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The kinds of molecules we are trying to find/optimize
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Computer-aided molecular discovery pipelines still involve
extensive manual intervention and are highly bespoke
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“Considering a range of properties ... as well as their
commercial availability, 17 compounds were chosen as virtual
screening hits”

“... the choice of these compounds was based on factors
such as drug-likeness, availability for procurement, ligand
efficiency and chemical diversity”

“The top-scoring molecules for the top-ranked 4,000 clusters
were inspected for unfavourable features ... From the
remaining top-ranking clusters, we synthesized 17 richly
functionalized THPs”

"all members were inspected ... 40 molecules with ranks
ranging from 16 to 246,721...were selected for de novo
synthesis and testing.”

[1] Lans, I. et al. PLOS Computational Biology 2020, 16 (8), e1007898. https://doi.org/10.1371/journal.pcbi.1007898.
[2] Gorgulla, C et al. Nature 2020, 580 (7805), 663-668. https://doi.org/10.1038/s41586-020-2117-z.

III' == [3] Kaplan, A. L. et al. Nature 2022, 1-10. https://doi.org/10.1038/s41586-022-05258-z.
ll [4] Stein, R. M. et al. Nature 2020, 579 (7800), 609-614. https://doi.org/10.1038/s41586-020-2027-0.
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The formulation ot molecular optimization

best design — oracle
—— g* = argmax f(z)
reX

all possible molecules e surrogate oracle
/_ u

. (updated iteratively?)

r* =~ argmax f(x)
reX

1 Reliance on imperfect oracles 2 Constrained design spaces
Insufficient representations/surrogates 4 Non-sequential, batched design




Benchmarks for molecular optimization are toy problems

* The predominant benchmarks for molecular optimization are “penalized logP”, a druglikeness
heuristic (QED), and molecular “rediscovery” through similarity calculations zhouetal. sci. rep. 2019

~

Penalized logP is trivially QED easily saturates
optimized with long alkyl chains at a score of 0.948

Penalized logP: 11.84 QED: 0.948

 But when these methods are evaluated with oracles that have any real level of complexity/utility
(e.g., docking = protein-ligand binding), performance is...uninspiring

Method 5HT1B 5HT2B ACM2 CYP2D
CVAE for SMILES 4.6 4.2 4.8 Average docking score
of 250 compounds for
GVAE for SMILES 5.0 -4.6 5.4 different protein targets
LSTM for SMILES + REINFORCE -9.8 -8.7 -9.8 -8.8 (lower = better)
Training set (top 1%) -11.5 -10.0 -10.0 -10.1 Cieplinski et al. J. Chem. Inf. Model. 2023
Illil- Virtual screening (top 1%) -10.5 -9.8 -8.8 -9.3 i



We lack computational oracles for properties that matter

* Experimentally-relevant physical and biological properties cannot be predicted or simulated well
o This includes binding affinity as a primary metric for therapeutic discovery

Docking scoring functions try to distinguish the
highest-affinity ligands from decoys (CASF2016) , @l
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We rarely know the tailure modes of oracles well

* Experimentally-relevant physical and biological properties cannot be predicted or simulated well
o This includes binding affinity as a primary metric for therapeutic discovery

“On inspection, these are not molecules
that fit the receptor uniquely well, but rather
molecules that cheat the scoring function by
exploiting its holes and approximations.”

‘ Modeling the expansion of virtual screening libraries

Jiankun Lyu', John J. Irwin!"", Brian K. Shoichet'~’
'Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158,
USA

* If we could quantify (epistemic) uncertainty perfectly or knew the systematic biases, then we could
incorporate this into the optimization process more robustly or just fix the oracle



The formulation ot molecular optimization

best design — oracle
—— g* = argmax f(z)
reX

all possible molecules e surrogate oracle
/_ u

. (updated iteratively?)

r* =~ argmax f(x)
reX

1 Reliance on imperfect oracles 2 Constrained design spaces
Insufficient representations/surrogates 4 Non-sequential, batched design




Generative design is alluring due to its “creativity”

. ."#.
« De novo design of molecular structures can A
db —> generator —>» evaluator —_— @ e

access chemical spaces beyond what is o,
found in enumerated virtual libraries A |

E.g., applying atom-by-atom generative modeling to PROTAC design

(g
II I I I Nori, Coley, Mercado, NeurlPS Al4Science 2022



Generative design is alluring due to its “creativity”

o,
. e o
* De novo design of molecular structures can o 6. b
. . db —> generator —> evaluator —> 9"
access chemical spaces beyond what is %
found in enumerated virtual libraries A |

E.g., applying fragment-by-fragment generative modeling to 3D shape-conditioned design

(g
IIII' Adams et al., ICLR 2023
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Generative design often results in bad solutions
(When applied to goal-conditioned molecular optimization, not distribution learning)

* There are many ways for molecules to be unreasonable despite being syntactically valid

o E.g., lack of stability
o E.g., lack of synthesizability

- Aside: the fact that we arrive at these structures as “optimal” molecules reflects the fact that our
(surrogate) oracles are imperfect and have exploitable pathologies




Penalty functions can try to encourage “reasonableness”

1. Synthesizability heuristics (structure — scalar) can be incorporated into the objective function

. SA Score
z' ’3 : SCScore
5 *9* vgrng
db —> generator —> evaluator synth i ﬁj.{ : RAScore
\ | M1 Score

2. REINVENT (AstraZeneca), an LSTM that generates SMILES strings, is tied to its prior

log P aug (T) = log P prior(T) + oS(T)

_— N

"augmented likelihood” which should "score” which measures a property
be higher for “better” molecules we are trying to maximize

"prior likelihood” which was trained
on a large database of molecules

Mir 2



Retrosynthetic planning can be applied as a filter
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Retrosynthetic analysis requires a few key components

—

(1) A "one-step” method to generate plausible reactants given a product
Unlike game play, we do not have a world model for chemistry

These are typically
— approached and

evaluated separately

(2) A method to apply this “one-step” method recursively and navigate the
resulting combinatorial space of options

Because the graph of possible options must be generated on-the-fly
from one-step predictions, exploration can be quite expensive

(3) Some termination criterion (e.g., commercial availability)

Target molecule Reaction options Resulting reactants

Mir 4




Retrosynthetic analysis requires a few key components

—

(1) A "one-step” method to generate plausible reactants given a product
Unlike game play, we do not have a world model for chemistry

(2) A method to apply this “one-step” method recursively and navigate the = These are fypically
. . . . evaluated separately
resulting combinatorial space of options

Because the graph of possible options must be generated on-the-fly
from one-step predictions, exploration can be quite expensive

(3) Some termination criterion (e.g., commercial availability)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

[ &)

Optimizing then filtering is equivalent to performing an unconstrained optimization
and then hoping that your solution happens to be in your feasible region

——

= T TTITWV U UJJdITN O U JeTTITTCe A

(running on small server)

[ Solvent Screen Buyables

Predict Forward Synthesis Predict Impurities Predict Aromatic Site Selectivity



Enforcing strict design space constraints: synthesizability

Instead of using generative Al to propose molecules, one can propose experimental procedures

character-by-character
atom-by-atom x reaction-by-reaction J
fragment-by-fragment
O
Shlps
O
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C=COC(=0)CCC(=0)
Nclccecc2ccecececel?2

(g
III Il Gao, Mercado, and Coley, ICLR 2022; prior work by Bradshaw, Hernandez-Lobato, etc. 16



Generative design of experimental procedures
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Generative design of experimental procedures

Add Expand Add xpand Merge End
@ =) : ) )

Conditioned on Synthetic tree

-

] ®  Bulding Blocks . .1 New synthesis
N ditional code | o Products Bi-molecular reaction I
ew Ccon ‘
Il O Most Recent Molecule _ _ = New molecule
| O Target Molecule | Uni-molecular reaction I = New properties
Target e s o - - o]
molecule
embedding

Ve

Optimization (of a bioactivity score)

g

Top-1 from our model Top-1 from DST Top-1 from MARS Top-1 from GA+D
GSK3p = 0.94 GSK3p = 0.97 GSK3p = 0.95 GSK3p =0.79

. J

(g
III Il Gao, Mercado, and Coley, ICLR 2022; prior work by Bradshaw, Hernandez-Lobato, etc.
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with transformers)

Generative design of experimental procedures'
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with transformers)

Generative design of experimental procedures'

Even if we cannot precisely recover the molecule
that is encoded, we get a synthesizable analog

Dataset Method Success% Recons.% Sim.(Morgan) Sim.(Scaffold) Sim.(Gobbi)

Test Set SynNet 84.1% 10.7% 0.4575 0.5109 0.3465 4amm Direct upgrade
Proposed 97.5% 28.4% 0.7167 0.7791 0.7273 _ over prior work
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The formulation ot molecular optimization

best design — oracle
—— g* = argmax f(z)
reX

all possible molecules e surrogate oracle
/_ u

. (updated iteratively?)

r* =~ argmax f(x)
reX

1 Reliance on imperfect oracles 2 Constrained design spaces
Insufficient representations/surrogates 4 Non-sequential, batched design

Mir .




What is a molecule?

A

» Most models f(x) represent a molecular structure-relationship, requiring the choice of molecular
representation and embedding strategy

Graph? SMILES string? 3D conformer? 4D ensemble of conformers?

clccc(C(=0)0)c(cl)0C(=0)C
O=C(C)Oclc(cccecl)C(0)=0

0 O=C(C)0Oclc(C(0)=0)ccccl
)\\o = aspirin = 0=C(C)OclccccclC(=0)0 clcc(C(=0)0)c(0C(C)=0)ccl
ho” 0 clc(C(0)=0)c(0OC(=0)C)cccl

Mir 2



Molecular representations & stereochemistry

* Molecular ML pipelines have been overbuilt for SMILES strings parsed into covalent bond graphs

« Enantiomers have identical graph connectivity,
so ‘vanilla® GNNs cannot distinguish them

« Can a 3D model distinguish stereocisomers without
getting confused by conformational flexibility?

* Chiral InterRoto-Invariant Neural Network (ChlRo) uses continuous symmetries to make it invariant

to single dihedral rotations

\ 7 \ 7
N OH N OH
(EN
<N<)N A <N,N

Consider two enantiomers: red and blue;
we can enumerate conformers of each

SchNet
E(3)-invariant

DimeNet++
E(3)-invariant

SphereNet
SE(3)-invariant

le7

"~ can’t distinguish

(g
III I I Adams, Pattanaik, and Coley, https://arxiv.org/abs/2110.04383 2021 & ICLR 2022
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https://arxiv.org/abs/2110.04383

Molecular representations & stereochemistry

* Molecular ML pipelines have been overbuilt for SMILES strings parsed into covalent bond graphs

« Enantiomers have identical graph connectivity, Y @
. P . . . H H
so ‘vanilla” GNNs cannot distinguish them N { N { o
=@ -
« Can a 3D model distinguish stereocisomers without @ Y

getting confused by conformational flexibility?

Chiral InterRoto-Invariant Neural Network (ChIRo) uses continuous symmetries to make it invariant
to single dihedral rotations

* However, we don’t actually want to be invariant to single dihedral rotations...

HO2C l NO, HO.C ! NO, NH
HO,C l NO, HO,C l NO, C@ \/@ C@

Wikipedia J. Med. Chem. 59(8) 4007-4018, 2016

= -
II I I I Adams, Pattanaik, and Coley, https://arxiv.org/abs/2110.04383 2021 & ICLR 2022 24


https://arxiv.org/abs/2110.04383

Some materials of interest lack well-defined structures

* Synthetic polymers are rarely sequence-defined like proteins and nucleic acid sequences are

* They are best described by distributions of chain lengths and monomer connections

* We represent an ensemble by parameters of
the connections that generate them from
constituent monomers

Molecular Graph Graph
ensemble ensemble convolution

(g
III I I Aldeghi & Coley https://arxiv.org/abs/2205.08619 & Chem. Sci. 2022
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Some materials of interest lack well-defined structures

* Synthetic polymers are rarely sequence-defined like proteins and nucleic acid sequences are

* They are best described by distributions of chain lengths and monomer connections

Electron affinity lonization potential
* We represent an ensemble by parameters of e =1 [D-MPNN ,.
the connections that generate them from £ <
constituent monomers =
. . . . . Qv
o Limitation: this captures the first ES
moment (average) of the distribution g&’
but not higher-order moments
Random copolymer Block copolymer rrien) DoY)
0.05 Electron affinity lonization potential
L
05 I gtk g 0.95 wD-MPNN /| ,|wD-MPNN

Weighted edges
improve the fit

RMSE =0.03| - RMSE = 0.03

Pd R'.‘ - 100 0 Pd R'.‘ - 100 tO DFT data

. -4 —‘? 0 0 2 -
I'I I l Aldeghi & Coley https://arxiv.org/abs/2205.08619 & Chem. Sci. 2022 DFT (eV) DFT (eV) 26
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https://arxiv.org/abs/2205.08619

We lack good representations of mixtures & interactions

* Interactions — exemplified by compound-protein interactions — are poorly captured by
discriminative models (only apparent if the proper baselines are included)

Substrates
@ Dataset # Enzymes # Substrates # Pairs
.§ Halogenase 42 62 2604
S Substrate Glycosyltransferase 54 90 4298
@ Ldiscovery:
£ Thiolase 73 15 1095
N
T BKACE 161 17 2737
e Phosphatase 218 165 35970
Il Activity
Enzyme discovery Il No Activity Esterase 146 96 14016
Kinase (inhibitors) 318 72 22896

How well can we generalize from this ‘dense’
family-wide enzyme profiling data?

= -
III I I Goldman et al., PLOS Comp. Bio 2022



We lack good representations of mixtures & interactions

* Interactions — exemplified by compound-protein interactions — are poorly captured by
discriminative models (only apparent if the proper baselines are included)

Substrates S.ubstrate Enzyme CPI model
discovery discovery
£ 0=C(0)C...(0)0 MNKPIK...ESL Osc Mk
= =C(0)C...(O) (0o s,
k. ‘ 1 , 1
§ +Substrates 1 Single-task U ' Single-task Joint-task
Q :discovery: models models model
=
>
|
uﬁ L] [] []
0.81 0.68 0.48
I Activity fEnz(Sub) = [0, 1] fsub(Enz) — [0,1] / f(Enz,Sub) — [0,1]
Enzyme discovery Il No Activity
H I lize f this 'd , 1. two embedding MLP ‘trunks’
ow well can We generalize Irom this dense 2. interaction layer (concat., sum,

family-wide enzyme profiling data? outer prod., dot prod., ...)

- 3. additional MLP
I I I I l Goldman et al., PLOS Comp. Bio 2022



We lack good representations of mixtures & interactions

* Interactions — exemplified by compound-protein interactions — are poorly captured by
discriminative models (only apparent if the proper baselines are included)

Substrates Enzyme-substrate compatibility
(binary classification)
N —
€ .
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S 'Substrate 215
@ Ldi | —_— | . -
E, iscovery % i" .‘ s . )
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Enzyme discovery Il No Activity ef\@% Q\\Xc,O\lyg) \6@6 5\7’6
(b\o % ?/6 Q6Q\<\ Substrates | Substrate
4 Q

How well can we generalize from this ‘dense’
family-wide enzyme profiling data?

Enzymes

Train Train

. 3 Test E Test
I I I I l Goldman et al., PLOS Comp. Bio 2022 I
CPI Single-task




We lack good representations of mixtures & interactions

* Interactions — exemplified by compound-protein interactions — are poorly captured by
discriminative models (only apparent if the proper baselines are included)

Kinase-ligand binding (regression)

Substrates

Repurposin Discovery
A (New Kinase B (New drug)
£ S o
© £ 05" 0.5
B —
: e N miall
) ldiscovery:- D50 0.0
5 Wk 09 g
N ™ ™ N
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L A\ N N s
GP + MLP s MLP GP + MLP s MLP
.ACtiVity Ridge: Bepler Il Ridge: JT-VAE = Ridge: Morgan
- - C D
Enzyme discovery Il No Activity e Top 5 - Top 25
S
= 100| i 00|
How well can we generalize from this ‘dense’ <z o ] o
family-wide enzyme profiling data? = !
Ref. 42 Linear Ref. 42 Linear
(CPl)  (No CPI) (CPl)  (No CPI)

-
I I I I l Goldman et al., PLOS Comp. Bio 2022



The formulation ot molecular optimization

best design — oracle
—— g* = argmax f(z)
reX

all possible molecules e surrogate oracle
/_ u

. (updated iteratively?)

r* =~ argmax f(x)
reX

1 Reliance on imperfect oracles 2 Constrained design spaces
Insufficient representations/surrogates 4 Non-sequential, batched design
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Molecular discovery workflows are not truly sequential

* We do not just make (or buy) and test a single molecule at a time — we do so in batches

« We should really consider the utility of the batch against the cost of the batch (not traditional BO)

* one option

" =argmax [(T) ey X; = argmax P(z* € &)
reX Xp CX,| Xp|=0b

Mir 2



Molecular discovery workflows are not truly sequential

* We do not just make (or buy) and test a single molecule at a time — we do so in batches

« We should really consider the utility of the batch against the cost of the batch (not traditional BO)

Property prediction
Virtual libraries A

@
{} Candidate set @ I SPARROW Optimized candidates

- . and synthetic routes
@ 'f/\lrn\"/iu 1
De novo design orre ® 3
= % - ..VIL@ @ J\/\n’\: Reward
Retrosynthetic Cost
> planning ot
H H MeHN i N’:\N —
Expert ideation ® e

SPARROW: Synthesis Planning And
Rewards-based Route Optimization Workflow

= -
I I I I l Jenna Fromer; https://arxiv.org/abs/2311.02187 33



Synthesis-aware design of batches of molecules

* We do not just make (or buy) and test a single molecule at a time — we do so in batches

« We should really consider the utility of the batch against the cost of the batch (not traditional BO)

Reward for Likelihood that

Decision variable defining candidate j reaction i is
if candidate j is selected 2 f successful
Expected
reward C] L; Set of reactions selected to
JET i€ER,; produce candidate j
arg ma "

WT G = 1})

Set of all candidate
molecules

Total cost of synthe3|zmg all Additional notation
J : Anindex referring to a reaction node
selected routes . .
1: An index referring to a compound node
Constraints R : Set of reaction node indices
i i . C : Set of compound node indices
(D¢=r VjeP,ieR (2) ZT’iZCj vjeCl (3) Zri < length(Y)—-1 V)Y - , .
4 ¢j : Decision variable defining whether
IEP; iey compound node j is selected
If a compound node is selected, at If a reaction is selected, all of its parent For each cycle in the graph, every reaction Ti: ?eztztsigonn::c;:?liz2:?2;?§dwmther
least one of its parent reactions must compound nodes (its reactants) must also node in the cycle cannot be simultaneously S: ) ) o
be selected. be selected. selected. + Set of dummy reaction node indices

P. .. Setof parent nodes for the node
ot corresponding to index i or j

-
I I I l I Jenna Fromer; https://arxiv.org/abs/2311.02187 5 frcyeleimareltostietic graph



Synthesis-aware design of batches of molecules

* We do not just make (or buy) and test a single molecule at a time — we do so in batches

« We should really consider the utility of the batch against the cost of the batch (not traditional BO)

P Ity f lecti
Cost of starting material enalty Tor selecting

L reaction i
produced by dummy reaction i Y
v o N\
. . -1
argmin  —/4, § ciUj + A, D;r; + A3 E min{L; *, 20} 7; whether reaction i
GrT jeT i€S iER is selected
N\ J \ j \ J
Y Y
Select candidates Select few reactions and
s Select cheap ,
with high rewards art torial ones that are likely to be
Sla |ng marterials Additional notation
SucceSSfL” J © An index referring to a reaction node
. i: An index referring to a compound node
Constraints R : Set of reaction node indices
i i . C : Set of compound node indices
. . . . > C; ’ —
(1) CJ == T‘] V] EE'l €R (2) z i = CJ V] € c (3) Z i = length(y) 1 Vy ¢j : Decision variable defining whether
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Synthesis-aware design of batches of molecules

* We do not just make (or buy) and test a single molecule at a time — we do so in batches

« We should really consider the utility of the batch against the cost of the batch (not traditional BO)

P Ity f lecti
Cost of starting material enality for selecting

: reaction i
produced by dummy reaction i ont
v o N\
. . -1
argmin  —/, Z cjU; + 4, Z Dir; + A3 Z min{L; ~, 20} 1; whether reaction i
¢r jeT i€ES iER is selected
\ J N J
Y \ J Y
Select candidates Select few reactions and
with high rewards Se_lect Cheapl ones that are likely to be
starting materials successful
Rewards = acquisition functions Starting material (or screening Potential synthetic pathways and
(a la Bayesian optimization), compound) costs can come from likelihoods of success for each
predicted properties, docking, etc. || vendor catalogs, e.g., Chemspace reaction are from ML predictions

= -
I I I I l Jenna Fromer; https://arxiv.org/abs/2311.02187
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Synthesis-aware design of batches of molecules

* We do not just make (or buy) and test a single molecule at a time — we do so in batches

« We should really consider the utility of the batch against the cost of the batch (not traditional BO)

« E.g., re-analyzing one design cycle of 121

candidates from Koscher et al. Science 2023

Out of 121 candidates...
- purchase 6 $0.50g

. . 0.99
- synthesize 9 using PN EtOH
6 building blocks & LI o oo
10 reaction steps oH
$0.8/g
F 0
//-x (0] Br-. o - N% RN
|
F /l\?;’*\_/ o Me/kﬂ “Tcog Me” F co,Me
R:0.92 R: 0.62 R: 0.54 R:0.46
$1.6/g $1.7/g $0.7/g $0.8/g
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I I I I l Jenna Fromer; https://arxiv.org/abs/2311.02187

Br-<

R: 0.92

A COM
P
YN/
R: 0.46
$0.6/g

BocHN” “CO,H

AN
N °N

_NH
2 BocMeN” “CO,H

R:0.38

$0.5/g $0.6/g $0.9/g
0.99|COI 0.99 | DCC, DMAP
THF DMF

o] [:'JN\
BocHN.,\ JL.N,N\yN
H
R: 0.62
DCM
(o] o FN\
M o~ HN\)J\ NN
e (o} cocl 2 N 4
$1.2/g H
0.96 MeONa
MeOH
i "
Me 0. L N
I ~7 N il NN
| H | | N
0] 0 \‘N
R: 0.76
0.99 | TEA
DCM
o}
HO | N
~ N/\T( N
H N
o] \QN’
R: 0.77

0 = N
BocMeN . /lL,‘ N 7N
N N
H
R: 0.62
DCM
I| TN T [ N
MeHN N N7 LAH MeHN Ny - N_ 7
N THF N
H H
R:0.38 R: 0.46
I
Q/ “OH
$3.2/g
DIPEA HATU
0.99 | HATU 0.88| 1A
DMF DMF
(¢] (o]
I K Py
NN ~ 7N N AN
7N NN - N7 TN
oLy 0L
7 Me (o] ~N Ve Me ’r37



The correlation between molecules in a batch matters

* one option

" =argmax f(7) ‘e X7 = argmax Pz* € X})
rTEX XbCX,|Xb|:b

* Typically, medicinal chemists will cluster candidates to design “diverse” batches

« My assertion: the use of diversity/clustering for compound selection is just a proxy for trying to
decorrelate the risk of failure — we do not want every molecule in the batch to underdeliver

I|Ii|- Decorrelating risk is especially important when workflows are non-iterative
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Summary

best design — oracle
—— g* = argmax f(z)
reX

all possible molecules e surrogate oracle
/_ u

. (updated iteratively?)

r* =~ argmax f(x)
reX

n We lack good computational oracles; a Experimental oracles require synthesis,
scoring is the bottleneck for discovery which constrains our design space

Representation learning and property n Sequential molecular design does not
prediction (+interactions) is not “solved” reflect the reality of batched design

Mir .
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Computer-aided molecular discovery pipelines still involve
extensive manual intervention and are highly bespoke

1. “Considering a range of properties ... as well as their
commercial availability, 17 compounds were chosen as virtual

1o screening hits”

FLEXL-PHARMA 2. "... the choice of these compounds was based on factors

such as drug-likeness, availability for procurement, ligand

efficiency and chemical diversity”

Accuracy
and

costs 3. "The top-scoring molecules for the top-ranked 4,000 clusters
were inspected for unfavourable features ... From the
remaining top-ranking clusters, we synthesized 17 richly
functionalized THPs”

Filtered

Molecules 5%

MD RANKING

0.25%

EXPERIMENTS

4. "all members were inspected ... 40 molecules with ranks
ranging from 16 to 246,721...were selected for de novo
synthesis and testing.”

[1] Lans, I. et al. PLOS Computational Biology 2020, 16 (8), e1007898. https://doi.org/10.1371/journal.pcbi.1007898.
[2] Gorgulla, C et al. Nature 2020, 580 (7805), 663-668. https://doi.org/10.1038/s41586-020-2117-z.
II'- [3] Kaplan, A. L. et al. Nature 2022, 1-10. https://doi.org/10.1038/s41586-022-05258-z.
I ll [4] Stein, R. M. et al. Nature 2020, 579 (7800), 609-614. https://doi.org/10.1038/s41586-020-2027-0.

41



https://doi.org/10.1371/journal.pcbi.1007898
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1038/s41586-022-05258-z
https://doi.org/10.1038/s41586-020-2027-0

Our primary research threads

Al for synthetic organic chemistry

Machine learning models that learn what
chemical transformations are possible

Al for medicinal chemistry

Computer-aided design or selection of
molecular structures, considering synthesis

Al for analytical chemistry

Spectral prediction and structure elucidation
through mass spectrometry

Foundational capabilities

Chemistry-tailored models for molecular
representation learning

Data sharing to facilitate modeling for
chemistry and drug discovery

Autonomous chemistry laboratories for
molecular and reaction discovery



Aligning Al for molecular design with the real world

* What should computer-aided molecular design workflows look like? What is the best role for
generative modeling — hit finding or optimization? Does it even need to be sample efficient?

Designer Proxy Oracle Surrogate Oracle
(generative model) (computational)  (data-driven) (experimental)
More concepts...

Model-based RL

Multi-fidelity learning
Low data surrogate models
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