Subgame Perfection with an Algorithmic Perspective

Simons Institute - July - 2024

Jean-François Raskin (Université libre de Bruxelles)

based on joint works with Marie van den Bogaard (Université Gustave Eiffel) and Léonard Brice (Université libre de Bruxelles)

• **Subgame Perfect Equilibrium** to model **rationality** in sequential games

• Expose new **algorithmic ideas** for SPE for N-player graph games with:

- (instead of Nash equilibrium)
- - **Parity** objectives
	- **Mean-payof** objectives

Objectives of the talk

N player turn-based graph games Game setting

- Set of vertices **partitioned** according to players
- Players move a token. A **play** ρ is an **infinite path** in the graph (travel of the token)
- States annotated with vectors of colors (N for **parity**) or rewards (Q for **mean-payof**), one dimension per player
- Each play ρ gives a **payoff** μ_i to each player:
	- Parity: $\mu_i(\rho) = \min\{\text{color}_i(\nu) \mid \nu \in \text{inf}(\rho)\}\$ is even

- Mean-payoff: $\mu_i(\rho) = \liminf$ *j*→+∞ *j*
- **Rationality**: players want to maximize their own payoff

(*ρ*(0..*j*))

How do players play ? Strategies, profiles, outcomes

• Players play strategies: $\sigma_i: V^{\star} \cdot V_i \rightarrow E$

 Σ_i = set of strategies of Player *i*

• Profiles of strategies: Notation: (σ_i, σ_{-i}) $(\sigma_1, \sigma_2, \ldots \sigma_N) \in \Sigma_1 \times \Sigma_2 \times \cdots \Sigma_N$

 $\omega_{\nu}(\sigma_1, \sigma_2, ..., \sigma_n) = \nu_0\nu_1... \nu_n... = \rho$ such that $v = v_0 \wedge \forall j \ge 0 : v_j \in V_i \to v_{j+1} = \sigma_i(\rho(0...j)).$

Why to model rational agents/players ?

Assume turned based arena modeling a protocol to be used by **rational agents,** each having their **own** objectives.

Relevant questions:

- if agents resolve nondeterminism left in the protocol **rationally**, is it the case that some ${\bf good \ property \ emerges} ?$ do all rational executions satisfy ψ ?
- is there a **rational** behavior of the participants in which all participants gain at least c ? (if so, we could ask them to settle for this profile of behaviors)
- Is there **at least one** rational execution of the protocol ? **Are all** the possible executions of the protocol rational ?
- etc.

How to model rational agents/players ?

- Different **solution concepts** used to predict how a game will be played:
	- optimality (1-player/agent, e.g. shortest path)

- Pareto optimality (1-player/agent with several objectives)
- **NE, Admissible strategies, Dominent strategies, SPE** (when several agents are involved)

•

…

Rationality

When are players playing rationally? Nash equilibrium

• A profile of strategies $(\sigma_1, \sigma_2, ..., \sigma_N)$ is a Nash Equilibrium (NE) in v_0 if

 $\forall i \in [1, N] \cdot \forall \sigma'_i \in \Sigma_i : \mu_i(\textsf{Outcome}_{\mathsf{v}_0}(\sigma_1, ..., \sigma'_i, ..., \sigma_{\mathsf{N}})) \leq \mu_i(\textsf{Outcome}_{\mathsf{v}_0}(\sigma_1, ..., \sigma_i, ..., \sigma_{\mathsf{N}}))$

i.e. no player has an incentive to deviate unitarily.

When are players playing rationally? Nash equilibrium

• A profile of strategies $(\sigma_1, \sigma_2, ..., \sigma_N)$ is a Nash Equilibrium (NE) in v_0 if

i.e. no player has an incentive to deviate unitarily.

 $\forall i \in [1, N] \cdot \forall \sigma'_i \in \Sigma_i : \mu_i(\textsf{Outcome}_{\mathsf{v}_0}(\sigma_1, ..., \sigma'_i, ..., \sigma_{\mathsf{N}})) \leq \mu_i(\textsf{Outcome}_{\mathsf{v}_0}(\sigma_1, ..., \sigma_i, ..., \sigma_{\mathsf{N}}))$

When are players playing rationally? Nash equilibrium

• A profile of strategies $(\sigma_1, \sigma_2, ..., \sigma_N)$ is a Nash Equilibrium (NE) in v_0 if

 $\forall i \in [1, N] \cdot \forall \sigma'_i \in \Sigma_i : \mu_i(\textsf{Outcome}_{\mathsf{v}_0}(\sigma_1, ..., \sigma'_i, ..., \sigma_{\mathsf{N}})) \leq \mu_i(\textsf{Outcome}_{\mathsf{v}_0}(\sigma_1, ..., \sigma_i, ..., \sigma_{\mathsf{N}}))$

i.e. no player has an incentive to deviate unitarily.

When are players playing rationally? Avoid non-credible threats: Subgame perfect equilibrium

Subgame G_h = game induced by history h **Players must be rational in all subgames !**

When are players playing rationally? Subgame perfect equilibrium

• A profile of strategies $(\sigma_1, \sigma_2, ..., \sigma_n)$ is a Subgame Perfect Equilibrium (SPE) in v_0 if

 $\forall i$ ∈ $[1,N] \cdot \forall$ histories $h \cdot \forall \sigma_i' \in \Sigma_i$: $\mu_i(\textsf{Outcome}_h(\sigma_1, ..., \sigma_i', ..., \sigma_N)) \leq \mu_i(\textsf{Outcome}_h(\sigma_1, ..., \sigma_i, ..., \sigma_N))$

i.e. no player has an incentive to deviate unitarily in any subgame. Players are rational in all subgames (**no** non-credible threats.)

-
-
-

When are players playing rationally? Subgame perfect equilibrium

• A profile of strategies $(\sigma_1, \sigma_2, ..., \sigma_n)$ is a Subgame Perfect Equilibrium (SPE) in v_0 if

 $\forall i$ ∈ $[1,N] \cdot \forall$ histories $h \cdot \forall \sigma_i' \in \Sigma_i$: $\mu_i(\textsf{Outcome}_h(\sigma_1, ..., \sigma_i', ..., \sigma_N)) \leq \mu_i(\textsf{Outcome}_h(\sigma_1, ..., \sigma_i, ..., \sigma_N))$

i.e. in all subgames, we have NEs (**no** non-credible threats.)

-
-
-

Outcomes supported by equilibria NE - SPE

- **• How to compute effective representations for those sets ?**
- **• Why ?**
	- Existence problem: $\mathsf{OutSPE}(G) = ? \varnothing$ (while they always exists for parity games, it is not the case for MP games)
	- Rational verification: $(\exists) \exists \rho \in OutSPE(G) : \rho \models \psi$?
	-

 (\forall) $\forall \rho \in OutSPE(G) : \rho \models \psi$? • Cooperative rational synthesis [Kuperfman et al.]: $\exists \rho\in\mathsf{OutSPE(G)}: \rho\models p_0\, ?$ (parity obj. of Player 0 is true)

Output
$$
OutNE(G) = \bigcup_{\bar{\sigma} \in NE} Outcome_{v_0}(\bar{\sigma})
$$

Output
$$
OutSPE(G) = \bigcup_{\bar{\sigma} \in SPE} Outcome_{v_0}(\bar{\sigma})
$$

Algorithms

How to reason algorithmically on SPE? Easy case: finite trees

• For finite trees: backward induction

How to reason algorithmically on SPE? Easy case: finite trees

• For finite trees: backward induction

How to reason algorithmically on SPE? Easy case: finite trees

• For finite trees: backward induction

• Infinite trees: backward induction does not generalize...

Better starting point: Characterization of outcomes of NE

Characterizing outcomes of NE Use adversarial values

and $\mu_i(\rho) = c$ and $(\rho) = c$ and μ_i

 $c \ge \inf_{i} \cdot \sup_{i} \cdot \mu_i$ (Outcome $(\sigma_i, \sigma_{-i}^{-})$) = Val_{*i*}(*v*) $\bar{\sigma}_{-i}$ *σ*_{*i*}

Player i has **no** incentive to deviate Player i has an incentive to **deviate**

then then and $\mu_i(\rho) = c$ (*v*) $\mathsf{Val}_i(v) = \sup \cdot \inf \cdot \mu_i(\text{Outcome}(\sigma_i, \sigma_{-i})) > c$ *σi σ*¯ −*i*

Characterizing outcomes of NE Use adversarial values

Characterizing outcomes of NE Use adversarial values

- A play $\rho = v_0v_1...v_n...$ is supported by a NE if $\forall i \in [1, N] \cdot \forall j \geq 0: v_j \in V_i \cdot \mu_i(\rho) \geq \mathsf{Val}_i(v_j)$ $\mu_i(v) = \inf_{i} \cdot \sup_{i} \mu_i(\text{Outcome}(\sigma_i, \sigma_{-i}^{-}))$ $\bar{\sigma}_{-i}$ *σ*_{*i*}
- If $\mu_i(\;\cdot\;)$ is **prefix independent** (like parity or mean-payoff), this is equivalent to $\forall i \in [1, N] \cdot \mu_i(\rho) \geq \max_{\nu \in \text{finite}} \text{Val}_i(\nu)$ $v \in \text{visit}(\rho) \cap V_i$
- So it is sufficient to compute for all $i \in [1, N]$ and vertex $v \in V_i$, the **worst-case value** $\text{Val}_i(v)$ this is equivalent to solving a two-player zero-sum game
- Let $\lambda: V \to \mathbb{D}$, where $\mathbb{D} = \mathbb{B}$ or $\mathbb{D} = \mathbb{R}$, such that $\lambda(v) = \mathsf{Val}_{\mathsf{i}}(v)$ for $v \in V_{\mathsf{i}}$, $\rho = v_0v_1...v_n...$ is λ – consistent iff $\forall i \in [1,N]\cdot \forall j \geq 0\cdot \mu_i(\rho) \geq \lambda(v_j)$

• Such a function $\lambda: V \to \mathbb{D}$ is called a **requirement**

Set of outcomes supported by NE Example Mean-payof

Set of outcomes supported by NE Example Mean-payof

• the set of λ – consistent paths in G are:

- **Theorem** [Brihaye et al. 13]: iff .
- **Corollary (effectivity)**: the set of paths is recognized, in the case of MP by a multi-MP

 $(a \rightarrow (b \rightarrow a)^k \rightarrow b \rightarrow d^{\omega}$

$$
\{a \to c^{\omega}\} \cup \bigcup_{k \in \mathbb{N}} (a \to
$$

Set of outcomes supported by NE Example Mean-payof

• the set of λ – consistent paths in G are:

 ${a \rightarrow c^{\omega}}$

$$
\bigcup_{k \in \mathbb{N}} (a \to (b \to a)^k \to b \to d^{\omega})
$$

• **Theorem** [Brihaye et al. 13]: $\rho = v_0v_1...v_n... \in OutNE(G)$ iff ρ is λ – consistent.

Automaton for OutNE Applications

- automaton (this language is not necessarily ω **regular**), and for **Parity** by a Streettautomaton. In both cases, we can solve
	- Existence problem: $\mathsf{OutNE}(G) = ? \varnothing$ (trivial for NE - always non empty)
	- Rational verification (emergence of property $ψ$): $(\exists) \exists \rho \in OutNE(G) : \rho \models \psi$?
	- Cooperative rational synthesis [Kuperfman et al.]: $\exists \rho \in \text{OutNE}(G) : \rho \models p_0$? (parity obj. of Player 0 is true) $\exists \rho \in OutNE(G) : val_0(\rho) \geq c$

• **Corollary (effectivity)**: the set of λ – consistent paths is recognized, for **MP** by a multi-MP

 (\forall) $\forall \rho \in OutNE(G): \rho \models \psi$?

Generalization to SPE Relative worst-case value

- Question: given the requirement λ_1 defined by the worst-case values and a vertex $v \in V_i$, does player i have a strategy to **improve** the value that she can obtain from v if the other players are **not willing to give up** their worst-case value (as required by λ_1)?
- **Can we compute a** λ relative worst-case value?

Generalization to SPE

Relative worst-case value - The negotiation function

- $Nego: [\lambda \rightarrow \mathbb{D} \cup \{+\infty\}] \rightarrow [\lambda \rightarrow \mathbb{D} \cup \{+\infty\}]$
- where $Nego(\lambda)(\nu) = \inf$ *σ*¯−*ⁱ* ∈*λ* ⋅ sup *σi* ∈Σ*ⁱ* μ_i (outcome $(\sigma_i, \bar{\sigma}_{-i})$)

players that do not want to trade off the value promised by λ .

•

- This can be reduced to a zero sum game (Prover/Challenger).
- i.e. it computes the worst-case value against $\lambda \textsf{Rat}$ strategies, i.e. against
	-

• Let $v \in V_i$, $\mathbb{P} \approx -i$ want to prove that $\mathsf{Nego}(\lambda)_i(v) \leq \alpha$ to $\mathbb{C} \approx i$

- **Theorem** [Concur'21]: $Nego(\lambda)(v)$ is equal to the value of the abstract negotiation game.
- **Theorem** [Concur'21]: The abstract negotiation game for MP can be transformed into a **finite state multi-mean payoff parity game.**
- **Theorem** [CSL'22]: The abstract negotiation game for Parity can be transformed into a **Streett game**.

How to compute Nego(.) … an example

- $\mathbb{P}: a \to c^{\omega}$ (this path is λ_1 consistent) $\mathbb{P}: a \to c^{\omega}$ (this path is λ_1 –
- \mathbb{C} : deviation $a \rightarrow b$
- \mathbb{P} : from b , the only λ_1 consistent paths are in $(b \to a)$ (even if $(a \rightarrow b \rightarrow)^{\omega}$ is tempting but it fails to give 1 to Player 1) *ω*
	- As $MP_1((b \rightarrow a)^* \rightarrow d^{\omega}) = 2$, $Nego(\lambda_1)(a) = 2$.

 \star \rightarrow d^{ω}

How to compute Nego(.) … an example

- \mathbb{C} : deviation $b \to a$
- $\mathbb{P}: a \to (b \to d)$ *ω*
- \mathbb{C} : deviation $b \to a$
- if we repeat the last two steps for ω rounds, we get $\rho = (b \rightarrow a \rightarrow b)$ and so $\mathsf{Nego}(\lambda_2)(b) = \mathsf{MP}_2(\rho) = 3.$

ω

How to compute Nego(.) … an example

$$
\quad \bullet \ \ \mathbb{P} \colon (b \to d)^{\omega}
$$

- \mathbb{C} : deviation $b \to a$
- $\mathbb{P}: a \to (b \to d)$ *ω*
- \mathbb{C} : deviation $b \to a$
- if we repeat the last two step and so $\mathsf{Nego}(\lambda_2)(b) = \mathsf{MP}_2(\lambda_2)$

 $\mathbf \Lambda$

ω ρ = (<i>b +) = (*b* +) = (*b*) = (*b* Iterate up to (least) fixed point !

When should we stop ?

The least fixed point characterizes all the outcomes of SPEs !

Least fixed point characterizes all SPEs … an example

• There is no λ_3 – consistent path from a, nor from b!

Least fixed point characterization Prefix independent objectives

• **Theorem [Concur'21]**: For *prefix independent* (including MP and parity) point λ^* of Nego(\cdot), i.e.: λ^{\star} of Nego(·)

objectives, the set of all outcomes of SPEs is characterized by the least fixed

OutSPE_{v₀}(G) =
$$
\bigcup_{\bar{\sigma} \in SPE}
$$
 Outcome_{v₀}($\bar{\sigma}$) = { $\rho \mid \rho$ is λ^* – consistent}

- For Parity objectives, λ^* is reached within $|V|$ steps *λ*[⋆] |*V*|
- For MP objectives, reaching λ^\star may require transfinite number of iterations (but the complexity of λ^* can be bounded) λ^* λ^{\star}

Complexity CSL'22

- Theorem [CSL'22]: Given a N-player parity game G:
	- Constrained existence problem: existence is always guaranteed given two vectors $u, v \in \mathbb{B}^N$, deciding if there exists a SPE $\bar{\sigma}$ such that $u \leq \mu($ outcome $(\bar{\sigma}) \leq v$ is – Complete.

- Least fixed point checking problem: given a vector $\lambda \in \mathbb{B}^N$, deciding if $\lambda = \lambda^\star$ is $\mathsf{BH}_2 -$ complete.
- LTL verification problem: given a LTL formula ψ , deciding if **for all** SPE $\bar{\sigma}$, we have that $\text{outcome}(\bar{\sigma}) \models \psi$, ie. checking if $(G) \models \psi$, is PSpace – Complete.

—The notion of witness is non trivial

—This was previously now to be in ExpTime (using alternating automata constructions)

Complexity Mean-Payoff (ICALP'22)

- Theorem [ICALP'22]: Given a N-player mean-payoff game G :
	- Constrained SPE existence problem: given $u, v \in \mathbb{Q}^N$, deciding if there exists a SPE $\bar{\sigma}$ s.t. $u \leq \mu(\text{outcome}(\bar{\sigma}) \leq v$ is NP – Complete. $u, v \in \mathbb{Q}^N$
	- The "plain" existence problem is also NP Complete.

—The notion of witness is non trivial

—We know that the least fixed point is the solution of a set of linear equations for which we can bound the size of solutions - and so we can guess it —The decidability status of this problem was left open in the literature

Summary - Conclusion

• SPE is a **natural** solution concept to model rationality in multi-player graph games, and SPE is better suited than NE for sequential games (non-credible

representation of the set of **outcomes supported by a SPE** of a N-player nonrational verification problems and cooperative rational synthesis problems

- threats)
- We have described new algorithmic ideas to compute an effective zero game graph (for parity and mean-payoff). This is relevant to solve
- We have characterized the complexity of the **(constrained) existence** mean-payoff and parity objectives (both are **NP-complete** problems)

problems for SPE in N-player non-zero sum games played on graphs with