Computing small Rainbow Cycle Numbers with **SAT modulo Symmetries**

Stefan Szeider

TU Wien, Vienna, Austria

joint work with **Markus Kirchweger** (TU Wien)

Der Wissenschaftsfonds.

VIENNA SCIENCE AND TECHNOLOGY FUND

Games and Equilibria in System Design and Analysis/Extended Reunion: Theoretical Foundations of Computer Systems/Simons Institute for the Theory of Computing

Outline

• allocate to each agent *i* a set of goods $A_i \subseteq M$ such that

$$A_i \cap A_j = \emptyset \text{ and } \bigcup_i A_i = \bigcup_i$$

- a **partial** allocation allows some goods unassigned (or donated to *charity*)
- valuation: $v_i : 2^M \to \mathbb{R}_{>0}$

= M

			*	Ţ
			0	0
		\checkmark	1	1
	\checkmark		1000	100
	\checkmark	\checkmark	1001	100
\checkmark			1000000	1000
\checkmark		1	1000001	1000
\checkmark	\checkmark		1001000	1001
\checkmark	\checkmark	\checkmark	1001001	1001

Envy-freeness

- EF envy-free if $\forall i, j : v_i(A_i) \ge v_i(A_i)$

• EF1 - envy-free up to one good: $\forall i, j \exists g \in A_i : v_i(A_i) \ge v_i(A_j \setminus \{g\})$ • EFX - envy-free up to any good: $\forall i, j, \forall g \in A_i : v_i(A_i) \ge v_i(A_i \setminus \{g\})$

J		Image: A constraint of the second of the s	
	EFX	EF w	ith charit

Does an EFX allocation always exist?

- one of the most significant open questions in the field
- Partial affirmative results include the cases
 - 2 agents [Plaut, Roughgarden 2018]
 - 3 agents, additive valuations [Chaudhury, Garg, Mehlhorn 2020]
- **Approximative EFX**
 - α -EFX for $\alpha \in (0,1]$: $\forall i$.

$$,j,\forall g\in A_j: v_i(A_i)\geq \alpha\cdot v_i(A_j\setminus\{g\})$$

The Rainbow Cycle Number

- The rainbow cycle number R(d) is the largest integer k such that there exists a k-partite directed graph G with each block of size d such that
 - every vertex has an incoming edge from each other block (in-property)
 - there is no rainbow cycle (a cycle containing at most one vertex from each block)

α -EFX and the Rainbow Cycle Number

- Based on R(d) one gets (1ε) -EFX allocations with a sublinear number of unallocated items.
- Theorem [Chaudhury, Garg, Mehlhorn, Mehta, Misra 2021] Let $\varepsilon \in (0, 1/2]$ and let g(y) be the smallest integer d such that $d \cdot R(d) \ge y$. Then, there is a partial $(1 - \varepsilon)$ -EFX allocation with at most 4*n*

 $\varepsilon \cdot g(2n/\varepsilon)$

many unallocated items.

Bounds on the Rainbow Cycle Number

[Chaudhury, Garg, Mehlhorn, Mehta, Misra 2021]

•
$$d \le R(d) \le d^4 + d$$

- question"
- allocations"
- in its own right and we leave this as an interesting open problem"
- R(2) = 2
- R(3) = 3
- $R(4) \stackrel{?}{=} 4$ open

• "We believe that finding better upper bounds on R(d) is a natural combinatorial

• "Better upper-bounds to R(d) imply the existence of better relaxations of EFX

• "Therefore investigating better upper bounds on the rainbow cycle number is of interest

Showing R(d) = d for small d

- checking that every d + 1-partite graph with d vertices per block that satisfies the in-property contains a rainbow cycle.
- enumerate all such graphs modulo isomorphism, say with Nauty?

•
$$d = 4$$
 implies $n = 20$

- there are more than 2.4×10^{34} undirected graphs with 19 vertices, modulo isomorphism
- generate-and-test not feasible!
- generate only graphs without rainbow cycles?

Graph search as a synthesis problem

- We fix the
 - possible edg
- Each edge $\{u, v\}$ is represented by a propositional variable $e_{u,v}$ which is true iff the edge exists

property (encoding)

number *n* of vertices, this gives
$$\binom{n}{2}$$
 many dges

Isomorph-Free Generation

- Isomorph-free generation: Number of objects explode quickly
- Canonization: map each object G to a unique representative $\alpha(G)$ of its isomorphism class
- Canonical Objects: Only generate objects G with $\alpha(G) = G$

Isomorph-Free Generation

- Isomorph-free generation: Number of objects explode quickly
- Canonization: map each object G to a unique representative $\alpha(G)$ of its isomorphism class
- Canonical Objects: Only generate objects G with $\alpha(G) = G$

Canonical if it has the lex-smallest adjacency matrix

Static SAT approach

property & canonical

Problem: no polynomial size encoding for canonicity is known!

Dynamic SAT approach: SMS

- SAT modulo Symmetries [Kirchweger, Sz. 2021]
- IPASIR-UP interface [Fazekas et al. 2023]

Canonicity of partially defined graphs

- *P* is **non-canonical** if $\forall G \in X(P)$
- G is certified non-canonical if $\exists \pi \forall G \in X(P) : \pi(G) <_{\mathsf{lex}} G$

 - with π we keep a certificate for non-canonicity of P

$$\exists \pi : \pi(G) <_{\mathsf{lex}} G$$

• we have an efficient constraint-propagation algorithm for computing π

Dynamic SAT approach: SMS

partially defined graph P

property

SMS with co-certificate learning

• [Kirchweger, Peitl, Sz. 2023]

learn clause that blocks the co-certificate

Results for showing R(d) = d

- " $R(3) \ge 4$ " is unsatisfiable, within 1 second
- " $R(4) \ge 5$ " is unsatisfiable, within 23 minutes
- " $R(5) \ge 6$ " didn't terminate within 300h

Invariant pruning

- assuming max indegree is $\Delta := d(k-1)$ •
- w.l.o.g., vertex 1 has indegree Δ
- if UNSAT, add constraints that limit indegrees to $\Delta 1$ ullet
- assuming max indegree is $\Delta 1$
- w.l.o.g., vertex 1 has indegree $\Delta 1$
- if UNSAT, add constraints that limit in-degrees to $\Delta 2$ •

R(d) with invariant pruning

- " $R(4) \ge 5$ "
 - showing in-degree ≤ 4 within 3 seconds
 - showing unsatisfiability with in-degree ≤ 4 then takes half a minute
 - almost 50-fold speedup
- " $R(5) \ge 6$ "
 - showing in-degree ≤ 6 within 105h
 - showing unsatisfiability with in-degree ≤ 6 didn't terminate within 300h

Proofs with SMS

Axioms (encoding of NP-property)

[Wetzler, Heule, Hunt 2014]

Summary

- Fair division of goods, EFX
- Connection between rainbow cycle numbers and α -EFX
- Computing rainbow cycle numbers with SAT modulo Symmetries
- Determined R(4) = 4, with DRAT proof
- Invariant pruning provides speedup, but R(5) = 5 remains open

Applications of SMS

[Kirchweger-Szeider CP'21]	Simon-M up to 18 \
[Kirchweger-Scheucher-Szeider SAT'22]	Rota's Ba
[Kirchweger-Peitl-Szeider SAT'23]	Erdős-Fa
[Kirchweger-Scheucher-Szeider SAT'23]	Planar gr numbers,
[Kirchweger-Peitl-Szeider IJCAI'23]	Co-certif have at le
[Zhang-Szeider CP 2023]	Universa induced 7
[Zhang-Peitl-Szeider SAT 2024]	smallest of variable
[Kirchweger-Szeider CP 2024]	Rainbow

lurty Conjecture on diameter-2 critical graphs, verified vertices

asis Conjecture for matroids, DRAT proofs for SMS

aber-Lovász Conjecture for hypergraphs

raphs and digraphs, enumeration—planar Turán Earth-Moon problem, integer sequences for OEIS

icate learning—3D Kochen-Specker vector systems east 24 vectors

I graphs and **universal tournaments**—templates, '-universal graphs have at least 17 vertices

unsatisfiable CNF formulas with bounded occurrence es

cycle numbers

Tool <u>https://github.com/markirch/sat-modulo-symmetries/</u>

Documentation <u>https://sat-modulo-symmetries.readthedocs.io/</u>

Presentation <u>https://simons.berkeley.edu/talks/stefan-szeider-tu-wien-2023-04-18</u>

