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How do we build neural networks that naturally 
handle data from physical systems?
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How do we build neural networks that naturally 
handle data from physical systems?

One option:
A minimal, yet powerful assumption 
⇨ “Build-in” the symmetry of 3D space
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To describe physical systems we use 
coordinate systems

(1) and (2) use different coordinate 
systems to describe the 
same physical system.

We can transform between coordinate systems 
using the symmetries of 3D Euclidean space 
(3D rotations, translations, and inversion) (1)

(2)
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Machine learning models not built to handle symmetry require data augmentation. 
For 3D data, this is expensive, requiring ~500 fold augmentation.

training without rotational symmetry

training with symmetry
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To describe physical systems we use 
coordinate systems

(1) and (2) use different coordinate 
systems to describe the 
same physical system.

We can transform between coordinate systems 
using the symmetries of 3D Euclidean space 
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!

E(3) equivariant neural nets (E(3)NNs) see 
(1) and (2) as the same system described 
differently...

(1)

(2)
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Euclidean symmetry, E(3): 
Symmetry of 3D space
The freedom to choose your coordinate system

Symmetry of geometric objects
Looks the same under specific rotations, 
translations, and inversion (includes mirrors).

Symmetry emerges when different ways of representing something “mean” the same thing. 
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.
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Euclidean symmetry-equivariant networks are state-of-the-art on many atomistic ML tasks.
Some (non-exhaustive) examples include…

Open Catalysis 2020 Dataset 
(eSCN, Equifomer, …)

MD17 
(Nequip, 
Allegro,
TorchMD-NET, 
Equiformer, …)

QM9
(PaiNN, 
TorchMD-NET, …)

RNA structure 
scoring (ARES)

Protein folding 
(Equifold, …)

Large biomolecules (Allegro, …)

Ligand Docking 
(DiffDock, …)

Conformer Generation 
(Torsional diffusion, …)

Transition metal MD + phonons
(Nequip)

Magnetic 
structure 
(xDeepH, …)

Crystal 
Generation
(CDVAE, …)

https://arxiv.org/abs/2302.03655
https://arxiv.org/abs/2206.11990
https://www.nature.com/articles/s41467-022-29939-5
https://www.nature.com/articles/s41467-023-36329-y
https://arxiv.org/abs/2202.02541
https://arxiv.org/abs/2206.11990
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2202.02541
https://www.science.org/doi/10.1126/science.abe5650
https://www.biorxiv.org/content/10.1101/2022.10.07.511322v2
https://arxiv.org/abs/2304.10061
https://arxiv.org/abs/2210.01776
https://arxiv.org/abs/2206.01729
https://arxiv.org/pdf/2302.12993.pdf
https://www.nature.com/articles/s43588-023-00425-2
https://arxiv.org/abs/2110.06197
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This talk…
1. Properties of E(3)NNs
2. What’s different about Euclidean neural nets?

○ Data types, interactions, handling geometry
3. What these properties have enabled us to do.

○ Expressive features and functions
○ Manipulate and generate geometry
○ Uncover missing information

4. Open questions

https://arxiv.org/abs/2302.03655
https://arxiv.org/abs/2206.11990
https://www.nature.com/articles/s41467-022-29939-5
https://www.nature.com/articles/s41467-023-36329-y
https://arxiv.org/abs/2202.02541
https://arxiv.org/abs/2206.11990
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2202.02541
https://www.science.org/doi/10.1126/science.abe5650
https://www.biorxiv.org/content/10.1101/2022.10.07.511322v2
https://arxiv.org/abs/2304.10061
https://arxiv.org/abs/2210.01776
https://arxiv.org/abs/2206.01729
https://arxiv.org/pdf/2302.12993.pdf
https://www.nature.com/articles/s43588-023-00425-2
https://arxiv.org/abs/2110.06197


14

E(3)NNs can recognize equivalent recurring geometric patterns that appear in 
different locations and orientations (from seeing only one example) and 
generalize well to systems with similar motifs.
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E(3)NNs will automatically (without training)  transform complex geometric objects 
correctly, e.g. the electronic Hamiltonian of this water molecule. The same system under 
rotation still “means” the same thing.

An Euclidean neural network trained on one example 
of water, can predict properties in any rotation.
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

input random 
model 1

random 
model 2

random 
model 3

Tetrahedron

Octahedron

“When effects show certain asymmetry, this asymmetry must be found 
  in the causes that gave rise to them.”Curie’s principle (1894):

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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θ

r

Invariant models pre-compute invariant features and throw away the coordinate system.
Equivariant models keep the coordinate system 
AND if the coordinate system changes, the outputs change accordingly.
I’ll focus on equivariant models.



Equivariant methods are more data-efficient than invariant methods 

Power law
scaling exponent
β = slope
βeq > βinv

invariant

equivariant

(log)
Error

(log) Number of training examples

Architecture 
and task 
dependent 
offset.

Refs:
[1, 2, 3, 4]

https://www.nature.com/articles/s41467-022-29939-5
https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5
https://iopscience.iop.org/article/10.1088/2632-2153/acb314
https://arxiv.org/pdf/2302.12993.pdf


Equivariant methods are more data-efficient than invariant methods 
and (for some tasks) higher-order interactions improve accuracy.

Power law
scaling exponent
β = slope
βeq > βinv

invariant

equivariant

(log)
Error

(log) Number of training examples

Architecture 
and task 
dependent 
offset.

lmax = 1

lmax = 2

lmax = 3

Refs:
[1, 2, 3, 4]

https://www.nature.com/articles/s41467-022-29939-5
https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5
https://iopscience.iop.org/article/10.1088/2632-2153/acb314
https://arxiv.org/pdf/2302.12993.pdf


Define how data 
transforms (Irreps)

Featurize Geometry
(Spherical Harmonics)

Interact Data
(Tensor products)

Euclidean neural networks differ from traditional neural networks in how you...



Define how data 
transforms (Irreps)

Featurize Geometry
(Spherical Harmonics)

Interact Data
(Tensor products)



All data acted on by O(3) can be broken up into simpler “data types” (irreps) defined by...
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parity even or odd
does not or does flip sign under inversion

rabbit

Even parity 
(scalars)
Classification 
labels

Odd parity 
(pseudoscalars)
Chirality or 
"handedness"

L angular frequency (positive int)
rate of change under rotation

Odd parity
(vectors)
Coordinates

Even parity 
(pseudovectors)
Rotation axes 

right 
hand

L=0
Even parity
Double-headed 
Ray

Odd Parity
Helix

L=1 L=2

✋

Some examples include...



Define how data 
transforms (Irreps)

Featurize Geometry
(Spherical Harmonics)

Interact Data
(Tensor products)



What are all the ways in which we can multiply (interact) scalars and vectors?
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=

× =
× =

×
Not a scalar or vector.
Does not have a single angular frequency.
Can be decomposed into "irreps".



What are all the ways in which we can multiply (interact) scalars and vectors?
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= =
dot product
trace
invariant
L=0, parity=even
1 degree of 
freedom

cross-product
antisymmetric
equivariant
L=1, parity=even
3 degrees of 
freedom

symmetric
traceless
equivariant
L=2, parity=even
5 degrees of 
freedom

× =
× =



What are all the ways in which we can multiply (interact) scalars and vectors?
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= =
dot product
trace
invariant
L=0, parity=even
1 degree of 
freedom

cross-product
antisymmetric
equivariant
L=1, parity=even
3 degrees of 
freedom

symmetric
traceless
equivariant
L=2, parity=even
5 degrees of 
freedom

× =
× =

Even if you only give the model scalars and vectors, 
interacting vectors generates "higher-degree" irreps!
e.g. pseudovector and (L=2, parity=even)



Define how data 
transforms (Irreps)

Featurize Geometry
(Spherical Harmonics)

Interact Data
(Tensor products)



The input to E(3)NNs is (typically) geometry and (geometric tensor) features on that geometry.
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geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
...
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geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
scalar = e3nn.o3.Irrep(“0e”)  # L=0, even
vector = e3nn.o3.Irrep(“1o”)  # L=1, odd
irreps = 1 * scalar + 1 * vector + 1 * vector

The input to E(3)NNs is (typically) geometry and (geometric tensor) features on that geometry.
We categorize our features by how they transform under rotation and parity (as irreps). 
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geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
scalar = e3nn.o3.Irrep(“0e”)  # L=0, even
vector = e3nn.o3.Irrep(“1o”)  # L=1, odd
irreps = 1 * scalar + 1 * vector + 1 * vector

The input to E(3)NNs is (typically) geometry and (geometric tensor) features on that geometry.
We categorize our features by how they transform under rotation and parity (as irreps). 

What do we do with the geometry?
Typically, we use convolution operations in the network to interact geometry with features.



http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

A quick recap on convolutions: A filter is convolved with an image to produce a new image.
(Technically… cross-correlated)



We can operate any geometric data: voxels, meshes, points, etc. 
For atoms, we use points. 
Images of atomic systems are sparse and imprecise. We use continuous convolutions 

with atoms as convolution 
centers.

Neighbor  
atoms

Convolution 
center

vs.

filter filter function

In E(3)NNs we can use convolutions to interact point geometry with features on points. 



O(3) equivariant convolutional filters are based on 
learned radial functions and spherical harmonics…
Filter is indexed by channel c, degree l, and order m.

Neighbor  
atoms

Convolution 
center

Integrate / sum over space 
(e.g. sum over nearest neighbors 
in case of local filter).

To "interact" filter with node 
features, you use tensor 
products.



from e3nn import o3

sphharm_0 = o3.Irrep(“0e”)

sphharm_1 = o3.Irrep(“1o”)

sphharm_2 = o3.Irrep(“2e”)

sphharm_3 = o3.Irrep(“3o”)

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

The spherical harmonics are the simplest functions that transform as irreps of O(3).
The L spherical harmonics take in a unit vector and give 2L + 1 coefficients 
that transform as the (L, parity = (-1)L) irrep.

Spherical harmonics

mailto:tsmidt@mit.edu
https://doi.org/10.1016/j.trechm.2020.10.006
https://e3nn.org/


“Coefficients”

The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections



Coefficients attached to each spherical harmonic

The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections



Typical signature of high 
symmetry objects: 
cancelation of terms.

Coefficients attached to each spherical harmonic

The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections
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No noise Noise std 0.01 Noise std 0.03 Noise std 0.1

The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections
These projections are robust to noise. Symmetry is NOT binary - you still get cancellations. 



Define how data 
transforms (Irreps)

Featurize Geometry
(Spherical Harmonics)

Interact Data
(Tensor products)

What do these differences give us?
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We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.



Elyssa
Hofgard

Tuong
Phung

Aria
Mansouri
Tehrani

We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.
Example: Bispectra

Take invariants (scalars) from…



Elyssa
Hofgard

Tuong
Phung

Aria
Mansouri
Tehrani

We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.
Example: Bispectra

Smooth under distortion

Octahedron Trigonal Prism

Take invariants (scalars) from…



Elyssa
Hofgard

Tuong
Phung

Aria
Mansouri
Tehrani
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Smooth under distortion

Octahedron Trigonal Prism

Take invariants (scalars) from…

Octahedron Tetrahedron (Bent) Linear T-shape
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Clustering of bispectra from materials data 
and inverting back to geometry yields 
common local environments

We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.
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Example: Bispectra

Smooth under distortion

Octahedron Trigonal Prism

Take invariants (scalars) from…

Octahedron Tetrahedron (Bent) Linear T-shape

Trigonal Prism Seesaw One neighbor Trigonal Planar

Clustering of bispectra from materials data 
and inverting back to geometry yields 
common local environments

Bispectra (with radial functions) can 
be used as a convention free 
descriptor of lattice geometry.

Reciprocal 
lattice 
points 
up to kmax

We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.
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arXiv:2311.01545

We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

12,111 unique motifs
well separated by
invariants

Input local environment to E(3)NN as 3D graph to obtain invariants

https://arxiv.org/abs/2311.01545
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We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

Input local environment to E(3)NN as 3D graph to obtain invariants
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Track population of motifs as a function of temperature

https://arxiv.org/abs/2311.01545


Rodrigo
Freitas

Killian 
Sheriff

Yifan 
(Henry) 
Cao

(arXiv:2311.01545)

We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

Identify local 
env. with 
increasing 
lattice distortion

Input local environment to E(3)NN as 3D graph to obtain invariants

P
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https://arxiv.org/abs/2311.01545


We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and E(3)NNs are state-of-art for OC20, OC22 and ODAC23.

Open Catalysis 2020 Dataset (examples)

Predict energy, forces of given configurations and 
relaxed structures.

EquiformerV2
ICLR 2024
(arXiv:2306.12059)

Equiformer:
Equivariant graph attention 
transformer
ICLR 2023
(arXiv:2206.11990)

First equivariant transformer 
to be state-of-art on multiple 
atomistic benchmarks (QM9, 
MD17, OC20).

Yi-Lun Liao

Graph attention built from tensor 
products of irrep features

Abhishek Das Brandon Wood

https://arxiv.org/abs/2306.12059
https://arxiv.org/abs/2206.11990


Mario 
Geiger

Shiang
Fang

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(Ultimately paving the way to training directly on spectra...)
(arXiv:2403.11347)

Joseph 
Checkelsky

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurIPS 2023 - AI4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y). 

https://arxiv.org/abs/2403.11347
https://arxiv.org/abs/2403.11347
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(arXiv:2403.11347)

Joseph 
Checkelsky

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurIPS 2023 - AI4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y). 

How to go from structure to phonons in a way that is straightforward to do 
with deep learning frameworks and preserves physics formalism?

?

https://arxiv.org/abs/2403.11347
https://arxiv.org/abs/2403.11347
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(arXiv:2403.11347)

Joseph 
Checkelsky

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurIPS 2023 - AI4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y). 

Phonons from the Dynamical matrix built from force constants.

Exte
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ld Phase factor gives 
momentum 
dependence
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(arXiv:2403.11347)

Joseph 
Checkelsky

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurIPS 2023 - AI4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y). 

Phonons from the Dynamical matrix built from force constants.

Exte
nded graph 

receptive
 fie

ld Phase factor gives 
momentum 
dependence

Phonon band structure: eigenvalues & vectors

https://arxiv.org/abs/2403.11347
https://arxiv.org/abs/2403.11347
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(arXiv:2403.11347)

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurIPS 2023 - AI4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y). 
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https://arxiv.org/abs/2403.11347


Mario 
Geiger

Shiang
Fang

Joseph 
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(arXiv:2403.11347)

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurIPS 2023 - AI4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y). 

Full access to eigenmodes 
⇨ Determine symmetry of states (e.g. IR vs. Raman active) 
⇨ Compare directly to experiment (e.g. spectroscopies, neutron)
⇨ Backpropogate through energy model
⇨ Generalize to other derivatives (e.g. E field)

https://arxiv.org/abs/2403.11347
https://arxiv.org/abs/2403.11347


Mario 
Geiger

Song
Kim

Ameya
Daigavane

We’ve used E(3)NNs to build generative models of atomic systems.
Symphony: Symmetry-equivariant Point-Centered Harmonics for Molecular Generation
ICLR 2024 (arXiv:2311.16199)

https://arxiv.org/abs/2311.16199


We’ve used E(3)NNs to build generative models of atomic systems.
Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse-Graining 
SO(3)-equivariant Autoencoders (arXiv:2310.02508)

Iteratively coarsen 
along backbone.

Iteratively build 
up backbone.

Allan 
Costa

Ilan
Mitnikov

Manvitha 
Ponnapati

Joe
Jacobson

Mario
Geiger

https://arxiv.org/abs/2310.02508
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Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse-Graining 
SO(3)-equivariant Autoencoders (arXiv:2310.02508)

Iteratively coarsen 
along backbone.

Iteratively build 
up backbone.Latent has no 

geometry, just tensor 
features.

Can generate latent 
with separate 
diffusion model.
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We’ve used E(3)NNs to build generative models of atomic systems.
Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse-Graining 
SO(3)-equivariant Autoencoders (arXiv:2310.02508)

Reconstructed all-atom proteins structures
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We’ve used E(3)NNs to build generative models of atomic systems.
Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse-Graining 
SO(3)-equivariant Autoencoders (arXiv:2310.02508)

Latent interpolation between protein conformations are physical.

Allan 
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Joe
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Mario
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We’ve used E(3)NNs to build generative models of atomic systems.
Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse-Graining 
SO(3)-equivariant Autoencoders (arXiv:2310.02508)

Diffusion of random sampled latent to generate new backbones

Allan 
Costa

Ilan
Mitnikov

Manvitha 
Ponnapati

Joe
Jacobson

Mario
Geiger

https://arxiv.org/abs/2310.02508
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Input Target Output Predicted Out. Implied Output

Many provable guarantees about these approaches. Can be applied to diverse 
datasets, e.g. from structural phase transitions to fluid dynamics.
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Open Questions

Equivariant nets can be slow. This is an engineering problem. 
Tensor products have not been optimized in the same way as traditional 
operations (e.g. matmul). More equiv. models will put pressure to fix this.

Equivariant generative models. Lots of activity: diffusion, autoregressive, etc. 
But still many challenges: 

Large, variable numbers (atomistic) point systems
Handling different types of hierarchies in the same model (short, long, symmetry)
Laying down patterns / motifs of points

We still don’t know the “best” way to compose building block / leverage properties.
We are behind other fields (e.g. computer vision) in the number of things that have 
been “tried out”. This is rapidly changing!

Best training practices
How to get good performance across diverse systems
Any additional “tricks” for training generalizable models



Euclidean neural networks are built 
with the powerful assumption that 
atomic systems exist in 3D Euclidean 
space.

We’ve used E(3)NNs to understand 
and design atomic systems from 
molecules and proteins to crystals 
and alloys. 

TA
K

EA
W

AY
S

Tess Smidt | tsmidt@mit.edu | e3nn.org | atomicarchitects.com

There still a lot to do!
● “Best” building blocks
● Improved efficiency
● New generative capabilities
● “Best” training practices
● …

E(3)NNs use specific data types to 
encode how data transforms and 
interacts. Higher order features can be 
created from simple vectors!

mailto:tsmidt@mit.edu
https://e3nn.org/
https://atomicarchitects.github.io/
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Euclidean neural networks are built 
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atomic systems exist in 3D Euclidean 
space.

We’ve used E(3)NNs to understand 
and design atomic systems from 
molecules and proteins to crystals 
and alloys. 
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Tess Smidt | tsmidt@mit.edu | e3nn.org | atomicarchitects.com

There still a lot to do!
● “Best” building blocks
● Improved efficiency
● New generative capabilities
● “Best” training practices
● …

E(3)NNs use specific data types to 
encode how data transforms and 
interacts. Higher order features can be 
created from simple vectors!

mailto:tsmidt@mit.edu
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https://atomicarchitects.github.io/
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Mario 
Geiger

Shiang
Fang

Joseph 
Checkelsky

Training with 
Hessian vs. Forces

Hessian improves 
stability but does not 
result in obvious scaling 
improvement.

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(Ultimately paving the way to training directly on spectra...)
(arXiv:2403.11347)

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurIPS 2023 - AI4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y). 

https://arxiv.org/abs/2403.11347
https://arxiv.org/abs/2403.11347
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Ophichus



Scalars
Power spectra

Scalars + Pseudoscalar
Bispectra

(spherical harmonic coefficients)

Why “interact” these types of features? 
Interactions lead to smooth, features with rich information.
Illustrative example: the bispectrum i.e. scalars and pseudoscalar from triple product



The bispectrum of spherical harmonic 
coefficients up to lmax = 4
has 14 scalars + 1 pseudoscalar.

1. 0⊗0⊗0
2. 0⊗1⊗1
3. 0⊗2⊗2
4. 0⊗3⊗3
5. 0⊗4⊗4
6. 1⊗1⊗2
7. 1⊗2⊗3
8. 1⊗3⊗4
9. 2⊗2⊗2

10. 2⊗2⊗4
11. 2⊗3⊗3
12. 2⊗4⊗4
13. 3⊗3⊗4
14. 4⊗4⊗4

+1 pseudoscalar
(parity of projection)

Proportional 
to the power 
spectra

Bispectra features are smooth under distortion! 

Scalars + Pseudoscalar
Bispectra



Cluster 7 centroid inverted

Okay, but what does this have to do with
REAL materials?
Ex: Clustering local environments 
with the bispectra

Scalars + Pseudoscalar
Bispectra

Database: Materials Project
Materials: Crystals with Ag-S bonds
# Crystals: 669
Radial Cutoff: 3.1 Å
# Environments: 3061
# Clusters: 8

Tuong Phung

mp-16992: NaAg₃S₂

Cluster 2 centroid inverted

mp-4762: TlAg₃S₂



Okay, but what does this have to do with
REAL materials?
Ex: Clustering local environments 
with the bispectra

Scalars + Pseudoscalar
Bispectra

Database: Materials Project
Materials: Crystals with Ag-S bonds
# Crystals: 669
Radial Cutoff: 3.1 Å
# Environments: 3061
# Clusters: 8

Tuong Phung

Cluster Centroid BiS ⇨ Inverted BiS ⇨
0
1
2
3
4
5
6
7

0: Octahedron 1: Tetrahedron 2: (Bent) Linear

3: T-shape 4: Trigonal Prism 5: Seesaw

6: One (S) neighbor 7: Trigonal Planar
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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✓ ✗

Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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Network 
predicts 
degenerate 
outcomes!

✓ ✗

Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”). Gradients have symmetry of “true” outputs.

What information does the network 
need to “pick” a rectangle?

Update weights using...
inputs

input learnable 
parameters

predicted 
output

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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→ Learns anisotropic inputs. → Model can fit.
Input

L = 0 + 2 + 4L = 0

Use gradients to “find” what’s missing.

Irreps with
even parity 
L ≥ 2  break 
degeneracy 
between x and 
y directions.

Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”). Gradients have symmetry of “true” outputs.

Output

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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ENNs have the symmetry of the representation built-in.
ENNs also preserve the subgroup symmetry of the inputs.
Many different types of geometric objects have the same symmetry.
ENN transforms geometric objects into different objects with same or higher symmetry.
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degenerate 
lower-symmetry states

Energy

higher-symmetry 
state

mirror 
symmetry

Order parameters describe symmetry breaking and 
distinguish between degenerate states.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/
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higher-symmetry 
state

degenerate 
lower-symmetry states

Energy

mirror 
symmetry

order
parameter

⇨+

Order parameters describe symmetry breaking and 
distinguish between degenerate states.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/


The Atomic Architects Slay Into Battle!


