AAGTTTTGCTGCTGTTTATTTTGTAGCTCTTACTATATTC FORDAGGAAGTTATTTATATTTCTATTTTTTATATATTATATATTTTT Department of Genetics AGTACCTATCGTGGACAAGGTGAGTACCATGGTGTATCACAAATGCTCTTTCCAAAGCCCTC Debugging genomic profiling experiments GCATGTCTTTGAGATTCTAAGAATTGTJCTTGGCAAGAAGAAGAAAATGTAA **AGT& predictive models with interpretation** TGATGACATAATAGGTTCTGTCATAGTGTAGATAGGGATAAGCCAAAATGCAATAAGAAAAA CCATCCAGAGGAAACTCTTTTTTTTTTCLOOLSTTTTTTTTTTTCCAGATGGAGTCTCGCA CGCTCCCACACCTGGCTAATTTTT**Anshul Kundaje**\GATGGGGTTTCACCATGTTGGCCA GGCTGGTCTCAAACTCCTGCCCTCAGGTGATCTGCCCACCTTGGCCTCCCAGTGTTGGGTTT ACAGGCGTGAGCCACCGCGCCTTwitter:@anshulkundajeCTTAACAGGGAAACTAAGAAAG AGTTGAGGCTGAGGAACTGraub. https://github.com/kundajelah/AGACCACCAGGCTCTTGA ATCCTCCCAGCCAGAGAGAAAGAGTTTCCACACCAGCCATTGTTTTCCTCTGGTAATGTCAGCC tools Github:<https://github.com/kundajelab/>

Functional components of the human genome

Profiling regulatory DNA

Profiling regulatory DNA

One genome \Leftrightarrow many cell types

ACCAGTTACGACGG TCAGGGTACTGATA CCCCAAACCGTTGA CCGCATTTACAGAC GGGGTTTGGGTTTTT GCCCCACACAGGTA CGTTAGCTACTGGT TTAGCAATTTACCG TTACAACGTTTACA GGGTTACGGTTGGG ATTTGAAAAAAAGT TTGAGTTGGTTTTT TCACGGTAGAACGT ACCTTACAAA…………

http://www.roadmapepigenomics.org/

Decoding regulatory

Marrow derived

- Chondrocytes

mesenchymal cells

Brain

hymus -

Heart \blacksquare

 $Lung$

Cord blood

Live

Spleer

Placenta

-Germinal matrix

Ganglion Eminence

cultured neurospheres

Cortex derived primary

cultured neurospheres

derived primary

Spinal cord

Stomach

Adrenal

Kidney

Right, Left,
Renal corte
Renal pelvis

Small intestine

Large intestine

Skeletal muscle
Back, Trunk, Arm, Lee

Gonad

Skin keratinocyte

- Skin melanocytes

Skin fibroblasts

DNA sequence

Predicting functional

genetic variant &

mutations

Dunham, Kundaje et al. 2012 Nature Kundaje et al. 2015 Nature

Predictive sequence models of chromatin profiles

One model for every expt.

Ziga Avsec

Alex Tseng **Vivek Ramalingam** (Postdoc)

Avsec et al. 2021, Nature Genetics

One model for every expt.

Ziga Avsec

Alex Tseng **Vivek Ramalingam** (Postdoc)

Avsec et al. 2021, Nature Genetics

ChromBPNet (Chromatin Accessibility) ATAC-seq, DNase-seq, scATAC-seq <http://github.com/kundajelab/chrombpnet>

Anusri Pampari Anna Shcherbina

Surag Nair

One model for every expt.

Ziga Avsec

Alex Tseng **Vivek Ramalingam** (Postdoc)

Avsec et al. 2021, Nature Genetics

ChromBPNet (Chromatin Accessibility) ATAC-seq, DNase-seq, scATAC-seq <http://github.com/kundajelab/chrombpnet>

Anusri Pampari Anna Shcherbina

Surag Nair

maps sequence to base-resolution coverage profiles

One model for every expt.

ProCapNet (Nascent & steady state Tx) PRO-cap, CAGE, RAMPAGE https://github.com/kundajelab/nascent_RNA_models

Kelly Cochran

Ziga Avsec

Alex Tseng

Vivek Ramalingam (Postdoc)

Avsec et al. 2021, Nature Genetics

ChromBPNet (Chromatin Accessibility) ATAC-seq, DNase-seq, scATAC-seq <http://github.com/kundajelab/chrombpnet>

Anusri Pampari Anna Shcherbina

Surag Nair

maps sequence to base-resolution coverage profiles

One model for every expt.

CAGATGCATAACAAAGGTGC

ProCapNet (Nascent & steady state Tx) PRO-cap, CAGE, RAMPAGE https://github.com/kundajelab/nascent_RNA_models

Kelly Cochran

ReporterNet (High throughput reporter assays) MPRA, STARR-seq, ATAC-STARR-seq (Coming soon!)

Ziwei Chen

Interpret predictive sequence features in reg. DNA via model

infers contribution of every base in any query sequence through lens of model

Avanti Shrikumar <https://github.com/kundajelab/deeplift>

Shrikumar et al. 2017, ICML Tseng et al. 2020, NeurIPS Nair et al, 2022, Bioinformatics Schreiber et al. 2022, Biorxiv

FastISM

Surag Nair <https://github.com/kundajelab/fastism>

Yuzu

Jacob Schreiber

<https://github.com/kundajelab/yuzu>

Avanti Shrikumar

Alex Tseng

Jacob Schreiber

Shrikumar et al. 2018 Avsec et al. Nature Genetics 2021

Alex Tseng

Avanti Shrikumar

Jacob Schreiber

<u>clab.</u>

Shrikumar et al. 2018 Avsec et al. Nature Genetics 2021

TF-MODISCO & FiNeMo

Avanti Shrikumar Alex Tseng

Jacob Schreiber

Shrikumar et al. 2018 Avsec et al. Nature Genetics 2021

TF-MODISCO & FiNeMo

Avanti Shrikumar

Alex Tseng

Jacob Schreiber

Shrikumar et al. 2018 Avsec et al. Nature Genetics 2021

In-silico perturbation framework for causal discovery of syntax & variation

Combinatorial perturbation screens on synthetic & genomic sequences

synthetic sequences

Ziga Avsec

Vivek Ramalingam Daniel Kim(Postdoc)

Avsec et al. 2021, Nature Genetics Kim et al. 2021, Nature Genetics

In-silico perturbation framework for causal discovery of syntax & variation

Combinatorial perturbation screens on synthetic & genomic sequences

Ziga Avsec

Daniel Kim

Avsec et al. 2021, Nature Genetics Kim et al. 2021, Nature Genetics

Vivek Ramalingam (Postdoc)

Variant effect screens (Common, rare, SNVs, indels)

Δ PredictedSignal

Laksshman

Sundaram

Soumya Kundu

Ziwei Chen

Debugging, de-biasing & reconciling chromatin accessibility data with ChromBPNet

ChromBPNet (Chromatin Accessibility)

ATAC-seq, DNase-seq, scATAC-seq

<http://github.com/kundajelab/chrombpnet>

Anusri Pampari Anna Shcherbina

Surag Nair

ChromBPNet: Sequence to base-pair chromatin accessibility profiles

Based on Avsec et al. Nature Genetics 2021 Anusri Pampari Anna Shcherbina

ChromBPNet: accurate prediction of ATAC-seq profiles from sequence

ChromBPNet: accurate prediction of ATAC-seq profiles from sequence

Motifs learned by model are heavily corrupted by Tn5 (ATAC-seq enzyme) sequence bias!

How to correct bias? Use neural network to learn Tn5 bias from chromatin background

DeepLIFT TF-MoDISCO

How to correct bias? "Bias-factorized" ChromBPNet model

Anusri Pampari

Fig: Jacob Schreiber

Anna Shcherbina

ZBT7A

ZBT7A

Motifs learned by bias-factorized ChromBPNet fully corrects Tn5 bias

Bias correction reduces differences between DNase-seq & ATAC-seq profiles and contribution scores

Jensen Shannon Distance between matched pairs of DNase-seq and ATACseq profiles

Jensen Shannon Distance between matched pairs of DeepLIFT score profiles from DNase-seq and ATAC-seq models

ChromBPNet dramatically improves cell-type specificity of TF footprints

200bp surrounding the motif insertion site in 10K random non-peak seqeunces

Anusri Pampari

ChromBPNet allows systematic comparison of Dnase-seq & ATAC-seq footprints

200bp surrounding the motif insertion site

200bp surrounding the motif insertion site

High fidelity denoising, imputation and interpretations at low read coverage

Decreasing read depth Decreasing read depth

ChromBPNet accurately denoises and imputes signal from low coverage data

Jensen Shannon Distance

Using 500M as ground truth we compare degradation in observed and predicted signal profiles at different read depths

ChromBPNet accurately denoises and imputes signal from low coverage data

Using 500M as ground truth we compare degradation in observed and predicted signal profiles at different read depths

High fidelity marginal footprints & motif instance detection at low read depths

Screening genetic variants for regulatory effects

Variant effect screens (Common, rare, SNVs, indels)

∆PredictedSignal

000000000000000000000 000000000000000000000 000000000000000000000 00000000000000000000

ACTGAT GCAATCG.......ACTGAT GCAATCG.......

Soumya Kundu

Laksshman Sundaram

Ziwei Chen

In-silico mutagenesis: Predict effect of genetic variant on molecular activity

Predicted molecular profile of protein-DNA binding

PredictedSignal

000000000000000000000

In-silico mutagenesis: Predict effect of genetic variant on molecular activity

Predicted molecular profile of protein-DNA binding

000000000000000000000

000000000000000000000

000000000000000000000

00000000000000000000 ……ACTGAT**C**GCAATCG……. ……ACTGAT**G**GCAATCG…….

Interpret disrupted predictive sequence syntax

Predicted molecular profile of protein-DNA binding

Molecular quantitative trait loci (QTLs): Identifying genetic variation associated with variation in molecular activity (chromatin, expression etc)

- 1. Sequence genomes of 100-1000s of individuals
- 2. Obtain tissue of interest from ALL these individuals
- 3. Perform molecular profiling experiments in ALL individuals
- 4. Perform statistical association of each variant with variation of molecular activity (expression, chromatin accessibility) of each element (gene, regulatory element)
- 5. Output: QTLs = Variants with statistically significant association with molecular activity

Limitations of this approach:

- 1. Very cumbersome and expensive for each tissue / cell type
- 2. Difficult to access some tissues / cell types in 100s of individuals

Prediction of effect sizes of variants measured in diverse African cohort using model trained on a European reference dataset

11,098 caQTLs in LCLs from diverse African populations

ChromBPNet model trained on a single reference ATAC-seq dataset of European ancestry

ChromBPNet outperforms other models for predicting variants affecting chromatin accessibility

ChromBPNet substantially outperforms "DNA language models" (zero-shot, probed and fine-tuned) for variant effect prediction

DNA-LMs are probed and fine tuned to predict chromatin accessibility profiles genome-wide (exactly the same data that ChromBPNet is trained on)

Aman Patel, Austin Wang, Arpita Singhal

ChromBPNet models trained on European LCL ATAC-seq reference generalizes to African caQTLs

Fine mapping functional variant in multiple sclerosis GWAS locus (IL7)

Predicting *de-novo* non-coding variants in congenital heart disease from fetal heart scATAC-seq

UMAP Dimension 2

Arterial endothelial cells are enriched for prioritized *de novo* CHD non-coding mutations

Cell types ranked for disease enrichment

Provides a window into developmental timepoints critical for Congenital heart disease

Arteries and Capillaries the most enriched cell types

Laksshman Sundaram

UMAP Dimension 1

CRISPR, Luciferase, phenotypic assay supports prioritized CHD variant in the JARID2 locus in aECs *Mo Ameen*

Sundaram, Ameen*, Cell 2023*

- Neural networks can accurately model cell context specific regulatory profiles at base-res. from DNA sequence
- Models can be interpreted to decipher complex sequence syntax
- Assay biases can be detected, learned & corrected improving concordance between related assays, imputing missing signal from sparse profiles and reveal causal biological sequence drivers of activity
- Models can predict & interpret counterfactual effects of regulatory genetic variants
- Scale is not everything: Small models can outperform massive models

Acknowledgements

Kundaje lab

ENCODE

Stam lab Greenleaf lab Snyder lab Tehwey lab Reddy lab Shendure lab Ahituv lab

Funding

1R01HG009674

1U24HG009446 1U01HG009431

Ziga Avsec

Julia Zeitlinger

Democratizing ML for genomics: <http://kipoi.org/>

Kipoi (pronounce: kípi; from the Greek κήποι: gardens) is an API and a repository of ready-to-use trained models for regulatory genomics. It currently contains 1709 different models, covering canonical predictive tasks in transcriptional and post-transcriptional gene regulation. Kipoi's API is implemented as a python package (github.com/kipoi/kipoi) and it is also accessible from the command line or R.

Numbers

of models: 1709

of model groups: 16

of contributors: 6

of model groups supporting postprocessing:

• Variant effect prediction: 11/16

Model groups by tag

Ziga Avsec