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The Max-Cut Problem



The Max-Cut Problem

Let MC(G) = fraction of edges cut by the best bipartition.



Query Model:

Vertex Query

Random Neighbor Query
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Query Model:

Vertex Query
Random Neighbor Query

Can only “crawl” along the edges of G.

Question:
Decide whether MC(G) ≥ 1 – γ or MC(G) ≤ ½ + γ



Known results for Sublinear Time Approximation to Max-Cut

Ø Factor ½ – trivial.
Ø [CKKMP 18] MC(G) to within a factor ½+ε needs n1/2+Ω(ε) time.

Q: Can you beat ½ factor for some interesting 
graph classes?

Ø [Peng-Yoshida 23] Yes, on expanders.
Ø [Jha, K.] Yes, on clusterable graphs.
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Expanders

expansion(S) = 
d |S|

# edges leaving S

expansion(G) = min
|S| ≤ n/2

expansion(S)

d-regular graph G

d

vertex set S



What is a good cluster?

Formalized using the notion of
Inner conductance. We define

Φin(S) = " #,%\'
()* +,- # ,+,- %\'

Φin(S) = " #,%\'
()*(/ # ,/|%\'|) for d-regular graphs.

C ⊆ V is a good cluster if all sets S ⊆ C have Φin(S) > Φ
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Clusterable Graphs

G is (k, Φ, ε) clusterable if you can partition V(G) into k
disjoint subsets C1, C2,.., Ck (of roughly same size) such 
that

1) Φin(Ci) > Φ 
2) Φout(Ci) < ε

Here, Φout(S) = ! ",$\&
' "
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Clusterable Graphs

G is (k, Ω(1), ε) clusterable if you can partition V(G) into k
disjoint subsets C1, C2,.., Ck (of roughly same size) such 
that

1) Φin(Ci) >  Ω(1)
2) Φout(Ci) < ε

Here, Φout(S) = ! ",$\&
' "

Goal: Get a better than ½ approximation 
for MC(G) on this graph class.
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The k = 1 case [Peng-Yoshida 23]
Decide if MC(G) ≥ 1 – γ or MC(G) ≤ ½ + γ on an expander.

Notation: pv,l = end-pt distrib. of step lazy r/ walks from v.
l = C log n/Φ2

PY idea: 
Ø Pick v ~ V(G) and consider W ~ pv,l.
Ø Remove all loops on the walk W and obtain W’. 
Ø Let pv,l

(e) = distrib on walks with length |W’| being even.
Ø Let pv,l

(o) = distrib on walks with length |W’| being odd.
Ø Return MC(G) large iff | pv,l

(e) − pv,l
(o) |## large.



The k > 1 case.
Decide if MC(G) ≥ 1 – γ or MC(G) ≤ ½ + γ when 
G is (k, Ω(1), ε)-clusterable.

Assume γ ≤ ε.

PY idea fails now.
A1
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The k > 1 case.
Consider the following intuition. 

Ø Perform a two-step non-lazy walk in G.
Ø If G had c clusters with large induced cut-value, the new 

graph has k+c sparse cuts.

How about doing even 2t length walks and tracking (k+c)-th
eigenvalue of L2t?



Main Theorem
[Jha, K.]

There exists an algorithm which when given as input
a graph (k, Φ, ε) clusterable G (d-regular) runs in time 

O*(n1/2+O(ε))
and returns a high/low cut-value verdict which is correct 
with probability at least 2/3.

O* hides terms poly(d,k, log n) terms.



Recapping our approach

Understand spectra of these instances.
Show that spectra is appreciably different in the two cases.

Obtain access to the spectral info via random walks.

Note: 
If MC(G) ≥ 1 – γ, then c ≥ 2k/3 clusters have induced cut-
value at least 1 – O(γ).
If MC(G) ≤ ½ + γ, then c ≥ 2k/3 clusters have induced cut-
value at most ½ + O(γ).



The Algorithm (Inspired by [CKKMP 18])

1. Assign c = 2k/3. 
2. Assign s = !"#$ % &O(ε).

3. Assign t = ' ()* +Φ2 .
4. Sample set S of s vertices.
5. Compute Gram Matrix (MtS)T (MtS) approximately.

6. If   
+
, νk+c(MtS)T (MtS) ≥ n-ε, return High cut-value

7. Else return Low cut-value
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The Algorithm (Inspired by [CKKMP 18])

1. Assign c = 2k/3. 
2. Assign s = !"#$ % &O(ε).

3. Assign t = ' ()* +Φ2 .
4. Sample set S of s vertices.
5. Compute Gram Matrix (MtS)T (MtS) approximately.

6. If   
+
, νk+c(MtS)T (MtS) ≥ n-ε, return High cut-value

7. Else return Low cut-value

Fix (i,j). Can compute entry (i,j) to an additive n-1-ε

approximation in time n½ + ε using collision counting. 



Analysis (a very high level overview)

Claim 1: If MC(G) ≥ 1 – ε, then νk+c(Mt)T (Mt) ≥ (1 – O(ε))2t.
Note: (1 - ε) 2t ≥ exp(-4t ε)
Claim 2: If MC(G) ≤ ½ + ε, then νk+c(Mt)T (Mt) ≤ (1 – O(Φ2))2t.
Note: (1 - Φ2) 2t ≤ exp(-2t Φ2) ≤ exp(-2 ! "#$ %Φ2 Φ2) ≤ n- 2C

≥ exp(-4 ! "#$ %Φ2 ε) ≥ n- C’ε



Analysis (a very high level overview)

Claim 1: If MC(G) ≥ 1 – ε, then νk+c(Mt)T (Mt) ≥ (1 – O(ε))2t.

Claim 2: If MC(G) ≤ ½ + ε, then νk+c(Mt)T (Mt) ≤ (1 – O(Φ2))2t.

Intuition for Claim 1
1. By easy direction of Higher order Cheeger, νk(M) ≥ 1–2ε.
2. If MC(G) ≥ 1 – ε then c ≥ 2k/3. This means c eigenvalues 

of M are at most -1 + 10ε.
3. This implies Claim 1.



Analysis (a very high level overview)

Claim 1: If MC(G) ≥ 1 – ε, then νk+c(Mt)T (Mt) ≥ (1 – O(ε))2t.

Claim 2: If MC(G) ≤ ½ + ε, then νk+c(Mt)T (Mt) ≤ (1 – O(Φ2))2t.

Intuition for Claim 2
1. A new spectral lemma: In a spectral expander, νn-1 >> -1. 

(Proof later)
2. In an expander G, if MC(G) close to ½, then νn >> -1.
3. This implies Claim 2.



Analysis (a very high level overview)

Claim 1: If MC(G) ≥ 1 – ε, then νk+c(Mt)T (Mt) ≥ (1 – O(ε))2t.

Claim 2: If MC(G) ≤ ½ + ε, then νk+c(Mt)T (Mt) ≤ (1 – O(Φ2))2t.

Finish up with Matrix Bernstein.
Requires proving bounds on | Mt1# |$$. (Adapt [GKLMS 21])

| Mt1# |$$ = | MtΣβ' # (' |$$
= | Σ λ'* β' # (' |$$
= Σ'ϵ,-./0 λ'2* β' # 2 + Σ'ϵ234 λ'2* β' # 2



That deferred Claim: 

Claim: If λn-1 ≥ 2 – ε, then λ2 ≤ O(ε).

This means, in a spectral expander you have
λn-1 ≤ 2 – Ω(1)



That deferred Claim: 

Claim: If λn-1 ≥ 2 – ε, then λ2 ≤ O(ε).

Proof Overview:

!" = $−1/√n, " ∈ ,21/√n, " ∈ .2
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That deferred Claim: 

Claim: If λn-1 ≥ 2 – ε, then λ2 ≤ O(ε).

Proof Overview:
Take any vector z with R(z) ≥ 2 – ε.  
Let z’ = |z|. 
You have R(z’) ≤ ε.

Produce two orthogonal vectors x, y with R(x), R(y) small.
Choose x = all 1’s.
Can I pick y = z’ for some z with R(z) ≥ 2 – ε?



That deferred Claim: 

Claim: If λn-1 ≥ 2 – ε, then λ2 ≤ O(ε).

Choose y = z’ – (component along all 1’s).
Annoyance: R(y) might shoot up! (Call such z a bad vector)

Would like to show there exists a “good” vector z. 



Existence of a good vector:

If y is bad, then z’ is highly correlated with
all 1’s.
Thus, z’ has large l1-norm.

Suppose vn-1 and vn are both bad. 

Choose z = !√#(vn-1 + vn). Can show z’ has small l1-norm

Þ The resulting vector y is good!

y = z’ is bad if 

Ø R(y) is large, or
Ø ||y||2 is small 



Open Problems
1. Generalize better than ½ sublinear time approximation to 

a larger class of graphs? 
2. Lower Bounds for Testing 3-colorability on expanders. Eg

decide whether val(G) ≥ 1 – γ or val(G) ≤ !" + γ

3. Characterizing approximation resistance for 
approximating 2-CSPs on expanders in sublinear time?

Thank you!




