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• Subgame Perfect Equilibrium to model rationality in sequential games 
(instead of Nash equilibrium) 

• Expose new algorithmic ideas for SPE for N-player graph games with:  

• Parity objectives 

• Mean-payoff objectives

Objectives of the talk



Setting



N player turn-based graph games
Game setting

• Set of vertices partitioned according to players 

• Players move a token. A play  is an infinite path in the graph 
(travel of the token)  

• States annotated with vectors of colors (  for parity) or rewards (  
for mean-payoff), one  dimension per player 

• Each play  gives a payoff  to each player:  

• Parity:  is even 

• Mean-payoff:  

• Rationality: players want to maximize their own payoff 

ρ

ℕ ℚ

ρ μi

μi(ρ) = min{𝖼𝗈𝗅𝗈𝗋i(v) ∣ v ∈ 𝗂𝗇𝖿(ρ)}

μi(ρ) = lim inf
j→+∞

𝖲𝗎𝗆𝖱𝖾𝗐𝖺𝗋𝖽𝗂(ρ(0..j))
j



How do players play ?
Strategies, profiles, outcomes

• Players play strategies:  
σi : V⋆ ⋅ Vi → E

• Profiles of strategies: 
 

Notation: 

(σ1, σ2, …σN) ∈ Σ1 × Σ2 × ⋯ΣN
(σi, σ−i)

 = set of strategies of Player Σi i
 such that 

.

𝖮𝗎𝗍𝖼𝗈𝗆𝖾v(σ1, σ2, …, σn) = v0v1…vn… = ρ
v = v0 ∧ ∀j ≥ 0 : vj ∈ Vi → vj+1 = σi(ρ(0…j))



Why to model rational agents/players ?

Assume turned based arena modeling a protocol to be used by rational agents, each having 
their own objectives.  

 
Relevant questions: 

• if agents resolve nondeterminism left in the protocol rationally, is it the case that some 
good property emerges ? do all rational executions satisfy  ? 

• is there a rational behavior of the participants in which all participants gain at least c ? 
(if so, we could ask them to settle for this profile of behaviors) 

• Is there at least one rational execution of the protocol ?  
Are all the possible executions of the protocol rational ? 

• etc.

ψ



How to model rational agents/players ?

Different solution concepts used to predict how a game will be played: 

• optimality (1-player/agent, e.g. shortest path) 

• Pareto optimality (1-player/agent with several objectives)  

• NE, Admissible strategies, Dominent strategies, SPE (when several 
agents are involved) 

• …



Rationality



When are players playing rationally?
Nash equilibrium

• A profile of strategies  is a Nash Equilibrium (NE) in  if 
 

  
 
i.e. no player has an incentive to deviate unitarily.

(σ1, σ2, …, σN) v0

∀i ∈ [1,N] ⋅ ∀σ′ i ∈ Σi : μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾𝗏𝟢
(σ𝟣, …, σ′ 𝗂, …, σ𝖭)) ≤ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾𝗏𝟢

(σ𝟣, …, σ𝗂, …, σ𝖭))
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When are players playing rationally?
Nash equilibrium

Non-credible threat

• A profile of strategies  is a Nash Equilibrium (NE) in  if 
 

  
 
i.e. no player has an incentive to deviate unitarily.

(σ1, σ2, …, σN) v0

∀i ∈ [1,N] ⋅ ∀σ′ i ∈ Σi : μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾𝗏𝟢
(σ𝟣, …, σ′ 𝗂, …, σ𝖭)) ≤ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾𝗏𝟢

(σ𝟣, …, σ𝗂, …, σ𝖭))



When are players playing rationally?
Avoid non-credible threats: Subgame perfect equilibrium

Subgame  = game induced by history  
Players must be rational in all subgames !

Gh h



When are players playing rationally?
Subgame perfect equilibrium

• A profile of strategies  is a Subgame Perfect Equilibrium (SPE) in  if 
 

 

 
 
i.e. no player has an incentive to deviate unitarily in any subgame. 
Players are rational in all subgames (no non-credible threats.)

(σ1, σ2, …, σn) v0

∀i ∈ [1,N] ⋅ ∀ histories h ⋅ ∀σ′ i ∈ Σi :
μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾h(σ1, …, σ′ i, …, σN)) ≤ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾h(σ1, …, σi, …, σN))



When are players playing rationally?
Subgame perfect equilibrium

• A profile of strategies  is a Subgame Perfect Equilibrium (SPE) in  if 
 

 

 
 
i.e. in all subgames, we have NEs (no non-credible threats.)

(σ1, σ2, …, σn) v0

∀i ∈ [1,N] ⋅ ∀ histories h ⋅ ∀σ′ i ∈ Σi :
μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾h(σ1, …, σ′ i, …, σN)) ≤ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾h(σ1, …, σi, …, σN))



Outcomes supported by equilibria
NE - SPE

•  

•  

• How to compute effective representations for those sets ? 

• Why ? 

• Existence problem:   
(while they always exists for parity games, it is not the case for MP games) 

• Rational verification:  
 ?                               ? 

• Cooperative rational synthesis [Kuperfman et al.]:  ?       (parity obj. of Player 0 is true) 

𝖮𝗎𝗍𝖭𝖤(G) = ⋃
σ̄∈NE

𝖮𝗎𝗍𝖼𝗈𝗆𝖾v0(σ̄)

𝖮𝗎𝗍𝖲𝖯𝖤(G) = ⋃
σ̄∈SPE

𝖮𝗎𝗍𝖼𝗈𝗆𝖾v0(σ̄)

𝖮𝗎𝗍𝖲𝖯𝖤(G) =? ∅

(∃) ∃ρ ∈ 𝖮𝗎𝗍𝖲𝖯𝖤(G) : ρ ⊧ ψ (∀) ∀ρ ∈ 𝖮𝗎𝗍𝖲𝖯𝖤(G) : ρ ⊧ ψ

∃ρ ∈ 𝖮𝗎𝗍𝖲𝖯𝖤(𝖦) : ρ ⊧ p0



Algorithms



How to reason algorithmically on SPE?
Easy case: finite trees

• For finite trees: backward induction 

• Infinite trees: backward induction does not generalize well…
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Better starting point: 
Characterization of outcomes of NE



Characterizing outcomes of NE
Use adversarial values

if                                                                                               if  

and                                                                                         and  

then                                                                                                        then 

                                   

Player i has no incentive to deviate                                                    Player i has an incentive to deviate  

ρ ∈ 𝖭𝖤 ρ ∉ 𝖭𝖤

μi(ρ) = c μi(ρ) = c

c ≥ inf
σ̄−i

⋅ sup
σi

⋅ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾(σi, σ̄−i)) = 𝖵𝖺𝗅i(v) 𝖵𝖺𝗅i(v) = sup
σi

⋅ inf
σ̄−i

⋅ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾(σi, σ̄−i)) > c
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Player i has no incentive to deviate                                                    Player i has an incentive to deviate  

ρ ∈ 𝖭𝖤 ρ ∉ 𝖭𝖤

μi(ρ) = c μi(ρ) = c

c ≥ inf
σ̄−i

⋅ sup
σi

⋅ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾(σi, σ̄−i)) = 𝖵𝖺𝗅i(v) 𝖵𝖺𝗅i(v) = sup
σi

⋅ inf
σ̄−i

⋅ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾(σi, σ̄−i)) > c
The zero-sum two player  values (i,-i) characterize the outcomes of NE

Characterizing outcomes of NE
Use adversarial values



• A play  is supported by a NE if  

                                                       

• If  is prefix independent (like parity or mean-payoff), this is equivalent to 

                     

• So it is sufficient to compute for all  and vertex  , the worst-case value  — this is 
equivalent to solving a two-player zero-sum game 

• Let , where , such that  for , 

                            iff  

• Such a function  is called a requirement

ρ = v0v1…vn… ∀i ∈ [1,N] ⋅ ∀j ≥ 0 : vj ∈ Vi ⋅ μi(ρ) ≥ 𝖵𝖺𝗅i(vj)
𝖵𝖺𝗅i(v) = inf

σ̄−i

⋅ sup
σi

⋅ μi(𝖮𝗎𝗍𝖼𝗈𝗆𝖾(σi, σ̄−i))

μi( ⋅ )
∀i ∈ [1,N] ⋅ μi(ρ) ≥ max

v∈𝗏𝗂𝗌𝗂𝗍(ρ)∩Vi

𝖵𝖺𝗅i(v)

i ∈ [1,N] v ∈ Vi 𝖵𝖺𝗅i(v)

λ : V → 𝔻 𝔻 = 𝔹 or 𝔻 = ℝ λ(v) = 𝖵𝖺𝗅𝗂(v) v ∈ Vi
ρ = v0v1…vn… is λ − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍 ∀i ∈ [1,N] ⋅ ∀j ≥ 0 ⋅ μi(ρ) ≥ λ(vj)

λ : V → 𝔻

Characterizing outcomes of NE
Use adversarial values



Set of outcomes supported by NE
Example Mean-payoff



Set of outcomes supported by NE
Example Mean-payoff

• the set of  paths in  are: 
 
                                               

• Theorem [Brihaye et al. 13]:  iff .  

• Corollary (effectivity): the set of  paths is recognized, in the case of MP by a multi-MP 
automaton (this language is not necessarily ), and in the case of Parity by a Streett-automaton.

λ − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍 G

{a → cω} ∪ ⋃
k∈ℕ

(a → (b → a)k → b → dω}

ρ = v0v1…vn… ∈ 𝖮𝗎𝗍𝖭𝖤(G) ρ is λ − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍

λ − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍
ω − 𝗋𝖾𝗀𝗎𝗅𝖺𝗋
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Automaton for OutNE
Applications

• Corollary (effectivity): the set of  paths is recognized, for MP by a multi-MP 
automaton (this language is not necessarily ), and for Parity by a Streett-
automaton. In both cases, we can solve  

• Existence problem:   
(trivial for NE - always non empty) 

• Rational verification (emergence of property ):  
 ?                               ? 

• Cooperative rational synthesis [Kuperfman et al.]:  
 ?       (parity obj. of Player 0 is true) 

 

λ − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍
ω − 𝗋𝖾𝗀𝗎𝗅𝖺𝗋

𝖮𝗎𝗍𝖭𝖤(G) =? ∅

ψ
(∃) ∃ρ ∈ 𝖮𝗎𝗍𝖭𝖤(G) : ρ ⊧ ψ (∀) ∀ρ ∈ 𝖮𝗎𝗍𝖭𝖤(G) : ρ ⊧ ψ

∃ρ ∈ 𝖮𝗎𝗍𝖭𝖤(𝖦) : ρ ⊧ p0
∃ρ ∈ 𝖮𝗎𝗍𝖭𝖤(𝖦) : 𝗏𝖺𝗅0(ρ) ≥ c



Generalization to SPE
Relative worst-case value

• Question: given the requirement  defined by the worst-case values and 
a vertex , does player  have a strategy to improve the value that 

she can obtain from  if the other players are not willing to give up their 
worst-case value (as required by ) ? 

• Can we compute a  worst-case value ?

λ1
v ∈ Vi i

v
λ1

λ − 𝗋𝖾𝗅𝖺𝗍𝗂𝗏𝖾



Generalization to SPE
Relative worst-case value - The negotiation function

•                           
 
where  

i.e. it computes the worst-case value against  strategies, i.e. against 
players that do not want to trade off the value promised by .  

• This can be reduced to a zero sum game (Prover/Challenger).

𝖭𝖾𝗀𝗈 : [λ → 𝔻 ∪ {+∞}] → [λ → 𝔻 ∪ {+∞}]

𝖭𝖾𝗀𝗈(λ)(v) = inf
σ̄−i∈λ𝖱𝖺𝗍

⋅ sup
σi∈Σi

μi(𝗈𝗎𝗍𝖼𝗈𝗆𝖾(σi, σ̄−i))

λ𝖱𝖺𝗍
λ



• Let ,  want to prove that  to v ∈ Vi ℙ ≈ − i 𝖭𝖾𝗀𝗈(λ)i(v) ≤ α ℂ ≈ i

How to compute Nego(.)
The abstract negotiation game between Prover and Challenger
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• Theorem [Concur’21]:  is equal to the value of the abstract 
negotiation game. 

• Theorem [Concur’21]: The abstract negotiation game for MP can be 
transformed into a finite state multi-mean payoff parity game. 

• Theorem [CSL’22]: The abstract negotiation game for Parity can be 
transformed into a Streett game. 

𝖭𝖾𝗀𝗈(λ)(v)

How to compute Nego(.)
The abstract negotiation game between Prover and Challenger



How to compute Nego(.)
… an example

• :      (this path is ) 

• : deviation  

• : from , the only  paths are in   
(even if  is tempting but it fails to give 1 to Player 1)  

• As , .

ℙ a → cω λ1 − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍

ℂ a → b

ℙ b λ1 − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍 (b → a)⋆ → dω

(a → b → )ω

𝖬𝖯1((b → a)⋆ → dω) = 2 𝖭𝖾𝗀𝗈(λ1)(a) = 2



How to compute Nego(.)
… an example

• :  

• : deviation  

• :  

• : deviation                  

• if we repeat the last two steps for  rounds, we get   
and so .

ℙ (b → d)ω

ℂ b → a

ℙ a → (b → d)ω

ℂ b → a

ω ρ = (b → a → )ω

𝖭𝖾𝗀𝗈(λ2)(b) = 𝖬𝖯2(ρ) = 3



How to compute Nego(.)
… an example

• :  

• : deviation  

• :  

• : deviation                  

• if we repeat the last two steps for  rounds, we get   
and so .

ℙ (b → d)ω

ℂ b → a

ℙ a → (b → d)ω

ℂ b → a

ω ρ = (b → a → )ω

𝖭𝖾𝗀𝗈(λ2)(b) = 𝖬𝖯2(ρ) = 3

When should we stop ?

Iterate up to (least) fixed point !

The least fixed point characterizes all the outcomes of SPEs !



Least fixed point characterizes all SPEs
… an example

• There is no  path from , nor from  !λ3 − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍 a b

No SPE starting from a or b !



Least fixed point characterization
Prefix independent objectives

• Theorem [Concur’21]: For prefix independent (including MP and parity) 
objectives, the set of all outcomes of SPEs is characterized by the least fixed 
point  of , i.e.: 
 
      

• For Parity objectives,  is reached within  steps  

• For MP objectives, reaching  may require transfinite number of iterations 
(but the complexity of  can be bounded)

λ⋆ 𝖭𝖾𝗀𝗈( ⋅ )

𝖮𝗎𝗍𝖲𝖯𝖤v0(G) = ⋃
σ̄∈SPE

𝖮𝗎𝗍𝖼𝗈𝗆𝖾v0(σ̄) = {ρ ∣ ρ is λ⋆ − 𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝗍}

λ⋆ |V |

λ⋆

λ⋆



Complexity
CSL’22

• Theorem [CSL’22]: Given a N-player parity game : 

• Constrained existence problem: - existence is always guaranteed 
given two vectors , deciding if there exists a SPE  such that  is 

.                                              
—The notion of witness is non trivial 
—This was previously now to be in ExpTime (using alternating automata constructions) 

• Least fixed point checking problem: 
given a vector , deciding if  is . 

• LTL verification problem: 
given a LTL formula , deciding if for all SPE , we have that  , ie. checking if 

, is .

G

u, v ∈ 𝔹N σ̄ u ≤ μ(𝗈𝗎𝗍𝖼𝗈𝗆𝖾(σ̄) ≤ v
𝖭𝖯 − 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾

λ ∈ 𝔹N λ = λ⋆ 𝖡𝖧2 − 𝖼𝗈𝗆𝗉𝗅𝖾𝗍𝖾

ψ σ̄ 𝗈𝗎𝗍𝖼𝗈𝗆𝖾(σ̄) ⊧ ψ
𝖮𝗎𝗍𝖲𝖯𝖤(G) ⊧ ψ 𝖯𝖲𝗉𝖺𝖼𝖾 − 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾



Complexity
Mean-Payoff (ICALP’22)

• Theorem [ICALP’22]: Given a N-player mean-payoff game : 

• Constrained SPE existence problem: given , deciding if there exists 
a SPE  s.t.  is . 

• The “plain” existence problem is also  . 
                                            
—The notion of witness is non trivial 
—We know that the least fixed point is the solution of a set of linear equations 
for which we can bound the size of solutions - and so we can guess it 
—The decidability status of this problem was left open in the literature

G

u, v ∈ ℚN

σ̄ u ≤ μ(𝗈𝗎𝗍𝖼𝗈𝗆𝖾(σ̄) ≤ v 𝖭𝖯 − 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾

𝖭𝖯 − 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾



Summary - Conclusion

• SPE is a natural solution concept to model rationality in multi-player graph 
games, and SPE is better suited than NE for sequential games (non-credible 
threats) 

• We have described new algorithmic ideas to compute an effective 
representation of the set of outcomes supported by a SPE of a N-player non-
zero game graph (for parity and mean-payoff). This is relevant to solve 
rational verification problems and cooperative rational synthesis problems 

• We have characterized the complexity of the (constrained) existence 
problems for SPE in N-player non-zero sum games played on graphs with 
mean-payoff and parity objectives (both are NP-complete problems)


