S \{Q\}$

Postcondition

says that if S is started in (a state satisfying) P, then it terminates in Q.

Quantum Circuit Verification

Need a symbolic representation of a set of quantum states (trees).

$\{P\} C \{Q\}$

From automata theory: Set of words → Regular language (Finite automata) Set of trees → Regular tree language (Tree automata)

Three Components for Symbolic Verification

- **1. Symbolic representation of sets of states**
- 2. Algorithm to compute the post image
- 3. Algorithm to check containment

Examples: Tree Automata Encoding of Quantum States

 x_1

 χ_2

This TA accepts all 3-qubit basis quantum states {|000>, |001>, |010>, |011>,

|100>, |101>, <mark>|110></mark>, |111>}

BDD + non-deterministic branching

TA as Compact Representation of Quantum States

- This TA accepts all 2ⁿ basis states.
- ▶ # of transitions: 3n+1

Why it can be some compact? Merge shared structures.

How about this

$$\{\frac{1}{\sqrt{2}}(|0b_2b_3\dots b_n\rangle + |1\bar{b}_2\bar{b}_3\dots\bar{b}_n\rangle) \mid b_2b_3\dots b_n \in \mathbb{B}^{n-1}\}$$

- A common pattern of reachable set of quantum states.
- Need at least 2ⁿ⁻¹ root transitions.

Level Synchronized Tree Automata (under submission)

- Transitions are labeled with "choices" {1},{2}, or {1,2}
- A run only allows transitions with common choice at the same level.
- Choices of transitions from one state must be disjoint.

$\left\{\frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle), \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle) \mid \pm \in \{+, -\}\right\}$

Level Synchronized Tree Automata (under submission)

- Incomparable expressiveness compared with standard TA.
- Language inclusion is decidable.

ACADEMIA SINICA

Level Synchronized Tree Automata (under submission)

Take **choice 1** to make a next level or **choice 2** to leaves

BDD + non-deterministic branching + cycle

{2}

 $\{1\}$

{2}

{1}

X

ACADEMIA SINICA

Three Components for Symbolic Verification

- 1. Symbolic representation of sets of states
- 2. Algorithm to compute the post image
- 3. Algorithm to check containment

Examples of Gate Operations: X gate on qubit 2.

$q_1 - (1/\sqrt{2}) \rightarrow ($)
$q_2 - 0 \rightarrow ($)

$$q \xrightarrow{q_1} (q_0, q_0)$$

 $q_0 \xrightarrow{q_2} (q_2, q_1)$

$$q_1 \xrightarrow{(1/\sqrt{2})} ()$$

 $q_2 \xrightarrow{(0)} ()$

Example of Gate Operations: Z, S, T gates on qubit 1.

Multiply the right subtree of x₁ with some constant c.

 $q_0^1 \xrightarrow{(x_2)} (q_0^2, q_0^2) \qquad q_0^2 \xrightarrow{(x_3)} (q_0, q_0)$

Three Components for Symbolic Verification

- 1. Symbolic representation of sets of states
- 2. Algorithm to compute the post image
- 3. Algorithm to check containment

Symbolic Extension

Note this is different from symbolic automata

Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, AUTOQ: An Automata-Based Quantum Circuit Verifier (CAV 2023)

Outline

- Quantum Background
- Quantum Circuit Verification
- Quantum Program Verification (on-going)

Quantum Programs

Quantum program =

Quantum circuit + Conditional statement + Loop

 $H_1; CX_2^1;$ if $M_1 = 0$ then $\{X_1\};$ while $M_1 = 0$ do $\{X_1; H_1; CX_2^1\};$

Conditional Statement 央研究院 ACADEMIA SINICA $H_1; CX$ x_1 x_1 = 0 then $\{X_1\};$ x_1 x_2 x_2 X2 $\frac{-a_1}{\sqrt{2}} \frac{-a_0}{\sqrt{2}}$ $\frac{a_0}{\sqrt{2}}$ $\frac{a_1}{\sqrt{2}}$ $\frac{a_0}{\sqrt{2}}$ $\frac{a_1}{\sqrt{2}}$ 0 0 0 0

(c) $M_1 = 0$

(b) Applied H_1 ; CX_2^1

Normalize?

(d) $M_1 = 1$

X2

0

 x_1

 a_1

 a_0

Loop Statement

Algorithm 2: " $-X_2$ "

- 1 Pre: $\{(a_0 | 10\rangle + a_1 | 11\rangle + 0 | * \rangle)\};$
- 2 $H_1; CX_2^1;$
- 3 Inv: $\left\{\frac{a_0^2}{\sqrt{2}}|00\rangle + \frac{a_1}{\sqrt{2}}|01\rangle \frac{a_1}{\sqrt{2}}|10\rangle \frac{a_0}{\sqrt{2}}|11\rangle\right\};$
- 4 while $M_1 = 0$ do $\{X_1; H_1; CX_2^1\};$

5 Post: $\{(-a_1 | 10 \rangle - a_0 | 11 \rangle + 0 | * \rangle)\};$

Reference

- An Automata-Based Framework for Verification and Bug Hunting in Quantum Circuits (PLDI 2023) <u>https://dl.acm.org/doi/10.1145/3591270</u>
- AUTOQ: An Automata-Based Quantum Circuit Verifier (CAV 2023) <u>https://link.springer.com/chapter/10.1007/978-3-031-37709-9_7</u>
- Verifying Quantum Circuits with Level-Synchronized Tree Automata (under submission)
- AutoQ 2.0: From Verification of Quantum Circuits 2 to Verification of Quantum Programs (working draft)

Summary:

- Quantum computers are not standalone; they require classical software support.
- Formal verification is a promising approach for ensuring quantum software quality.
- Plenty of new research problems.