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A physicist’s perspective on diffusion models

Part 1:

● Understanding the design space of diffusion models
● Efficient samplers for accelerating diffusion models
● Data communication with diffusion models

Part 2:

● Super-resolving  atmospheric convection with diffusion models
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3ChatGPT / OpenAI April 2024

Diffusion Models for Image Generation

Prompt: 
“I’m an AI professor desperately 
worried to compete with industry 
research on computing resources. 
Depict my situation in a comic.”



Diffusion Models for Video Generation
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R. Yang, P. Srivastava, S. Mandt. arXiv 2022
J. Ho et al., NeurIPS 2022
Sora, OpenAI, 2024

https://docs.google.com/file/d/1yejPvsHy-4gOktdBYH5TtWyFyha802CW/preview


Diffusion Models for Precipitation Super-Resolution
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Image SR Video SR 

(ours)
Truth

P. Srivastava, R. Yang, G. Kerrigan, G. Dresdner, J. McGibbon, C. Bretherton, S. Mandt. arXiv:2312.06071
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Diffusion Models for Data Compression

R. Yang and S. Mandt. Lossy Image Compression with Conditional Diffusion Models. NeurIPS 2023.



This talk: physics, information, and generative modeling
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● Diffusion models are rooted non-equilibrium thermodynamics
○ Theory of irreversible processes; entropy production
○ Also connects to information theory and efficient data communication



Diffusion Models
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Background: Brownian Motion
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● Heavy particle (red) in a “bath” of particles 
(blue), frequent collisions

● Whole system is Newtonian/deterministic, but 
subsystem appears stochastic

● Stochastic process perspective:
○ deterministic “drift” f (external forces)
○ stochastic “diffusion” dW (due to collisions)

drift diffusion



“Creating noise from data is easy… ”

Image Credits: https://arxiv.org/abs/2011.13456 10

Diffusion in Generative AI



“Creating noise from data is easy… creating data from noise is generative modeling”

Image Credits: https://arxiv.org/abs/2011.13456 11

Diffusion in Generative AI



Forward Process
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● Let z = (x,m) be a more general coordinate (e.g., pixel space + “momenta”)
● Increases entropy by transforming data to noise
● Usually no trainable parameters, no neural networks
● Desired: convergence to a Gaussian (so that we can sample from the 

inverse process)



Reverse Process

Score
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● Reduces entropy by transforming noise to data
● Notably, the score                    enters the process (flow to high 

density regions)
● Unfortunately, we don’t know the score!



Reverse Process

● Reduces entropy by transforming noise to data
● The score                      is approximated using a neural network:
● Once the score is learned, we can sample from the model by solving the 

stochastic differential equation numerically
● The score is learned using score matching (regression); skip details. 

Approximated score
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Part 1:
Augmented Diffusions 

and Efficient Integrators
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Current diffusion models are inspired by physics
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● Perform diffusion only in the data space, z = x
● Follow an Ornstein-Uhlenbeck process

Image Credits: Song et al., Dockhorn, Vahdat, Kreis. ICLR 2022

● Perform diffusion in an augmented space i.e.
● Inspired from Molecular Dynamics

Diffusion in “position” space Diffusion in “phase space”



How to design new diffusion models beyond physics intuition?

● Augmented dimensions that aren’t necessarily momenta
○ Current models require dim(x) = dim(m) to match

● Noise sources that aren’t necessarily thermal noise
○ Current models couple thermal noise with momentum, if available

● Drift forces that aren’t necessarily conservative
○ Forces do not necessarily have to be gradients of scalar potentials
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Ma, Chen, and Fox. A Complete Recipe for Stochastic Gradient MCMC. NeurIPS 2015
Singhal, Goldstein, Ranganath. Where to diffuse, how to diffuse, and how to get back. ICLR 2023
Pandey and Mandt. A Complete Recipe for Diffusion Generative Models. ICCV 2023. 



A Complete Recipe for Invertible Forward Diffusions

● A2:  Consider continuous-time, first-order Markov process: 

A Complete Recipe for Diffusion Models
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● Result: The following parameterization is complete (always exists & unique):
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● A1:  Consider position and auxiliary variables:

● A 3: Demand converge to a simple, pre-specified prior:

e.g., H(z) = |x|2 + |m|2 

Pandey and Mandt. A Complete Recipe for Diffusion Generative Models. ICCV 2023. 
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Phase-Space Langevin Diffusion: A New Sampler

● The noise parameter Γ is 
“unphysical”, but improves 
convergence

● Noise sources in both position 
and momentum

● Works even better with splitting 
integrators

Pandey, and Mandt, ICCV 2023; Pandey, Rudolph, and Mandt, ICLR 2024. 
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Phase-Space Langevin Diffusion: A New Sampler

Pandey, and Mandt, ICCV 2023; Pandey, Rudolph, and Mandt, ICLR 2024. 



Diffusion models may live in poorly-conditioned geometries
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Linear drift; could be 
solved analytically in 
isolation

Diffusion coefficient 
matrix; can complicate 
sampling geometry

● Claim: the geometry is “ill-conditioned” (as in optimization)
● Intuition: change of coordinates before simulating the equations

○ Simpler equations can be solved in fewer discretization steps
○ Eliminate the state-independent drift



22
Pandey, Rudolph, Mandt. Efficient Integrators for Diffusion Generative Models. ICLR 2024.

Conjugate Integrators

Works in already trained models! E.g., OpenAI diffusion models trained on ImageNet



Conjugate Integrators
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Optional damping term; 
can set B=0 or B =-𝜆I

Linear preconditioner, can be precomputed

Consider linear transformation, 

Score parameterization:

After some straightforward math:

Define



Conjugate Integrators - Theory
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● Connections to ODE stability criteria

○ Let G be the flow map of an ODE integrator. Stability implies that ∀Δ ∃𝝐:

Stability analysis considers the Eigenvalues of the linearized flow operator
Different choices of B can enhance stability, improving over existing samplers

● Connections to prior methods: 
○ Interestingly,                   corresponds to DDIM for diffusion models.
○ Also connections with fast samplers based on exponential integrators

Pandey, Rudolph, Mandt. Efficient Integrators for Diffusion Generative Models. ICLR 2024.



Speed vs. Sample Quality Tradeoffs
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● Dramatic speed improvements; in particular for phase-space diffusions
● Non-zero damping term 𝝺 can further improve performance
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inpainting
super-resolution

de-blurring

Now, consider inverse problems

Degradation 
operator H:



Now, consider inverse problems

Degradation 
operator H:

We will consider two types of iterative refinement models:
● Diffusion models
● Flow matching models

Pandey, Yang, Mandt. Fast Samplers for Inverse Problems in Iterative Refinement Models. https://arxiv.org/pdf/2405.17673



Fast Samplers for Inverse Problems in Iterative Refinement Models
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Degradation 
operator H:

Main idea: assign different dynamics to degradation operator’s null space 
and its orthogonal complement. 
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Pandey, Yang, 
Mandt. 
https://arxiv.org/pdf/
2405.17673

Conjugate Integrators: high-quality generation in only five iterations



Pandey, Yang, Mandt. Fast Samplers for Inverse Problems in Iterative Refinement Models. https://arxiv.org/pdf/2405.17673

Ground Truth Regular 
integrator 
(NFE=5)

Conjugate 
Integrator 
(NFE=5)

Conjugate Integrators: high-quality generation in only five iterations



Fast Samplers for Inverse Problems in Iterative Refinement Models

Pandey, Yang, Mandt. Fast Samplers for Inverse Problems in Iterative Refinement Models. https://arxiv.org/pdf/2405.17673



A diffusion model can be understood as:

● Denoising autoencoder at multiple noise levels [Vincent 2011, Song & Ermon, 2019]
● Learning to reverse an SDE (mostly this talk) [Song et al., 2021]
● Deep hierarchical VAE [Sohl-Dickstein et al., 2015, Ho et al., 2020, Kingma et al., 2021]

● Can this information be efficiently transmitted between a sender and receiver?

Reverse diffusion as progressive decompression

Entropy reduced in every reverse diffusion step

-VLB(x) =



Background: Relative entropy coding

Problem: Alice wants to transmit a sample from q to Bob, under shared prior p, 
using KL(q||p) bits.

Alice Bob01011010111…



Background: Relative entropy coding

Alice Bob01011010111…

Idea (sketch): 

- Let Alice and Bob share a random seed.
- Sample from p many times until we hit a “good” (high likelihood under q) sample 
- Transmit the index K in binary.



Diffusion models for transmitting information

Problem setup: Alice wants to transmit data x to Bob using -VLB(x) many bits. 

shared priorposterior

● Works in theory; doesn’t 
scale with dimension

● Practical solution: 
universal quantization

● Requires re-design of the 
diffusion process, 
Gaussian→ Uniform



Preliminary results

CIFAR data

● Promising results when compared to 
Gaussian diffusion at T=20 discretization 
steps

● Still work in progress; not competitive at 
larger T & compared to SOTA models

●

Yang, Mandt, and Theis. 
An introduction to neural data 
compression. Foundations 
and Trends in Computer 
Vision, 2023



Part 2: Emulating Thermodynamic 
Processes with Diffusion Models
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Generative Modeling for Atmospheric Convection
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● The climate modeling dilemma: 
○ Either simulate the climate at sufficiently 

high spatial resolution (e.g., a few km) to 
capture, e.g., cloud-related processes

○ Or, simulate the climate for a long-enough 
time (several decades) to make accurate 
predictions on global warming

● Unresolved processes are huge drivers of 
uncertainty and introduce randomness and bias

● Can we use generative modeling to 
stochastically downscale a low-resolution 
simulation?  

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Aside: physics-ML hybrid models may solve the resolution dilemma
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Yu, Sungduk, et al. "ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation." NeurIPS 2023 



The data: high-resolution atmospheric simulation

Focus on precipitation channel

● FV3GFS global atmosphere simulation 
dataset (Allen Institute for AI)

● Captures all relevant physical fields, 
including precipitation (rain, snow)

● 25 km resolution, 3-hourly
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Cube Sphere 
Gridding

Topography

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Focus on precipitation channel

● FV3GFS global atmosphere simulation 
dataset (Allen Institute for AI)

● Captures all relevant physical fields, 
including precipitation (rain, snow)

● 25 km resolution, 3-hourly

41

Cube Sphere 
Gridding

Topography

Goal: super-resolve the precipitation channel
● Allows to run a cheap model to simulate 

many years
● Use a super-resolution model to convert the 

data to high spatial resolution

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023

The data: high-resolution atmospheric simulation



Approach
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x : low res
y : high res
r : residual

superscript : time index
subscript : diffusion index

red arrow : training
green arrow : inference

blue arrow : both

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023

Low-res 
precipitation 
“video”

High-res 
target

Mean 
prediction Stochastic 

residual



Video Diffusion accurately captures temporal information
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single-frame SR multi-frame SR Truth

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Deterministic models underestimate extreme precipitation
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● Downscaling especially challenging for 
precipitation because of rare extreme events

○ Few geographical regions with 
extreme rainfall

○ Cyclones/extreme weather events

● While most models can capture low 
precipitation regions quite well, they heavily 
downplay the extremes

Precipitation distribution over three-hour 
windows on all grid points around the globe 

Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Precipitation: Annual Averages
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Srivastava, Yang, Kerrigan, Dresdner, McGibbon, Bretherton, Mandt. Precipitation Downscaling with Spatiotemporal Video Diffusion. arXiv 2023



Diffusion Modeling in 
Molecular Dynamics
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A treasure trove for diffusion 
generative modeling

● Phase space methods
● Conjugate Integrators
● Splitting Integrators



Summary

● The thermodynamics of diffusion
○ Origins of diffusion models in thermodynamics
○ Can adopt ideas such as physics-inspired generative processes (and beyond)
○ Efficient sampler design
○ Diffusion models as efficient progressive coders

● Diffusion for thermodynamics/climate
○ Climate data as a playground for generative modeling
○ Requires stochasticity to capture distribution-level properties (e.g., annual precipitation)

● Open questions / future research:
○ How to incorporate physical constraints into modeling convection
○ Unpaired distribution-to-distribution translation between climate models
○ Theoretical analysis of diffusion models: dynamical phase transitions, critical slowing down
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Kushagra Pandey, Yibo Yang, Ruihan Yang, Prakhar Srivastava 


