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How do we build neural networks that naturally
handle data from physical systems?




How do we build neural networks that naturally
handle data from physical systems?

One option:
A minimal, yet powerful assumption
> “Build-in” the symmetry of 3D space




To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate
systems to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of 3D Euclidean space (1 )
(3D rotations, translations, and inversion)




To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate
systems to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of 3D Euclidean space (1 )
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!




Machine learning models not built to handle symmetry require data augmentation.
For 3D data, this is expensive, requiring ~500 fold augmentation.
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To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate
systems to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of 3D Euclidean space (1 )
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!




To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate
systems to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of 3D Euclidean space (1 )
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!

E(3) equivariant neural nets (E(3)NNs) see
(1) and (2) as the same system described
differently...




Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Euclidean symmetry, E(3):
Symmetry of 3D space Symmetry of geometric objects

The freedom to choose your coordinate system Looks the same under specific rotations,
translations, and inversion (includes mirrors).

©

Dgn = 6/mmm
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Symmetry emerges when different ways of representing something “mean” the same thing.
Representation can have symmetry, operations can preserve symmetry, and objects can have symmetry.

Euclidean symmetry, E(3):
Symmetry of 3D space
The freedom to choose your coordinate system

Symmetry of geometric objects
Looks the same under specific rotations,
translations, and inversion (includes mirrors).
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Euclidean symmetry-equivariant networks are state-of-the-art on many atomistic ML tasks.
Some (non-exhaustive) examples include...
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Euclidean symmetry-equivariant networks are state-of-the-art on many atomistic ML tasks.
Some (non-exhaustive) examples include...

[ Open Catalysis 2020 Dataset Protein folding  RNA structure

QM9 il (eSCN, Equifomer, ...) (Equifold, ...) scoring (ARES)
(PaiNN,
TorchMD-NET, #4)... .

... This talk...
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E(3)NNs can recognize equivalent recurring geometric patterns that appear in
different locations and orientations (from seeing only one example) and
generalize well to systems with similar motifs.

Rb Mn Cl3

Octahedral
coordination
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Rb Mn Cls;

Octahedral
coordination
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E(3)NNs will automatically (without training) transform complex geometric objects
correctly, e.g. the electronic Hamiltonian of this water molecule. The same system under

rotation still “means” the same thing.
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An Euclidean neural network trained on one example
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.
Curie’s principle (1834): in the causes that gave rise to them.”

. random random random
input

model 1 model 2 model 3

Tetrahedron

Octahedron

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

“When effects show certain asymmetry, this asymmetry must be found

17
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Invariant models pre-compute invariant features and throw away the coordinate system.
Equivariant models keep the coordinate system

AND if the coordinate system changes, the outputs change accordingly.

I'll focus on equivariant models.

; 0 oY
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Equivariant methods are more data-efficient than invariant methods

(log)
Error

Refs:
[1, 2, 3, 4]

(log) Number of training examples

>

Power law
scaling exponent

B = slope
Beq > Binv

Architecture
and task
dependent
offset.
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https://arxiv.org/pdf/2302.12993.pdf

Equivariant methods are more data-efficient than invariant methods
and (for some tasks) higher-order interactions improve accuracy.

(log)
Error

Refs:
[1, 2, 3, 4]

A

(log) Number of training examples

>

Power law
scaling exponent

B = slope
Beq > I3inv

Architecture
and task
dependent
offset.
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Euclidean neural networks differ from traditional neural networks in how you...
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Define how data Interact Data Featurize Geometry
transforms (Irreps) (Tensor products) (Spherical Harmonics)




Define how data
transforms (Irreps)



All data acted on by O(3) can be broken up into simpler “data types” (irreps) defined by...

L angular frequency (positive int) t even or odd
rate of change under rotation pa rl y does not or does flip sign under inversion

Some examples include...

L=0 L=1 L=2

Even parity Odd parity Odd parity Even parity Even parity Odd Parity
(scalars) (pseudoscalars) (vectors) (pseudovectors) Double-headed Helix
Classification Chirality or Coordinates Rotation axes Ray

labels "handedness"

right
hand

23
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X

Interact Data
(Tensor products)



What are all the ways in which we can multiply (interact) scalars and vectors?

/

X

Not a scalar or vector.
Does not have a single angular frequency.
Can be decomposed into "irreps".

25



What are all the ways in which we can multiply (interact) scalars and vectors?

B x [ = B

/e m=

dot product cross-product symmetric

trace antisymmetric traceless
invariant equivariant equivariant

L=0, parity=even L=1, parity=even L=2, parity=even
1 degree of 3 degrees of 5 degrees of
freedom freedom freedom

26



What are all the ways in which we can multiply (interact) scalars and vectors?

B x [ = B

x m =/
/ @\

Even if you only give the model scalars and vectors,
interacting vectors generates "higher-degree" irreps!
e.g. pseudovector and (L=2, parity=even)

" Opt

dot product cross-product symmetric

trace antisymmetric traceless
invariant equivariant equivariant

L=0, parity=even L=1, parity=even L=2, parity=even
1 degree of 3 degrees of 5 degrees of
freedom freedom freedom
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Featurize Geometry
(Spherical Harmonics)



The input to E(3)NNs is geometry and features on that geometry.

geometry = [[x0, yO, z0],[x1, y1, zl1]]

O features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

29



We categorize our features by how they transform under rotation and parity (as irreps).

geometry = [[x0, yO, z0],[x1, y1, zl1]]

C) features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector

30



We categorize our features by how they transform under rotation and parity (as irreps).

geometry = [[x0, yO, z0],[x1, y1, zl1]]

C) features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector
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We categorize our features by how they transform under rotation and parity (as irreps).

geometry = [[x0, yO, z0],[x1, y1, zl1]]

C) features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector

What do we do with the geometry?
Typically, we use convolution operations in the network to interact geometry with features.

32



A quick recap on convolutions: A filter is convolved with an image to produce a new image.
(Technically... cross-correlated)

1x1 1x0 1x1 0 0
OxO 1x1 1x0 1 0 4
oxl OxO 1x1 1 1
0O(0|1|1]|0
0O(111/0(0
Convolved
Image

Feature



In E(3)NNs we can use convolutions to interact point geometry with features on points.

We can operate any geometric data: voxels, meshes, points, etc.

For atoms, we use points.

Images of atomic systems are sparse and imprecise. We use continuous convolutions

with atoms as convolution

centers.
|| Neighbor
atoms _
|| ||
VS n
. . Convolution
|| center

filter filter function

A~ W(7)




O(3) equivariant convolutional filters are based on To "interact” filter with node

learned radial functions and spherical harmonics... features, you use tensor
Filter is indexed by channel c, degree |, and order m. products.
W r) =R Y (7
clm('r) cl(‘ﬂ) lm(r)\
L=0 @@
Neighbor
t
atoms =1 @ : PP
Convolution 1 @G @ S w <
center - v 4 )
-3 e ¢ 8 % M w e
Integrate / sum over space
m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3

(e.g. sum over nearest neighbors
in case of local filter).



The spherical harmonics are the simplest functions that transform as irreps of O(3).
The L spherical harmonics take in a unit vector and give 2L + 1 coefficients
that transform as the (L, parity = (-1)}) irrep.

Spherical harmonics from e3nn import o3
Ym L=0 @ sphharm 0 o3.Irrep(“0e”)
[

L=1 @ : - sphharm 1 o03.Irrep(“1l0”)
_ - 2 Vv ' sphharm 2 = o3.Irrep(“2e”)

L=2 @@ >4 - g W p _ p

o § v , “ae
L-3 G <«@W ). 4 . & YW S sphharm 3 o3.Irrep(“30”)
rw » @ O\ @

n @

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections

“Coefficients”

/
\ 2]
; NN
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The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections

Coefficients attached to each spherical harmonic
Single points 1

Octahedra 1! ‘ ' '
=0 L=1 = ~3




The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections

Coefficients attached to each spherical harmonic
Single points -

Octahedra {._ . ' , L]
= =1 L=2 =3

Typical signature of high
symmetry objects:
cancelation of terms.




The (angular) basis of many descriptors and convolutions in E(3) equivariant networks

Spherical harmonic projections
These projections are robust to noise. Symmetry is NOT binary - you still get cancellations.

No noise Noise std 0.01 Noise std 0.03 Noise std 0.1

Noise 0.0

Noise 0.01

Noise 0.03
Noise 0.1

L= L=1 L=2 =3 L=4 =5 -6

100 -075 -050 -025 000 025 0.50 0.75 100
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What do these differences give us?

Define how data Interact Data Featurize Geometry
transforms (Irreps) (Tensor products) (Spherical Harmonics)



We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

LT

Elyssa
Hofgard

Aria
Mansouri
Tehrani



We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

Example: Bispectra | e
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Take invariants (scalars) from..
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We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

Example: Bispectra x X
>§<—>X—>x 4
Smooth under distortion

Take invariants (scalars) from..

x@x@x—»

Octahedron Trigonal Prism
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We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

qQ
+ Y. 9. 9. e

rXPXrXPx

Clustering of bispectra from materials data
and inverting back to geometry yields
common local environments

Elyssa

Hofgard
Octahedron  Tetrahedron  (Bent) Linear T-shape
: Aria
"‘ Mansouri
Tehrani

Trigonal Prism Seesaw One neighbor Trigonal Planar



We’ve used the tensor interactions that E(3)NNs are built from
to explore trends in local environments, unit cells, and high entropy alloys.

Q
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Clustering of bispectra from materials data Bispectra (with radial functions) can
and inverting back to geometry yields be used as a convention free
common local environments descriptor of lattice geometry. Elyssa
Hofgard
Reciprocal ’
Octahedron  Tetrahedron  (Bent) Linear  T-shape lattice ‘ ‘
points )
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Mansouri
« Tehrani
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We’ve used the tensor interactions that E(3)NNs are built from

to explore trends in local environments, unit cells, and high entropy alloys.
___Input local environment to E(3)NN as 3D graph to obtain invariants ,
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https://arxiv.org/abs/2311.01545

We’ve used the tensor interactions that E(3)NNs are built from

to explore trends in local environments, unit cells, and high entropy alloys.
. Input local environment to E(3)NN as 3D graph to obtain invariants
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https://arxiv.org/abs/2311.01545

We’ve used the tensor interactions that E(3)NNs are built from

to explore trends in local environments, unit cells, and high entropy alloys.
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and E(3)NNs are state-of-art for 0C20, OC22 and ODAC23.

. EquiformerV2 e
Open Catalysis 2020 Dataset (examples) L0
ICLR 2024 d.--f.-b
(arXiv:2306.12059)
| Embedding l

Equiformer: R ,
Equivariant graph attention Layer Norm |
transformer : - —
ICLR 2023 : Gragh Attention

(arXiv:2206.11990)

First equivariant transformer : Layer Norm

. s | . . : to be state-of-art on multiple
n configurations an
Predict energy, forces of given configurations and atomistic benchmarks (QM, TesiTord

relaxed structures. MD17, 0C20). ; Network

Graph attention built from tensor
products of irrep features
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.

Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(Ultimately paving the way to training directly on spectra...) -

(arXiv:2403.11347)

( Neural network
energy model

=% Structure

iy embeddng

Higher-order
derivatives

.5
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Training signal
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Phonon spectrum
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* Molecular polarization
 Polarizability tensor

* Born effective charges J

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurlPS 2023 - Al4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y).
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https://arxiv.org/abs/2403.11347
https://arxiv.org/abs/2403.11347

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.

(arXiv:2403.11347)

How to go from structure to phonons in a way that is straightforward to do

with deep learning frameworks and preserves physics formalism?
700

1 X 1X 1+ Hessian

7200 \\._/\.
— S =R

N- . .
100 d % /:k

r X WK r L UW L KW

Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347

NeurlPS 2023 - Al4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y).
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.

Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(arXiv:2403.11347) .

Phonons from the Dynamical matrix built from force constants.
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Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurlPS 2023 - Al4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y).
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.

Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(arXiv:2403.11347) .

Phonons from the Dynamical matrix built from force constants.
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.

(arXiv:2403.11347)

Full access to eigenmodes

= Determine symmetry of states (e.g. IR vs. Raman active)
= Compare directly to experiment (e.g. spectroscopies, neutron)

= Backpropogate through energy model
= Generalize to other derivatives (e.g. E field)
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We’ve used E(3)NNs to build generative models of atomic systems.
Symphony: Symmetry-equivariant Point-Centered Harmonics for Molecular Generation

ICLR 2024 (arXiv:2311.16199)
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We’ve used E(3)NNs to build generative models of atomic systems.
Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse -Graining
SO(3)-equivariant Autoencoders (arXiv:2310.02508)
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We’ve used E(3)NNs to build generative models of atomic systems.
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We’ve used E(3)NNs to build generative models of atomic systems.
Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse -Graining
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We’ve used E(3)NNs to build generative models of atomic systems.
Ophiuchus: Scalable Model of Protein Structures through Hierarchical Coarse -Graining
SO(3)-equivariant Autoencoders (arXiv:2310.02508)
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
Input Target Output
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
Input Target Output  Predicted Out.
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)

and handle spontaneous symmetry breaking (arXiv:2402.02681).
Input Target Output  Predicted Out. Implied Output
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
Input Target Output

High Low
symm. > ENN H»{ symm.
input output
Nonscalar
Weights

One solution,
allow network to
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
Input Target Output
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)

and handle spontaneous symmetry breaking (arXiv:2402.02681).
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
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We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
Input Target Output

Predicted Out.

High Low
symm. > > symm.
input ENN output
Symmetry
Breaking >
Set

Another solution, build a

<> symmetry breaking set YuQing
of order parameters. Xie



https://arxiv.org/abs/2402.02681
https://arxiv.org/abs/2402.02681

We’ve used E(3)NNs and E(2)NNs to uncover asymmetry (arXiv:2402.02681, ICML 2024)
and handle spontaneous symmetry breaking (arXiv:2402.02681).
Input Target Output  Predicted Out. Implied Output

Many provable guarantees about these approaches. Can be applied to diverse
datasets, e.g. from structural phase transitions to fluid dynamics.
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Open Questions

Equivariant nets can be slow. This is an engineering problem.
Tensor products have not been optimized in the same way as traditional
operations (e.g. matmul). More equiv. models will put pressure to fix this.

Equivariant generative models. Lots of activity: diffusion, autoregressive, etc.

But still many challenges:
Large, variable numbers (atomistic) point systems
Handling different types of hierarchies in the same model (short, long, symmetry)
Laying down patterns / motifs of points

We still don’t know the “best” way to compose building block / leverage properties.
We are behind other fields (e.g. computer vision) in the number of things that have
been “tried out”. This is rapidly changing!

Best training practices
How to get good performance across diverse systems
Any additional “tricks” for training generalizable models
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Calling in backup (slides)!

80



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.

Predict phonons with symmetry guarantees using higher order derivatives with e3nn-jax.
(Ultimately paving the way to training directly on spectra...)
(arXiv:2403.11347)
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Phonon predictions with E(3)-equivariant graph neural networks, arXiv:2403.11347
NeurlPS 2023 - Al4Mat Workshop (https://openreview.net/forum?id=xxyHjer00Y).
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Symphony

Test T Symphony EDM  G-SchNet G-SphereNet

All Atoms Connected 99.92 99.88 99.87 100.00
Reasonable Bond Angles 99.56 99.98 99.88 97.59
Reasonable Bond Lengths 98.72 100.00 99.93 12.99
Aromatic Ring Flatness 100.00 100.00 99.95 99.85
Double Bond Flatness 99.07 08.58 97.96 9599
Reasonable Internal Energy 95.65 94.88 95.04 36.07
No Internal Steric Clash 98.16 99.79 99.57 98.07
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Symphony

MMD of Bond Lengths | Symphony EDM  G-SchNet G-SphereNet
C-H: 1.0 0.0739 0.0653  0.3817 0.1334
C-C: 1.0 0.3254 0.0956  0.2530 1.0503
C-0: 1.0 0.2571 0.0757  0.5315 0.6082
C-N: 1.0 0.3086 0.1755 0.2999 0.4279
N-H: 1.0 0.1032 0.1137 0.5968 0.1660
C-0:2.0 0.3033 0.0668  0.2628 2.0812
C-N: 1.5 0.3707 0.1736  0.5828 0.4949
O-H: 1.0 0.2872 0.1545 0.7899 0.1307
C-C: 15 0.4142 0.1749  0.2051 0.8574
C-N: 2.0 0.5938 0.3237 04194 2.1197
MMD of Bispectra| Symphony EDM  G-SchNet G-SphereNet
C: C2,H2 0.2165 0.1003 0.4333 0.6210
C: C1,H3 0.2668 0.0025 0.0640 1.2004
C: C3,H1 0.1111 0.2254 0.2045 1.1209
C: C2,H1,01 0.1500 0.2059 0.1732 0.8361
C: C1,H2,01 0.3300 0.1082 0.0954 1.6772
0O: C1,HI 0.0282 0.0056 0.0487 0.0030
C: C2,HI,N1 0.1481 0.1521 0.1967 1.3461
C: C2,H1 0.2525 0.0468 0.1788 0.2403
C: C1,H2,N1 0.3631 0.2728 0.1610 0.9171
N: C2,H1 0.0953 0.2339 0.2105 0.6141
Jensen-Shannon Divergence | Symphony EDM  G-SchNet G-SphereNet
Atom Type Counts 0.0003 0.0002 0.0011 0.0026
Local Environment Counts 0.0039 0.0057 0.0150 0.1016
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Symphony

5 CONCLUSION

We have proposed Symphony, a new method to autoregressively generate 3D molecular geometries
with spherical harmonic projections and higher-degree E'(3)-equivariant features. We show promising
results on molecular generation and completion, relative to existing autoregressive models. However,
one drawback of our current formulation is that the discretization of our radial components is too
coarse, so our bond length distributions are not as accurate as EDM or G-SchNet. This affects our
validity when using lookup tables to assign bond orders as they are particularly sensitive to exact bond
lengths. Further, Symphony incurs increased computational cost due to the use of tensor products
to create higher degree F/(3)-equivariant features. As a highlight, Symphony is trained on only
~ 80 epochs, while G-SchNet and EDM are trained for 330 and 1100 epochs respectively. Further
exploring the data efficiency of Symphony remains to be seen. In the future, we plan to explore
normalizing flows to smoothly model the radial distribution without any discretization, and placing
entire local environment motifs at once which would speed up generation.
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Ophichus

Table 3: Comparison to different diffusion models.

Model Dataset Sampling Time (s) | scRMSD (< 2A)1  s¢TM (>0.5) 1 Diversity 1
FrameDiff [Yim et al. (2023)] PDB 8.6 0.17 0.81 0.42
RFDiffusion [Trippe et al. (2023)] PDB + AlphaFold DB 50 0.79 0.99 0.64
Ophiuchus-64 All-Atom MiniProtein 0.15 0.32 0.56 0.72
Ophiuchus-485 Backbone PDB 0.46 0.18 0.36 0.39
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Why “interact” these types of features?
Interactions lead to smooth, features with rich information.
lllustrative example: the bispectrum i.e. scalars and pseudoscalar from ftriple product

x (spherical harmonic coefficients)
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The bispectrum of spherical harmonic
coefficients up to {
has 14 scalars + 1 pseudoscalar.
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Okay, but what does this have to do with
REAL materials? €T ® €T ® €T » Scalars + Pseudoscalar

. . Bispectra
Ex: Clustering local environments
with the bispectra
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Just like the properties of physical systems,

the outputs of E(3)NNs have equal or higher symmetry than the inputs.

Task 1: Rectangle to Square

.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

Task 2: Square to Rectangle

<

N

.
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”). Gradients have symmetry of “true” outputs.

X
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”). Gradients have symmetry of “true” outputs.

X

Use gradients to “find” what’s missing.

— Learns anisotropic inputs. — Model can fit.

Input
X
=0  Fioo0+2+4 ¥ MNr-mmmmmmmmm1mmT : Irreps with
Output a | even parity
y | L22 break
1 degeneracy
|
|

between x and

o &
tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org %



mailto:tsmidt@mit.edu
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.L012002
https://e3nn.org/

ENNs have the symmetry of the representation built-in.

ENNSs also preserve the subgroup symmetry of the inputs.

Many different types of geometric objects have the same symmetry.

ENN transforms geometric objects into different objects with same or higher symmetry.
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Order parameters describe symmetry breaking and
distinguish between degenerate states.
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Order parameters describe symmetry breaking and
distinguish between degenerate states.
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