Santhoshini Velusamy (Toyota Technological Institute at Chicago)

Sublinear Algorithms Program at the Simons Institute of Technology

Constraint Satisfaction Problems (CSPs)

n variables

Constant number of constraint types of arity \boldsymbol{k}

k = 3

Constraint Satisfaction Problems (CSPs)

Maximize # constraints satisfied

The variables are (yellow, pink, orange) 3

Constraint Satisfaction Problems (CSPs)

The variables are (yellow, pink, orange)

Why study CSPs?

- Structure to study infinitely many problems simultaneously
- Contains several problems of interest: Max-CUT, Max-DICUT, Max-k
 -SAT,...
- Allows for finite classifications through dichotomy theorems[Schaefer '78, Raghavendra '08, Khot-Tulsiani-Worah '14, Bulatov '17, Zhuk '20, Chou-Golovnev-Sudan-V '21, Ghoshal-Lee '22, Kol-Parmanov-Saxena-Yu '23]
 - Insights about what lies at the heart of approximating CSPs
- Discovery of new techniques that are broadly applicable. For example, SDP rounding, Sum of squares, Unique Games,...

CUT size =

Maximize CUT size

DICUT size =

Maximize DICUT size

Approximation algorithms

- Exact computation of optimum maybe NP-Hard!
- $0 < \alpha < 1, \alpha$ approximation algorithm:
 - outputs T such that: $\alpha \cdot OPT \leq T \leq OPT$
 - outputs an "underestimate" that is not off by a factor more than α
 - Randomized algorithm: outputs such an estimate with probability at least 2/3

Promise problems

- Finer study of approximation:

 $\alpha = \inf_{\substack{\beta/\gamma \\ \text{indistinguishable } (\gamma,\beta)}} \beta/\gamma$

• For $\beta < \gamma$, can you distinguish instances with OPT $\geq \gamma$ from OPT $\leq \beta$?

Approximability curve

15

Folklore approximations

- Random CUT achieves 1/2 approximation for Max-CUT
 - [Kapralov-Krachun'19] Beating this requires at least $\Omega(n)$ space!
- Random DICUT achieves 1/4 approximation for Max-DICUT
 - We can beat this in log(n) space
- Sample $O(n/\epsilon^2)$ random edges and compute Max-CUT/Max-DICUT value (possibly in exponential time) to obtain (1ϵ) approximation!

Streaming Approximability of CSPs in o(n) space

Streaming Approximability of CSPs in o(n) space (bounded-degree instances)

- Bias of a vertex $v = \frac{\operatorname{out}(v) \operatorname{in}(v)}{\operatorname{deg}(v)} \in [-1,1]$
- Bias intervals: $-1 \le b_0 \le \cdots \le b_{r-1} \le 1$ where $b_{i+1}/b_i \le \epsilon$
- Vertex-bias statistics: number of vertices of of degree $i \in [d]$ in each bias class
- Can be computed in $O(\log n)$ space

Dichotomy theorem: $\log n vs \sqrt{n}$

[Chou-Golovnev-Sudan-V'21]

vertex-bias statistics

distinguishable in $O(\log n)$ space

Dichotomy theorem: $\log n vs \sqrt{n}$ [Chou-Golovnev-Sudan-V'21]

For $\beta < \gamma$, when can you distinguish instances with OPT $\geq \gamma$ from OPT $\leq \beta$?

indistinguishable in $o(\sqrt{n})$ space

- Decidable in PSPACE
- $o(\sqrt{n})$ space
- Incomplete: only proves \sqrt{n} space lower bounds
- Linear space lower bounds for an infinite subset of approximation resistant CSPs [Chou-Golovnev-Sudan-Velingker-V'22]

Dichotomy theorem: $\log n vs \sqrt{n}$ [Chou-Golovnev-Sudan-V'21]

Decidable characterization of CSPs that are "approximation resistant" in

$\tilde{O}(\sqrt{n})$ space algorithm for Max-DICUT [Saxena-Singer-Sudan-V'23]

- Edge-bias statistics
- Compute the number of edges between each pair of bias classes
- Sample $O_{\mathcal{A}}(\sqrt{n})$ vertices and record their induced subgraph
- Oblivious algorithms: "round" all variables in each bias class with same probability [Feige-Jozeph'15]
- Better approximation-ratio for Max-DICUT!
- $\exists \delta > 0$ such that oblivious algorithm cannot beat $1/2 \delta$ approximation

Reaching 1/2-approximation [Saxena-Singer—Sudan-V'upcoming]

- Radius-k-subgraph statistics $\implies 1/2 1/k^2$ approximation
- Computable in $\tilde{O}(n^{1-f(d,k)})$ space
- Sample $O(n^{1-f(d,k)})$ vertices and record their induced subgraph

Open problems

Do edge-bias statistics give the best algorithm for Max-DICUT in $\tilde{O}(\sqrt{n})$ space?

Do edge-bias statistics give the best algorithm for Max-CSP in $\tilde{O}(\sqrt{n})$ space?

Dichotomy theorem??

For $\beta < \gamma$, when can you distinguish instances with OPT $\geq \gamma$ from OPT $\leq \beta$?

edge-bias statistics

indistinguishable in $o(n^c)$ space, c > 1/2

Is there a CSP that is approximation resistant in $o(\sqrt{n})$ space but approximable in o(n) space?

Is every CSP that is approximation resistant in P also approximation resistant in $o(\sqrt{n})$ space?

Thank you!