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Descriptive complexity of graph neural networks (GNNs)

▶ P. Barceló et al. (ICLR 2020) characterize a class of GNNs in restriction
to first-order definable properties via

1. FOC2 in the scenario where the GNNs contain global readouts,
2. graded modal logic in the scenario without global readouts.

▶ M. Grohe (LICS 2023) characterizes a class of GNNs via Guarded
Fragment + counting quantifiers + built-in relations.

Both works restrict to constant-time GNNs.



Descriptive complexity of graph neural networks (GNNs)

▶ M. Pflüger et al. (AAAI 2024) characterize a class of recurrent
(i.e., non-constant-time) GNNs in restriction to LocMMFP-definable
properties via graded µ-calculus.

The logic LocMMFP extends first-order logic with a least fixed-
point operator over unary monotone formulas. Here no syntactic
restriction is imposed on the formulas to be iterated, so LocMMFP
has undecidable syntax (which is also noted by the authors).



Descriptive complexity of distributed computing

▶ Hella et al. (PODC 2012) characterize constant-time distributed
automata classes via modal logics.

▶ K. (CSL 2013) lifts these characterizations to recurrent (i.e., non-
constant-time) distributed automata via Modal Substitution Calculus
(MSC), a rule-based modal logic with a recursion mechanism.



Classical computing:



Distributed computing:



A distributed system is defined by a labelled directed graph

(W ,R, p1, ..., pk)

together with an automaton A.

▶ Each node w ∈ W contains a copy (A,w) of the automaton A.
▶ R ⊆ W × W is a collection of communication channels.
▶ Predicates pi ⊆ W encode a local input at each node.

The ith input bit at node w is 1 iff w ∈ pi .

We could allow for more communication channels R1, . . . ,Rm
without changing any results to be presented.



Computation proceeds in synchronous steps.

In one time step, each machine (A,w)
▶ Receives messages from its neighbours and sends messages to

its neighbours,
▶ Updates its own state based on the received messages and

previous state.



An automaton A is a tuple (Q, π, δ,F ).
1. Q is a finite set of states.
2. At each node, π : P({p1, . . . , pk}) → Q determines the initial

state of the automaton based on the proposition symbols satisfied
at the node.

3. δ : Q × P(Q) → Q gives each node a new state based on
▶ the state at the node in the previous round and
▶ the set of states sent by the neighbours, i.e., the set

{q ∈ Q | q is some neighbour’s state in the previous round }.
4. F ⊆ Q is a set of accepting states.

A node w accepts if it visits some accepting state q ∈ F at least once.



More formally:

Each communication round n ∈ N defines a global configuration
fn : W → Q.

f0(w) := initial state at w obtained by the initialization function π.

Define Q′ := the set of states realized by the neigbours of w in
round n. Then fn+1(w) := the new state δ(fn(w),Q′)) at w .

Strictly speaking, by “neighbours of w” we here mean out-neigbours.
This means messages (i.e., states) are sent from the head of an arrow
towards the tail. This is simply a convention and could be reversed.

Node w accepts iff fk(w) ∈ F for some k ∈ N.



The automaton A therefore computes a subset S ⊆ W (the set of
accepting nodes) of the distributed system (W ,R, p1, . . . , pk).



These automata are called finite message passing automata (FMPAs).

If the state space Q is allowed to be infinite, we have a message
passing automaton (MPA). The transition function δ of an MPA is
allowed to be non-computable.



Modal Substitution Calculus (MSC)

X1 :− p ∨ ♢q X1 :− p ∨ Xn ∨ ♢X1
...

...
Xn :− □(p ∧ q) Xn :− X1 ∨ ♢¬Xn

A program of MSC consists of two lists of rules:
1. base rules on the left,
2. induction rules on the right.

▶ φ ::= p | ¬φ | φ ∧ φ | ♢φ
▶ φ ::= p | X | ¬φ | φ ∧ φ | ♢φ



X1 :− ψ1 X1 :− φ1
...

...
Xn :− ψn Xn :− φn

Define X 0
i := ψi

Define Xn+1
i to be the formula obtained from φi by replacing each Xj by Xn

j .

M,w |= program iff M,w |= Xn
1 for some n ∈ N.

Here M = (W ,R, p1, . . . , pk) is our distributed system and w ∈ W a node.
Recall M,w |= ♢φ iff M, u |= φ for some u such that R(w , u).



Theorem. Modal substitution calculus MSC is precisely as
expressive as finite message passing automata FMPAs.

Theorem. Co-theories of modal logic are precisely as expressive as
message passing automata MPAs.

A co-theory is just an infinite disjunction of formulas.



Proposition. MSC is orthogonal in expressive power to MSO.

Proof. MSC easily defines the centre point property, i.e., the
node property stating that for some k, no matter which way you
walk, you will end up in a dead-end in precisely k steps. An easy
Ehrenfeucht-Fraïssé game argument shows the centre point property
is not definable in MSO.

On the other hand, MSC cannot define non-reachability.



Proposition. The satisfiability problem of the 1-variable fragment
of MSC is Pspace-complete.

Proposition. MSC contains the µ-fragment of the modal µ-calculus.



An FMPA whose transitions are independent of the current state is
called forgetful. In other words,

δ(q, S) = δ(q′,S)

for all q, q′ ∈ Q and all S ⊆ Q.

Theorem. (K. and Reiter, Inf. Comput. 2020)
The class of forgetful FMPAs is equiexpressive with MSO on word
models. On trees, forgetful FMPAs are more expressive than MSO.

Theorem. (K. and Reiter, Inf. Comput. 2020)
The emptiness problem for forgetful FMPAs is in LogSpace,
while for general FMPAs it is undecidable.



Graph neural networks (GNNs)

Let mult(S) denote the set of multisets over S, and define
Π := {p1, . . . , pk}. Let d ∈ N.

A recurrent graph neural network is a tuple (π, δ,F ) that computes
in a labeled directed graph (W ,R, p1, . . . , pk) as follows.

▶ The initialization function π : P(Π) → Rd assigns to each node w
an initial feature vector x0

w = π(P), where P is the set of proposition
symbols true at w .

▶ In round t = 1, 2, ..., each node w computes a new feature vector

x t
w = COM

(
x t−1

w ,AGG
(
{{ x t−1

u | (w , u) ∈ R }}
) )

where
1. AGG : mult(Rd) → Rd is an aggregation function (typically sum),
2. COM : Rd × Rd → Rd is a combination function.



▶ GNNFs are exactly like GNNs but use floats and sum as an
aggregation function.

▶ Simple GNNFs are GNNFs with

COM
(
x t−1

v ,AGG
(
{{ x t−1

u |(v , u) ∈ R }}
))

= f (C x t−1
v +

∑
(v ,u)∈R

A x t−1
u + b)

where
1. A and C are matrices and b ∈ Rd a bias factor,
2. f : Rd 7→ Rd is the pointwise applied truncated ReLU, that is

the function ReLU∗(x) = min(max(0, x), 1)):

Simple GNNFs are based on the GNN model of Barceló et al. 2020.



In which order do we sum over neighbours’ feature vectors?

A typical solution would be to sum in some order given implicitly
by the input graph.

But this would lead to graph neural networks not being invariant
under isomorphism because floating point sum is not associative.

We sum in the order or the floats in the sum. This a common choice
also based on numerical analysis as it gives small rounding errors.



Theorem. (Ahvonen, Heiman, K., Lutz; 2024)
The following have the same expressive power:
▶ GNNFs
▶ Simple GNNFs
▶ GMSC

GMSC, or graded modal substitution calculus, is obtained by allowing
diamonds ♢≥k in MSC in addition to standard diamonds ♢.



Note that every GMSC-program has a natural counting threshold
given by the maximum k in the diamonds ♢≥k .

The input graphs have unbounded degree, and GNNFs sum over
unbounded collections of feature vectors of successors, so it may be
puzzling how GMSC could suffice to characterize GNNFs.

The key is that sums over multisets of floats have the following
property:

There exists an ℓ such if a float f occurs in a multiset S at least
ℓ times, then, if we alter the multiplicity of f in S so that the
multiplicity stays above ℓ, the sum over the new multiset gives the
same value as the sum over the original multiset S.



Theorem. (Ahvonen, Heiman, K., Lutz; 2024)
GNNs are equiexpressive with infinite disjunctions of formulas of GML.

GML:
φ ::= p | ¬φ | φ ∧ φ | ♢≥kφ



Theorem. (Ahvonen, Heiman, K., Lutz; 2024)
In restriction to MSO-definable node properties, the following have
equal expressive power:

1. GNNs
2. GNNFs
3. Simple GNNFs
4. GMSC

Given the earlier results, it suffices to show equivalence of 1 and
4. The non-trivial step is showing GNNs ≤ GMSC. This can be
done by translating MSO-formulas into GMSC in a way resembling
the construction of bottom-up tree automata. However, note that
MSO can easily express non-GMSC-definable properties, so there
are further ingredients dealt with by invariances relating to tree
structures.



We note that the acceptance condition we gave for GNNs can be
varied and the characterizations still hold. We simply need to vary
the acceptance condition of GMSC in the “same way.”



Game-theoretic semantics for GMSC

A semantic game to check if a program Π is true in (M,w) is
played between Eloise and Abelard. Intuitively, Eloise is trying to
prove the formula true and Abelard opposes this.

The game begins by Eloise choosing a number k ∈ N. This determines
the beginning position (Eloise, φ,w , k), where φ is the body of the
induction rule of X1. (If k = 0, φ is the body of the base rule of X1).

After that, positions in the game are of type (V, ψ, u, ℓ) where
▶ V ∈ {Eloise,Abelard} is the current verifier in the game. The

other player is the falsifier.
▶ ψ is a subformula of the body of some rule in the program.
▶ u is a node.
▶ ℓ ∈ {0, . . . , k}.



Intuitively, a position (V, ψ, u, ℓ) corresponds to the following claim:

“The player V ∈ {Eloise,Abelard} can verify ψ at u in ℓ cycles of recursion.”



1. In a position (V, p, u, ℓ), the game ends. The verifier
V ∈ {Eloise,Abelard} wins if u ∈ p. Otherwise the falsifier wins.

2. In (V,¬ψ, u, ℓ), the game continues from (V′, ψ, u, ℓ), where
V′ ̸= V, so the verifier takes the role of the falsifier.

3. In (V, ψ ∧ θ, u, ℓ), the falsifier chooses a conjunct
χ ∈ {ψ, θ} and the game continues from the position (V, χ, u, ℓ).



4. In (V,♢≥kψ, u, ℓ), the verifier chooses a set {u1, . . . , uk} of k
distinct out-neighbours of u. Then the falsifier chooses some
node v ∈ {u1, . . . , uk} and the game continues from (V, ψ, v , ℓ).
If the verifier cannot choose k out-neighbours, the falsifier wins.

5. In (V,X , u, ℓ) with ℓ > 0, the game continues from the position
(V, ψ, u, ℓ−1), where ψ is the body of the induction rule of X .
If ℓ = 1, then the game continues from (V, θ, u, 0), where θ is
the body of the base rule of X .



A note on “ordinary” neural networks (CSL24)

Theorem. Given a neural network NN with piecewise polynomial
activation, we can construct an equivalent Diamond-free GMSC-
program Π such that the size of Π is

O
(
N(∆ + PΩ2)(r4 + r3B2 + rB4)

)
where
▶ N is the number of nodes of the neural network
▶ ∆ is the maximum in-degree of the neural network
▶ P is the number of polynomials in the piecewise polynomial

activation function
▶ Ω is the maximum order of the polynomials used
▶ r and B are the floating point precision and base:

±0 . d1 · · · dp × B±e1···eq

where r = max(p, q).



The computation delay factor of the simulating diamond-free
GMSC-program is O

(
(log(Ω) + 1)(log(r) + log(B)) + log(∆)

)
.



Theorem. Given a diamond-free GMSC-program Π of size s, we
can construct a neural network (for any floating-point system) with

▶ at most s nodes,
▶ ReLU activation,
▶ computation delay O(d) where d is the maximum nesting

depth of Boolean operators in the rule bodies.



Corollary. NNs can be translated—with a polynomial blow-up in
size—to equivalent NNs with ReLU as the activation function.



Thanks.
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