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A physicist’s perspective on diffusion models

Part 1:

e Understanding the design space of diffusion models
e Efficient samplers for accelerating diffusion models
e Data communication with diffusion models

Part 2:

e Super-resolving atmospheric convection with diffusion models



Diffusion Models for Image Generation
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Diffusion Models for Video Generation

R. Yang, P. Srivastava, S. Mandt. arXiv 2022
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https://docs.google.com/file/d/1yejPvsHy-4gOktdBYH5TtWyFyha802CW/preview

Diffusion Models for Precipitation Super-Resolution

Image SR Video SR Truth
(ours)

P. Srivastava, R. Yang, G. Kerrigan, G. Dresdner, J. McGibbon, C. Bretherton, S. Mandt. arXiv:2312.06071



Diffusion Models for Data Compression

FSIMt MS-SSIM1
—

(d) Ground Truth (e) CDC(p = 0.9) (bpp=0.398) (f) HiFiC (bpp=0.456)

R. Yang and S. Mandt. Lossy Image Compression with Conditional Diffusion Models. NeurlPS 2023.



This talk: physics, information, and generative modeling
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Abstract

A central problem in machine learning involves
modeling complex data-sets using highly flexi-
ble families of probability distributions in which
learning, sampling, inference, and evaluation
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these models are unable to aptly describe structure in rich
datasets. On the other hand, models that are flexible can be
molded to fit structure in arbitrary data. For example, we
can define models in terms of any (non-negative) function
¢(x) yielding the flexible distribution p (x) = i(zﬁ, where
Z is a normalization constant. However. computing this

Nonequilibrium Measurements of Free Energy
Differences for Microscopically Reversible
Markovian Systems
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An equality has recently been shown relating the free energy difference between
two equilibrium ensembles of a system and an ensemble average of the work
required to switch between these two configurations. In the present paper it is
shown that this result can be derived under the assumption that the system's
dynamics is Markovian and microscopically reversible.

KEY WORDS: Nonequilibrium statistical mechanics; free energy; work;
thermodynamic integration; thermodynamic perturbation.

1. INTRODUCTION

Consider a classical system in contact with a constant temperature heat
bath where some degree of freedom of the system can be controlled.

e Diffusion models are rooted non-equilibrium thermodynamics
o Theory of irreversible processes; entropy production
o Also connects to information theory and efficient data communication



Diffusion Models



Background: Brownian Motion

e Heavy particle (red) in a “bath” of particles
(blue), frequent collisions
e \Whole system is Newtonian/deterministic, but
subsystem appears stochastic
e Stochastic process perspective:
o deterministic “drift” f (external forces)
o stochastic “diffusion” dW (due to collisions)

dx = f(x,t)dt + g(t)dw

/

drift

diffusion



Diffusion in Generative Al

“Creating noise from data is easy... ”

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

Image Credits: https://arxiv.org/abs/2011.13456
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Diffusion in Generative Al

“Creating noise from data is easy... creating data from noise is generative modeling”

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

score funcfion
dx = [£(x,1) — ¢*(t)Vx log i (x)] dt + g(t)dw

Reverse SDE (noise — data)

Image Credits: https://arxiv.org/abs/2011.13456
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Forward Process :>
dZt — thtdt + th’wt, t € [0, T]

Let z = (x, m) be a more general coordinate (e.g., pixel space + “momenta”)
Increases entropy by transforming data to noise

Usually no trainable parameters, no neural networks

Desired: convergence to a Gaussian (so that we can sample from the
inverse process)

12



Reverse Process G

dZt — [tht — GthTVIng(Zt) dt + thwt

Score

® Reduces entropy by transforming noise to data

e Notably, the score Vlogp(z:) enters the process (flow to high
density regions)

e Unfortunately, we don’t know the score!

13



Reverse Process G

dZt = [FtZt — GtG:SQ(Zt,t) dt + thwt

Approximated score

Reduces entropy by transforming noise to data
e Thescore Vlogp(z) isapproximated using a neural network: sy(z:,1t)
® Once the score is learned, we can sample from the model by solving the
stochastic differential equation numerically
® The score is learned using score matching (regression); skip details.
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Part 1:
Augmented Diffusions
and Efficient Integrators



Current diffusion models are inspired by physics

Diffusion in “position” space

Data Forward SDE Prior Reverse SDE Data

dz = f(z,t)dt + g(t)dw —)@— dz = [f(z,t) — ¢* (£)V, log ps ()] dt + g(t)dwD

po(z) ne(z) pr(z) P(2) ()

e Perform diffusion only in the data space, z = x
e Follow an Ornstein-Uhlenbeck process

Gt = /Bily

Fy = — 5Bl

Image Credits: Song et al., Dockhorn, Vahdat, Kreis. ICLR 2022

Diffusion in “phase space”

Denoising by Modeling

Vv, log p(ve|x:) p(vo) Denoising p(v1)
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Day, \
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Diffusion of Joint AUgingy
2(x,)

Distribution p(x¢, V)

Smooth Diffusion

e Perform diffusion in an augmented space i.e. z: = [z, ™m4]
® Inspired from Molecular Dynamics

(o5, o) (2 am)en
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How to design new diffusion models beyond physics intuition?

e Augmented dimensions that aren’t necessarily momenta
o  Current models require dim(x) = dim(m) to match

e Noise sources that aren’t necessarily thermal noise
o  Current models couple thermal noise with momentum, if available

e Drift forces that aren’t necessarily conservative
o Forces do not necessarily have to be gradients of scalar potentials

Ma, Chen, and Fox. A Complete Recipe for Stochastic Gradient MCMC. NeurlPS 2015
Singhal, Goldstein, Ranganath. Where to diffuse, how to diffuse, and how to get back. ICLR 2023
Pandey and Mandt. A Complete Recipe for Diffusion Generative Models. ICCV 2023.
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A Complete Recipe for Diffusion Models

e Al: Consider position and auxiliary variables: 2z = [z, m]"

e A2: Consider continuous-time, first-order Markov process: dz = f(2)dt + /2D(z)dw;

e A 3:Demand converge to a simple, pre-specified prior:  p,(z) x exp(—H(z))

e.g., H(z) = [x|* + |m|?

e Result: The following parameterization is complete (always exists & unique):
f(z) = =(D(2) + Q(2))VH + 7(z)
7i(2) = Y1, o (Dii(2) + Qi (2))

J

Pandey and Mandt. A Complete Recipe for Diffusion Generative Models. ICCV 2023.
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Phase-Space Langevin Diffusion: A New Sampler

o(2) =53 ) G (V) i) oo

The noise parameter I is
“unphysical”, but improves
convergence

Noise sources in both position
and momentum

Works even better with splitting
integrators

CIFAR-10 (ODE)

NFE

Pandey, and Mandt, ICCV 2023; Pandey, Rudolph, and Mandt, ICLR 2024.

DEIS

S-PNDM

F-PNDM

DDIM

DPM-Solver

EDM (VP)

EDM (VE)

(Ours) CSPS-D
(Ours) CSPS-D (+Pre.
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Phase-Space Langevin Diffusion: A New Sampler

, Wi, 8 NN
Pandey, and Mandt, ICCV 2023; Pandey, Rudolph, and Mandt, ICLR 2024.
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Diffusion models may live in poorly-conditioned geometries

dZt = [FtZt — %GtG;rSQ(Zt,t)] dt

/ S

Linear drift; could be Diffusion coefficient
solved analytically in matrix; can complicate
isolation sampling geometry

e Claim: the geometry is “ill-conditioned” (as in optimization)
e Intuition: change of coordinates before simulating the equations

o Simpler equations can be solved in fewer discretization steps
o Eliminate the state-independent drift

21



Conjugate Integrators

¢_1(207 0)

Project back when done

Better-Conditioned
dynamics

lll-Conditioned
dynamics

¢(zTa T)

Project to another space

O
2T

Works in already trained models! E.g., OpenAl diffusion models trained on ImageNet

Pandey, Rudolph, Mandt. Efficient Integrators for Diffusion Generative Models. ICLR 2024. 2



Conjugate Integrators

Consider linear transformation,

ZAt — At Zt

Score parameterization: 86(2t,t) = Cyqp (£) 2t + Cy (t)e(2t, 1)

Define Ay = exp (f(f B; — F

o, = [ +A,G,G]

After some straightforward math:

+ $G,GI Cyyp(5)ds),

C

out

(s)ds

dzy = AtBy A 2edt + dieg (A, 24, t)

Optional damping term;
can set B=0 or B =-1l

I

Linear preconditioner, can be precomputed

23



Conjugate Integrators - Theory
Connections to ODE stability criteria
o Let G be the flow map of an ODE integrator. Stability implies that VA Te:

1Gr(2(2)) = Gr(20)l| < A, st]2(t) = 2]l <€, €>0,A>0

Stability analysis considers the Eigenvalues of the linearized flow operator
Different choices of B can enhance stability, improving over existing samplers

Connections to prior methods:
o Interestingly, B, — ( corresponds to DDIM for diffusion models.
o Also connections with fast samplers based on exponential integrators

Pandey, Rudolph, Mandt. Efficient Integrators for Diffusion Generative Models. ICLR 2024.
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Speed vs. Sample Quality Tradeoffs

50 =3 T T T 30 T T I
1 — Euler \ — (Ours) A-DDIM (B; = 0)
5 —— (Ours) A-DDIM (B;=0) | 25 1— — (Ours) A-DDIM-1 (B;=Al)
K \ \ —— (Ours) A-DDIM-II (B;=A1)
30

= 20

)
\ L(8)15 \
| \ = A\ L
" T ==t

200 400 600 800 1000 50 100 150 200 250

NFE NFE

e Dramatic speed improvements; in particular for phase-space diffusions
e Non-zero damping term A can further improve performance



Now, consider inverse problems

Degradation
operator H:

y:HXO+O-yZ7 ZNN(OaI)7 X0 ™~ Pdata

/ de-blurring \

iInpainting
super-resolution



Now, consider inverse problems

Degradation
operator H:

y:HXO—i_O-yZ) ZNN(())I)) X0 ™~ Pdata

We will consider two types of iterative refinement models:
e Diffusion models
e Flow matching models

1
Diffusion: dx; = [tht — iGthT Vx, log p(xt|y)] dt, 3)
Flows: dx; = b(x,y,t)dt,

Pandey, Yang, Mandt. Fast Samplers for Inverse Problems in Iterative Refinement Models. https://arxiv.org/pdf/2405.17673



Fast Samplers for Inverse Problems in lterative Refinement Models

Degradation
operator H: y = Hxo + Oy, Zr N(07 I)7 X0 ~~ Pdata

Proposition 1. For the conditional diffusion dynamics defined in Eqn. 3, introducing a diffeomor-
phism, X; = AXy, where,

t '
A; =exp </ B, — Fsds), P, = —/ %ASGSGICO,”(S)ds, 6)
0 0

induces the following projected diffusion dynamics,

— 2 2
d%; = AiBLA; "Kudt + dB e (x1,t) — —o— GG —gio (H'y — P&o)dt, (1)
t

where H' = H'(HH") Y and P = H" (HH ")~ 'H represent the pseudoinverse and the
orthogonal projector operators for the degradation operator H. (Proof in Appendix A.2)
Main idea: assign different dynamics to degradation operator’s null space

and its orthogonal complement. 28



Conjugate Integrators: high-quality generation in only five iterations

Reference

Distorted

Z
=
=)
&
H
Q
=
Pandey, Yang, &
Mandt. %
https://arxiv.org/pdf/ =
2405.17673

(a) AFHQ (b) LSUN (c) CelebA-HQ (d) ImageNet (e) FFHQ
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Conjugate Integrators: high-quality generation in only five iterations

Ground Truth Regular Conjugate
integrator Integrator
(NFE=5) (NFE=5)

Pandey, Yang, Mandt. Fast Samplers for Inverse Problems in Iterative Refinement Models. https://arxiv.org/pdf/2405.17673



Fast Samplers for Inverse Problems in Iterative Refinement Models

-3
Flow Results INFE| LPIPS] | KIDx1072 | | FID|
| | C-IIGFM IIGFM | C-IIGFM IIGFM | C-IIGFM I[IGFM
5 0.125 0.240 17.6 167.0 26.95 161.49
Inpainting 10 0.074 0.188 8.0 86.6 14.64 94.91
20 0.065 0.144 4.6 54.4 10.93 65.39
5 0.063 0.091 55 17.5 13.08 21.84
Super-Resolution | 10 0.058 0.076 3.6 12.2 10.65 16.73
20 0.064 0.069 3.9 35 11.07 10.23
5 0.083 0.114 37 10.9 12.86 18.97
Deblurring 10 0.077 0.088 5.0 7.0 14.41 15.09
20 0.080 0.073 7.9 3.1 17.10 11.35
Diffusion Results | |C-IIGDM IIGDM DPS DDRM |C-IIGDM IIGDM DPS DDRM |C-IIGDM IIGDM DPS DDRM
5 0220 0306 29 6.3 3731  49.06
Super-Resolution | 10 | 0.206 0252 0.252 0.318 1.6 48 58 14.1 3422 4430 38.18 51.64
20 | 0207 0222 1.7 2.5 3428  37.36
5 0272 0349 3.89 14.1 4442  63.94
Deblurring 10 | 0272 0294 0.619 0.336 3.6 53 595 123 4337  47.80 139.58 62.53
20 | 0268  0.259 35 4.2 4370  44.20

Pandey, Yang, Mandt. Fast Samplers for Inverse Problems in Iterative Refinement Models. https://arxiv.org/pdf/2405.17673



Reverse diffusion as progressive decompression

A diffusion model can be understood as:

e Denoising autoencoder at multiple noise levels [Vincent 2011, Song & Ermon, 2019]
e Learning to reverse an SDE (mostly this talk) [Song et al., 2021]
e Deep hierarchical VAE [Sohl-Dickstein et al., 2015, Ho et al., 2020, Kingma et al., 2021]

-VLB(x) = E [Dky[q(z7 | X) || pr(zr)]] + Zfz_ll E [DkL|q(zs | Zsy1,X) || p(2s | Zsy1)]]
\

Entropy reduced in every reverse diffusion step

e Can this information be efficiently transmitted between a sender and receiver?



Background: Relative entropy coding

Problem: Alice wants to transmit a sample from q to Bob, under shared prior p,
using KL(q||p) bits.

Alice 01011010111... Bob




Background: Relative entropy coding

|ldea (sketch):

- Let Alice and Bob share a random seed.
- Sample from p many times until we hit a “good” (high likelihood under q) sample
- Transmit the index K in binary.

Alice 01011010111... Bob




Diffusion models for transmitting information

Problem setup: Alice wants to transmit data x to Bob using -VLB(x) many bits.

E [Dxo(q(z7 | X) || pr(z7)]] + Zfz—ll E [DkL[q(zs | Zsy1,X) || p(2s | Zsy1)]

7 \

posterior shared prior

e \Works in theory; doesn'’t
scale with dimension

e Practical solution:
universal quantization

e Requires re-design of the
diffusion process,
Gaussian— Uniform




. . =%- VDM T=20, tral
Preliminary results 701 - vom =20 denose
-+ UQDM T=4, ancestral
60 —t— UQDM T=4, denoise

CIFAR data

e Promising results when compared to
Gaussian diffusion at T=20 discretization
steps

e Still work in progress; not competitive at
larger T & compared to SOTA models

Distortion, PSNR (dB)

Rate (bpd)

bpd=0.00, bpd=0.20, bpd=0.78, bpd=2.27, bpd=4.80,
psnr=11.49 psnr=29.36 psnr=40.95 psnr=56.07

[ 'L ) ._aﬂwJ

Yang, Mandt, and Theis.
An introduction to neural data
compression. Foundations

: and Trends in Computer
1 ] | Vision, 2023




Part 2: Emulating Thermodynamic
Processes with Diffusion Models



Generative Modeling for Atmospheric Convection

e The climate modeling dilemma:
o Either simulate the climate at sufficientl
high spatial resolution (e.g., a few km) t
capture, e.g., cloud-related processes
o Or, simulate the climate for a long-enou
time (several decades) to make accurat
predictions on global warming
e Unresolved processes are huge drivers of
uncertainty and introduce randomness and b
e Can we use generative modeling to
stochastically downscale a low-resolution
simulation?

—

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Aside: physics-ML hybrid models may solve the resolution dilemma

Temperature
K

Specific m(\// i Z
Humidity Tod
kakal N g
o ~
Surface

Insolation -

W/mz]

Latent heat ,
flux [W/m?]

Sensible heat =<~ = g

floxW/m2

I

[
E_EKHIIIIIIII]IZH]III[IIIIIIUH]_‘IIH

Total: 1x 124
(Total Possible: 1x 617)

R617

/

I]IIZ-UIIIIIIII[IIII]I?IHIII[THHTHTIIHIDI]_HHTHUHHIII]K]II]IiIHZ[[IIIiIHITm]]I_

P <

- > Temperature
W tendency
< ; [K/s]

.
o
o
<8

P
~ :
— 7 Specific
~ humidity
tendency
. [kg/kg/s]

Surface SW
flux [W/m?]

_, Surface LW
flux [W/m?]

= Snow rate [m/s]

= Rain rate [m/s]
Visible, direct
“ solar flux [W/m?2]

_.. Visible, diffuse
solar flux [W/m?2]

_ .. Near-IR, direct
solar flux [W/m?2]

= ;_5—“:;;;7 =~ Near-IR, diffuse
5 %7 solar flux W/m?2]

Yu, Sungduk, et al. "ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation." NeurlPS 2023
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The data: high-resolution atmospheric simulation

Focus on precipitation channel

e FV3GFS global atmosphere simulation
dataset (Allen Institute for Al)

e Captures all relevant physical fields,
including precipitation (rain, snow)
e 25 km resolution, 3-hourly

Topography

Cube Sphere
Gridding 40

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



The data: high-resolution atmospheric simulation

P
Focus on precipitation channel

e FV3GFS global atmosphere simulation
dataset (Allen Institute for Al) ;

e Captures all relevant physical fields,
including precipitation (rain, snow)
e 25 km resolution, 3-hourly

Goal: super-resolve the precipitation channel
e Allows to run a cheap model to simulate
many years
e Use a super-resolution model to convert the
data to high spatial resolution

Topography

Cube Sphere
Gridding 41

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Approach

Mean
prediction

Low-res —»
precipitation
“video”

Stochastic
residual

Diffusiony, }:)

[Downscaler¢

X : low res

y : high res

r: residual

superscript : time index
subscript : diffusion index
red arrow : training

green arrow : inference

H |g h-res blue arrow : both
target 45

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023




Video Diffusion accurately captures temporal information

single-frame SR multi-frame SR

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023

43



Deterministic models underestimate extreme precipitation

104 N
e Downscaling especially challenging for ‘ = ?Tr\‘j’;t
precipitation because of rare extreme events | Swin-IR-Diff [35, 46]
10998, VRT [29]
o Few geographical regions with & RVRT [31]
. | PSRT [50]
extreme rainfall z 100 1 e
o  Cyclones/extreme weather events £
& =i
e While most models can capture low 1074
precipitation regions quite well, they heavily
downplay the extremes 104 iy T
| Ty
—ldlfifmm

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Precipitation (kg m=2s-1)

Precipitation distribution over three-hour
windows on all grid points around the globe

44
Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Precipitation: Annual Averages

Topograph

Coarse grid Precipitation
(Ground Truth)

Fine grid Precipitation
(Ground Truth)

Downscaled Precipitation

Coarse grid Precipitation
(Ground Truth)

Fine grid Precipitation
(Ground Truth)

0.00012
0.00010
0.00008
~ 0.00006

0.00004

0.00002

Downscaled Precipitation
0.00012
0.00010

0.00008

0.00006

0.00004

0.00002

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023
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Diffusion Modeling in
Molecular Dynamics

A treasure trove for diffusion
generative modeling

e Phase space methods
e Conjugate Integrators
e Splitting Integrators

Interdisciplinary Applied Mathematics 39

Ben Leimkuhler
Charles Matthews

Molecular
Dynamics

With Deterministic and Stochastic
Numerical Methods



Summary

Kushagra Pandey, Yibo Yang, Ruihan Yang Prakhar Srlvastava

e The thermodynamics of diffusion
o Origins of diffusion models in thermodynamics

o Can adopt ideas such as physics-inspired generative processes (and beyond)
o Efficient sampler design

o Diffusion models as efficient progressive coders
e Diffusion for thermodynamics/climate
o Climate data as a playground for generative modeling

o Requires stochasticity to capture distribution-level properties (e.g., annual precipitation)
e Open questions / future research:

o How to incorporate physical constraints into modeling convection
o Unpaired distribution-to-distribution translation between climate models
o Theoretical analysis of diffusion models: dynamical phase transitions, critical slowing down

47



