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Mandatory “Big Data” slides first …



12 million products

200 million Prime users

5 billion entities

500 billion facts

1+ trillion parameters



10.7 million square feet
(Inner Mongolia Information Park, China)

vs
4.2 million square feet 

(Boeing Everett Factory, Washington, US)





Examples:

❑ MapReduce [Dean, Ghemawat, ‘04, ‘08]

❑ Hadoop [White, ‘12]

❑ Pregel [Google, ‘09]

❑ Dryad [Isard, Budiu, Yu, Birrell, Fetterly, ‘07]

❑ Spark [Zaharia, Chowdhury, Franklin, Shenker, Stoica, ‘10]

Introduced:

❑ [Dean, Ghemawat, ‘04, ‘08]

❑ [Karloff, Suri, Vassilvitskii, ‘10]

❑ [Goodrich, Sitchinava, Zhang, ‘11]

Massively Parallel Computation 
(MPC) model

A theoretical abstraction of tools for 
handling massive data
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All-to-all synchronous-round communication
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Massively Parallel Computation (MPC)

T machines

S

S

S (desired) T * S ≈ input size

SS

Parametrized:

Space S per machine (RAM)

Constraints per round:

Machine receives/sends at most S bits

Goal:

As few rounds as possible.

All-to-all synchronous-round communication
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MPC

PRAM

Congested 
clique

CONGEST, 
LOCAL

LCA

Streaming



Today: A single technique

on a specific problem.
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Algorithm: A
Rounds: T

LOCAL/PRAM

Simulation via Round Compression
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Approximate Maximum Matching 

in MPC with O(n) space per machine



G

Input:
❑ an unweighted graph G = (V, E)

Output:
❑ a constant-factor approximate

maximum matching



G

partitions

executes

How to partition the graph? What local algorithm to use?



G

Random vertex partitioning

- [Czumaj, Łącki, Mądry, Mitrović, Onak, Sankowski ’17]
- [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld ’18]
- [Assadi, Bateni, Bernstein, Mirrokni, Stein ’19]
- [Behnezhad, Hajiaghayi, Harris ’19]
- [Ghaffari, Lattanzi, Mitrović ’19]
- [Biswas, Eden, Liu, Mitrović, Rubinfeld ’22]



Random vertex partitioning
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Δ = maximum degree

Δ colors/machines

Random vertex partitioning

Why Δ colors/machines?

E edges on Machine i

= ෍

𝑒∈𝐸

Pr e is on Machine i

≤ 𝑛Δ
1

Δ
2 = 𝑛



executes

What local algorithm to use?



Greedy fractional matching
(centralized)
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LOCAL and MPC.

Can we implement it in O(1) MPC rounds?
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- Use the estimates to freeze the edges.
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Greedy fractional matching
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MPC Simulation Idea:
- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
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MPC Simulation Idea:
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Greedy fractional matching
(centralized)

MPC Simulation Idea:
- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
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3. Output 
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Greedy fractional matching
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching

Iter 4

In the worst case, 
how large Pr ෦𝑦𝑣 < 1 and 𝑦𝑣 ≥ 1 is?
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𝑦𝑣෥𝑦𝑣

When 𝑦𝑣 = 1, then Pr ෦𝑦𝑣 < 1 =
1

2
.

Greedy fractional matching
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching

Iter 4
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Adjust the threshold – choose it randomly
at each step from [0.9, 1.1].

Greedy fractional matching
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching

Iter 4
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𝑦𝑣෥𝑦𝑣

Greedy fractional matching with random thresholding
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching
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Greedy fractional matching with random thresholding
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching
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Greedy fractional matching with random thresholding
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching
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1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

Greedy fractional matching with random thresholding
(centralized)

MPC Simulation Idea:
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1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which 
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which an 

estimate of yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output 

𝑥

2
as a fractional matching

But what is o(T)?



Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the 

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?
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2
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d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?



d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2
Iter 2:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎2 =
𝑂 𝜎1 + 𝑛−0.2

0.2
≤ 10𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

𝑣

𝑎 𝑏 𝑐 𝑑

𝑒

Threshold cuts between 𝑦 and ෤𝑦 in Iter 1.
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0.2
≤ 10𝜎1

…
Iter i:
Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 10𝑖𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

We aim for 10𝑖𝜎1 ≤ 0.0001. 
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…
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Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 10𝑖𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

After a constant fraction of iterations, 
the probability error becomes too high.

We aim for 10𝑖𝜎1 ≤ 0.0001. 



d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2
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𝑂 𝜎1 + 𝑛−0.2

0.2
≤ 10𝜎1

…
Iter i:
Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 10𝑖𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

After a constant fraction of iterations, 
the probability error becomes too high.

After a constant fraction of iterations, 
resample!

We aim for 10𝑖𝜎1 ≤ 0.0001. 



How about d𝑣 ≤ 𝑛0.9?

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?



How about d𝑣 ≤ 𝑛0.9?

Assume that we simulate 
log 𝑛

20
iterations.

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?



How about d𝑣 ≤ 𝑛0.9?

Assume that we simulate 
log 𝑛

20
iterations.

Then, after the simulation, 𝑥𝑒 ≤
𝑛
1
20

𝑛
=

1

𝑛0.95

Hence, y𝑣 ≤ d𝑣 𝑥𝑒 ≪ 1. 

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?
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Some open questions

1. O(log 𝑛) approximate set cover in 𝑜(log 𝑛) rounds with 𝑂(𝑛) space per machine.

2. Θ(1) approximate max matching in 𝑜 log 𝑛 rounds with 𝑂(𝑛0.9) space per machine.

3. Θ(1) approximate densest subgraph in 𝑜 log 𝑛 rounds with 𝑂(𝑛0.9) space per machine.

4. Θ(1) approximate densest subgraph in ෨𝑂 log 𝑛 rounds with 𝑂(𝑛0.9) space per machine 

and ෨𝑂 𝑚 total space.




