Graph algorithms in the Massively Parallel Computation (MPC) model

Slobodan Mitrović (UC Davis)

Mandatory "Big Data" slides first ...

12 million products 200 million Prime users

5 billion entities 500 billion facts

1+ trillion parameters

World's biggest data center is bigger than world's biggest airplane factory

10.7 million square feet (Inner Mongolia Information Park, China) vs **4.2 million square feet** (Boeing Everett Factory, Washington, US)

ENFACT

A theoretical abstraction of tools for handling massive data Introduced:

- Dean, Ghemawat, '04, '08]
- [Karloff, Suri, Vassilvitskii, '10]

Goodrich, Sitchinava, Zhang, '11]

Examples:

- MapReduce [Dean, Ghemawat, '04, '08]
- Hadoop [White, '12]
- □ Pregel [Google, '09]
- Dryad [Isard, Budiu, Yu, Birrell, Fetterly, '07]
- Spark [Zaharia, Chowdhury, Franklin, Shenker, Stoica, '10]

All-to-all synchronous-round communication

All-to-all synchronous-round communication

Parametrized:

T machines

Space *S* per machine (RAM)

(desired) $T * S \approx$ input size

All-to-all synchronous-round communication

Parametrized:

T machines

Space **S per** machine (RAM)

(desired) $T * S \approx$ input size

Constraints per round:

Machine receives/sends at most S bits

All-to-all synchronous-round communication

Parametrized:

T machines

Space **S per** machine (RAM)

(desired) $T * S \approx$ input size

Constraints per round:

Machine receives/sends at most S bits

Goal:

As few rounds as possible.

N = input size

Today: A single technique on a specific problem.

Simulation via Round Compression

Algorithm: A Rounds: T

Simulation via Round Compression

Rounds: o(T)

Rounds: T

Approximate Maximum Matching in MPC with O(n) space per machine

Input:

an unweighted graph G = (V, E)

Output:

a constant-factor approximate maximum matching

How to partition the graph?

What local algorithm to use?

- [Czumaj, Łącki, Mądry, Mitrović, Onak, Sankowski '17]
- [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld '18]
- [Assadi, Bateni, Bernstein, Mirrokni, Stein '19]
- [Behnezhad, Hajiaghayi, Harris '19]
- [Ghaffari, Lattanzi, Mitrović '19]
- [Biswas, Eden, Liu, Mitrović, Rubinfeld '22]

$\sqrt{\Delta}$ colors/machines

 Δ = maximum degree

 $\sqrt{\Delta}$ colors/machines

 Δ = maximum degree

 Δ = maximum degree

Why $\sqrt{\Delta}$ colors/machines?

```
E[edges on Machine i]
= \sum_{e \in E} \Pr[e \text{ is on Machine i}]
```


$\sqrt{\Delta}$ colors/machines

 Δ = maximum degree

Why $\sqrt{\Delta}$ colors/machines?

```
E[edges on Machine i]
= \sum_{e \in E} \Pr[e \text{ is on Machine i}]
\leq n\Delta \frac{1}{(\sqrt{\Delta})^2} = n
```


What local algorithm to use?

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$

 y_v

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

Observations:

- 4-approximate
- There are O(log n) until-loop iterations
- x_e can be deduced from when the endpoints of e cross the threshold

1. Initially, for every $e \in E$, set $x_e = \frac{1}{m}$ \mathcal{V} 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional Can be implemented in O(log n) rounds in LOCAL and MPC. **Observations**: Can we implement it in O(1) MPC rounds? 4-approximate

- There are O(log n) until-loop iterations
- *x_e* can be deduced from when the endpoints of *e* cross the threshold

b

8

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to **freeze** the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge 1$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every
$$e \in E$$
, set $x_e = \frac{1}{n}$
2. Until each edge is **frozen**:
(A) **Freeze** edges incident to v for which
 $y_v = \sum_{e \in N(v)} x_e \ge Rnd(0.9, 1.1)$
(B) For each unfrozen edge, set $x_e = 2 \cdot x_e$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

0.92 -----

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge Rnd(0.9, 1.1)$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge Rnd(0.9, 1.1)$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which $y_v = \sum_{e \in N(v)} x_e \ge Rnd(0.9, 1.1)$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

- Sample a subgraph and *estimate* y_v .
- Use the estimates to freeze the edges.

Algorithm: A Rounds: T Algorithm: _≈A Rounds: o(T)

1. Initially, for every
$$e \in E$$
, set $x_e = \frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which
 $y_v = \sum_{e \in N(v)} x_e \ge 1$
(B) For each unfrozen edge, set $x_e = 2 \cdot x_e$
3. Output $\frac{x}{2}$ as a fractional matching
 $6 \sum_{5} \sum_{5} \sum_{1} \sum_{5} \sum_{1} \sum_{1}$

1. Initially, for every $e \in E$, set $x_e = \frac{1}{n}$ 2. Until each edge is **frozen**: (A) **Freeze** edges incident to v for which an *estimate* of $y_v = \sum_{e \in N(v)} x_e \ge Rnd(0.9, 1.1)$ (B) For each unfrozen edge, set $x_e = 2 \cdot x_e$ 3. Output $\frac{x}{2}$ as a fractional matching

Algorithm: ≈A Rounds: o(T)

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_v}$ and y_v cross the threshold at the same time!

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

• $y_v = \frac{\mathrm{d}_v}{n}$

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_v}$ and y_v cross the threshold at the same time!

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

•
$$y_v = \frac{a_v}{n}$$

•
$$\widetilde{y}_{v} = \sqrt{n} \sum_{e \in N_{locally}(v)} x_{e} = \frac{1}{\sqrt{n}} \left| N_{locally}(v) \right|$$

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_v}$ and y_v cross the threshold at the same time!

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

- $y_{\nu} = \frac{\mathrm{d}_{\nu}}{\mathrm{d}_{\nu}}$
- $\widetilde{y_{v}} = \sqrt{n} \sum_{e \in N_{locally}(v)} x_{e} = \frac{1}{\sqrt{n}} \left| N_{locally}(v) \right|$ $E\left[\left| N_{locally}(v) \right| \right] = \frac{d_{v}}{\sqrt{n}} \ge n^{0.4}$

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_{\nu}}$ and y_{ν} cross the threshold at the same time!

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

- $y_v = \frac{d_v}{d_v}$
- $\widetilde{y_{v}} = \sqrt{n} \sum_{e \in N_{locally}(v)} x_{e} = \frac{1}{\sqrt{n}} \left| N_{locally}(v) \right|$ $E\left[\left| N_{locally}(v) \right| \right] = \frac{d_{v}}{\sqrt{n}} \ge n^{0.4}$
- With high prob: $\left| \left| N_{locally}(v) \right| \frac{d_v}{\sqrt{n}} \right| \le n^{0.3}$

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_{\nu}}$ and y_{ν} cross the threshold at the same time!

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

- $y_v = \frac{d_v}{d_v}$
- $\widetilde{y_{v}} = \sqrt{n} \sum_{e \in N_{locally}(v)} x_{e} = \frac{1}{\sqrt{n}} \left| N_{locally}(v) \right|$
- $E[|N_{locally}(v)|] = \frac{\mathrm{d}_v}{\sqrt{n}} \ge n^{0.4}$
- With high prob: $\left| \left| N_{locally}(v) \right| \frac{d_v}{\sqrt{n}} \right| \le n^{0.3}$ With high prob: $|y_v \widetilde{y_v}| \le n^{-0.2}$

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_{\nu}}$ and y_{ν} cross the threshold at the same time!

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

- $y_v = \frac{d_v}{d_v}$
- $\widetilde{y_{v}} = \sqrt{n} \sum_{e \in N_{locally}(v)} x_{e} = \frac{1}{\sqrt{n}} \left| N_{locally}(v) \right|$
- $E[|N_{locally}(v)|] = \frac{\mathrm{d}_v}{\sqrt{n}} \ge n^{0.4}$
- With high prob: $\left| \left| N_{locally}(v) \right| \frac{d_v}{\sqrt{n}} \right| \le n^{0.3}$ With high prob: $|y_v \widetilde{y_v}| \le n^{-0.2}$

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_{\nu}}$ and y_{ν} cross the threshold at the same time!

Before: When $y_v = 1$, $\Pr[\widetilde{y_v} < 1] = \frac{1}{2}$.

What is the probability that a random threshold "cuts" between $\tilde{y_{\nu}}$ and y_{ν} ?

Consider a vertex v with $d_v \ge n^{0.9}$, and Iter 1

- $y_v = \frac{d_v}{d_v}$
- $\widetilde{y_{v}} = \sqrt{n} \sum_{e \in N_{locally}(v)} x_{e} = \frac{1}{\sqrt{n}} \left| N_{locally}(v) \right|$
- $E[|N_{locally}(v)|] = \frac{\mathrm{d}_v}{\sqrt{n}} \ge n^{0.4}$
- With high prob: $\left| \left| N_{locally}(v) \right| \frac{d_v}{\sqrt{n}} \right| \le n^{0.3}$ With high prob: $|y_v \widetilde{y_v}| \le n^{-0.2}$

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- **Goal**: $\widetilde{y_{\nu}}$ and y_{ν} cross the threshold at the same time!

Before: When $y_v = 1$, $\Pr[\widetilde{y_v} < 1] = \frac{1}{2}$.

What is the probability that a random threshold "cuts" between $\tilde{y_{\nu}}$ and y_{ν} ?

$$\leq \frac{n^{-0.2}}{1.1 - 0.9}$$

 $d_v \ge n^{0.9}$ **Iter 1**:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le \sigma_1 = \frac{n^{-0.2}}{0.2}$

$$d_v \ge n^{0.9}$$

lter 1:

Pr[random threshold "cuts" between y_v and $\tilde{y_v}] \le \sigma_1 = \frac{n^{-0.2}}{0.2}$ Iter 2:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le \sigma_2 = \frac{O(\sigma_1) + n^{-0.2}}{0.2} \le 10\sigma_1$

$$d_v \ge n^{0.9}$$

lter 1:

Pr[random threshold "cuts" between y_v and $\tilde{y_v}] \le \sigma_1 = \frac{n^{-0.2}}{0.2}$ **Iter 2**:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le \sigma_2 = \frac{O(\sigma_1) + n^{-0.2}}{0.2} \le 10\sigma_1$

•••

lter i:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le 10^i \sigma_1$

We aim for $10^i \sigma_1 \leq 0.0001$.

$$d_v \ge n^{0.9}$$

lter 1:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le \sigma_1 = \frac{n^{-0.2}}{0.2}$ Iter 2:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le \sigma_2 = \frac{O(\sigma_1) + n^{-0.2}}{0.2} \le 10\sigma_1$

lter i:

...

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le 10^i \sigma_1$

We aim for $10^i \sigma_1 \leq 0.0001$.

After a constant fraction of iterations, **the probability error becomes too high**.

$$d_v \ge n^{0.9}$$

Iter 1:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le \sigma_1 = \frac{n^{-0.2}}{0.2}$ Iter 2:

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le \sigma_2 = \frac{O(\sigma_1) + n^{-0.2}}{0.2} \le 10\sigma_1$

Iter i:

...

Pr[random threshold "cuts" between y_v and $\tilde{y_v} \le 10^i \sigma_1$

We aim for
$$10^i \sigma_1 \leq 0.0001$$
.

After a constant fraction of iterations, **the probability error becomes too high**.

After a constant fraction of iterations, resample!

How about $d_v \le n^{0.9}$?

How about $d_v \le n^{0.9}$? Assume that we simulate $\frac{\log n}{20}$ iterations.

How about $d_{v} \leq n^{0.9}$? Assume that we simulate $\frac{\log n}{20}$ iterations. Then, after the simulation, $x_{e} \leq \frac{n^{\frac{1}{20}}}{n} = \frac{1}{n^{0.95}}$ Hence, $y_{v} \leq d_{v} x_{e} \ll 1$.

Random vertex partitioning

Simulation by randomly offsetting the threshold

Result: $O(\log n) \rightarrow O(\log \log n)$ rounds

n = |V|

[Ghaffari, Lattanzi, Mitrović, ICML '19] (red line: our work; blue line: prior work)

- 1. $O(\log n)$ approximate set cover in $o(\log n)$ rounds with O(n) space per machine.
- 2. $\Theta(1)$ approximate max matching in $o(\sqrt{\log n})$ rounds with $O(n^{0.9})$ space per machine.
- 3. $\Theta(1)$ approximate densest subgraph in $o(\sqrt{\log n})$ rounds with $O(n^{0.9})$ space per machine.
- 4. $\Theta(1)$ approximate densest subgraph in $\tilde{O}(\sqrt{\log n})$ rounds with $O(n^{0.9})$ space per machine and $\tilde{O}(m)$ total space.

