Graph algorithms in the Massively Parallel Computation (MPC) model

Slobodan Mitrović
(UC Davis)

Mandatory "Big Data" slides first ...

amazon
 12 million products 200 million Prime users

GPT-4

1+ trillion parameters

World's biggest data center

entery
is bigger than world's
biggest airplane factory

Massively Parallel Computation (MPC) model

A theoretical abstraction of tools for handling massive data

Introduced:

- [Dean, Ghemawat, '04, '08]
- [Karloff, Suri, Vassilvitskii, '10]
- [Goodrich, Sitchinava, Zhang, '11]

Examples:

- MapReduce [Dean, Ghemawat, '04, '08]
- Hadoop [White, '12]
- Pregel [Google, '09]
- Dryad [Isard, Budiu, Yu, Birrell, Fetterly, ‘07]
- Spark [Zaharia, Chowdhury, Franklin, Shenker, Stoica, '10]

Massively Parallel Computation (MPC)

All-to-all synchronous-round communication

Massively Parallel Computation (MPC)

All-to-all synchronous-round communication

Parametrized:
T machines
Space S per machine (RAM)
(desired) $T^{*} S \approx$ input size

Massively Parallel Computation (MPC)

All-to-all synchronous-round communication

Parametrized:
T machines
Space S per machine (RAM)
(desired) $T^{*} S \approx$ input size
Constraints per round:
Machine receives/sends at most S bits

Massively Parallel Computation (MPC)

All-to-all synchronous-round communication

Parametrized:
T machines
Space S per machine (RAM)
(desired) $T^{*} S \approx$ input size
Constraints per round:
Machine receives/sends at most S bits

Goal:

As few rounds as possible.
N = input size

$N=$ input size

$N=$ input size

$N=$ input size

$N=$ input size

Today: A single technique on a specific problem.

Simulation via Round Compression

Algorithm: A Rounds: T

Simulation via Round Compression

Approximate Maximum Matching in MPC with $O(n)$ space per machine

Input:

- an unweighted graph $G=(\mathrm{V}, \mathrm{E})$

Output:

- a constant-factor approximate maximum matching

How to partition the graph?

What local algorithm to use?

Random vertex partitioning

- [Czumaj, Łącki, Mądry, Mitrović, Onak, Sankowski '17]
[Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld '18]
[Assadi, Bateni, Bernstein, Mirrokni, Stein '19]
[Behnezhad, Hajiaghayi, Harris '19]
[Ghaffari, Lattanzi, Mitrović '19]
[Biswas, Eden, Liu, Mitrović, Rubinfeld '22]

Random vertex partitioning

Random vertex partitioning

$\sqrt{\Delta}$ colors/machines
$\Delta=$ maximum degree

Random vertex partitioning

$\Delta=$ maximum degree

Random vertex partitioning

$\sqrt{\Delta}$ colors/machines

$\Delta=$ maximum degree

Why $\sqrt{\Delta}$ colors/machines?
E [edges on Machine i]
$=\sum_{e \in E} \operatorname{Pr}[\mathrm{e}$ is on Machine i$]$

Random vertex partitioning

$\sqrt{\Delta}$ colors/machines

$\Delta=$ maximum degree

Why $\sqrt{\Delta}$ colors/machines?
E[edges on Machine i]
$=\sum_{e \in E} \operatorname{Pr}[\mathrm{e}$ is on Machine i$]$
$\leq n \Delta \frac{1}{(\sqrt{\Delta})^{2}}=n$

What local algorithm to use?

Greedy fractional matching
(CENTRALIZED)

Greedy fractional matching

 (CENTRALIZED)1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$

Greedy fractional matching

(CENTRALIZED)

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$ 2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$

y_{v}

Greedy fractional matching

(CENTRALIZED)

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$ 2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$ 2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$ 2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$

1

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$ 2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$

Greedy fractional matching

 (CENTRALIZED)1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$ 2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$

1

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$ 2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
2. Output $\frac{x}{2}$ as a fractional matching

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

Observations:

- 4-approximate
- There are $O(\log n)$ until-loop iterations
- x_{e} can be deduced from when the endpoints of e cross the threshold

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fraction

Can be implemented in $\mathrm{O}(\log n)$ rounds in LOCAL and MPC.

Observations:

- 4-approximate
- There are $O(\log n)$ until-loop iterations
- x_{e} can be deduced from when

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fraction

Observations:

Can be implemented in $\mathrm{O}(\log \mathrm{n})$ rounds in LOCAL and MPC.
Can we implement it in O(1) MPC rounds?

- 4-approximate
- There are $O(\log n)$ until-loop iterations
- x_{e} can be deduced from when
 the endpoints of e cross the threshold

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

1

Greedy fractional matching

 (CENTRALIZED)1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

Iter 2

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

1

Iter 3

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

1

In the worst case, how large $\operatorname{Pr}\left[\widetilde{y_{v}}<1\right.$ and $\left.y_{v} \geq 1\right]$ is?
$\tilde{y_{v}}$
y_{v}

Iter 4

Greedy fractional matching

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

1

$$
\text { When } y_{v}=1 \text {, then } \operatorname{Pr}\left[\widetilde{y_{v}}<1\right]=\frac{1}{2} \text {. }
$$

y_{v}

Iter 4

Greedy fractional matching

 (CENTRALIZED)1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

Adjust the threshold - choose it randomly at each step from [0.9, 1.1].
$\tilde{y_{v}}$
y_{v}

Iter 4

Greedy fractional matching with random thresholding

 (CENTRALIZED)1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq \operatorname{Rnd}(0.9,1.1)$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.
0.92

Greedy fractional matching with random thresholding

 (CENTRALIZED)1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq \operatorname{Rnd}(0.9,1.1)$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

Greedy fractional matching with random thresholding (CENTRALIZED)

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq \operatorname{Rnd}(0.9,1.1)$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

Greedy fractional matching with random thresholding (CENTRALIZED)

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq \operatorname{Rnd}(0.9,1.1)$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

MPC Simulation Idea:

- Sample a subgraph and estimate y_{v}.
- Use the estimates to freeze the edges.

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq 1$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

Algorithm: A
But what is $\mathrm{o}(\mathrm{T})$?

1. Initially, for every $e \in E$, set $x_{e}=\frac{1}{n}$
2. Until each edge is frozen:
(A) Freeze edges incident to v for which an
estimate of $\mathrm{y}_{\mathrm{v}}=\sum_{e \in N(v)} x_{e} \geq \operatorname{Rnd}(0.9,1.1)$
(B) For each unfrozen edge, set $x_{e}=2 \cdot x_{e}$
3. Output $\frac{x}{2}$ as a fractional matching

Algorithm: $\approx A$
Rounds: o(T)

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!
- $y_{v}=\frac{\mathrm{d}_{v}}{n}$

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!
- $y_{v}=\frac{\mathrm{d}_{v}}{n}$
- $\widetilde{y_{v}}=\sqrt{n} \sum_{e \in N_{\text {locally }}(v)} x_{e}=\frac{1}{\sqrt{n}}\left|N_{\text {locally }}(v)\right|$

How much random thresholding gains? l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!
- $y_{v}=\frac{\mathrm{d}_{v}}{n}$
- $\widetilde{y_{v}}=\sqrt{n} \sum_{e \in N_{\text {locally }}(v)} x_{e}=\frac{1}{\sqrt{n}}\left|N_{\text {locally }}(v)\right|$
- $E\left[\left|N_{\text {locally }}(v)\right|\right]=\frac{\mathrm{d}_{v}}{\sqrt{n}} \geq n^{0.4}$

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!
- $y_{v}=\frac{\mathrm{d}_{v}}{n}$
- $\widetilde{y_{v}}=\sqrt{n} \sum_{e \in N_{\text {locally }}(v)} x_{e}=\frac{1}{\sqrt{n}}\left|N_{\text {locally }}(v)\right|$
- $E\left[\left|N_{\text {locally }}(v)\right|\right]=\frac{\mathrm{d}_{v}}{\sqrt{n}} \geq n^{0.4}$
- With high prob: $\left|\left|N_{\text {locally }}(v)\right|-\frac{\mathrm{d}_{\mathrm{v}}}{\sqrt{n}}\right| \leq n^{0.3}$

How much random thresholding gains? l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!
- $y_{v}=\frac{\mathrm{d}_{v}}{n}$
- $\widetilde{y_{v}}=\sqrt{n} \sum_{e \in N_{\text {locally }}(v)} x_{e}=\frac{1}{\sqrt{n}}\left|N_{\text {locally }}(v)\right|$
- $E\left[\left|N_{\text {locally }}(v)\right|\right]=\frac{\mathrm{d}_{v}}{\sqrt{n}} \geq n^{0.4}$
- With high prob: $\left|\left|N_{\text {locally }}(v)\right|-\frac{\mathrm{d}_{\mathrm{v}}}{\sqrt{n}}\right| \leq n^{0.3}$
- With high prob: $\left|y_{v}-\widetilde{y_{v}}\right| \leq n^{-0.2}$

How much random thresholding gains? l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!
- $y_{v}=\frac{\mathrm{d}_{v}}{n}$
- $\widetilde{y_{v}}=\sqrt{n} \sum_{e \in N_{\text {locally }}(v)} x_{e}=\frac{1}{\sqrt{n}}\left|N_{\text {locally }}(v)\right|$
- $E\left[\left|N_{\text {locally }}(v)\right|\right]=\frac{\mathrm{d}_{v}}{\sqrt{n}} \geq n^{0.4}$
- With high prob: $\left|\left|N_{\text {locally }}(v)\right|-\frac{\mathrm{d}_{\mathrm{v}}}{\sqrt{n}}\right| \leq n^{0.3}$
- With high prob: $\left|y_{v}-\widetilde{y_{v}}\right| \leq n^{-0.2}$

Before: When $y_{v}=1, \operatorname{Pr}\left[\widetilde{y_{v}}<1\right]=\frac{1}{2}$.

What is the probability that a random threshold "cuts" between $\widetilde{y_{v}}$ and y_{v} ?

How much random thresholding gains? l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

Consider a vertex v with $\mathrm{d}_{v} \geq n^{0.9}$, and Iter 1

Setup:

- \sqrt{n} colors/machines
- Random vertex partitioning
- Goal: $\widetilde{y_{v}}$ and y_{v} cross the threshold at the same time!
- $y_{v}=\frac{\mathrm{d}_{v}}{n}$
- $\widetilde{y_{v}}=\sqrt{n} \sum_{e \in N_{\text {locally }}(v)} x_{e}=\frac{1}{\sqrt{n}}\left|N_{\text {locally }}(v)\right|$
- $E\left[\left|N_{\text {locally }}(v)\right|\right]=\frac{\mathrm{d}_{v}}{\sqrt{n}} \geq n^{0.4}$
- With high prob: $\left|\left|N_{\text {locally }}(v)\right|-\frac{\mathrm{d}_{\mathrm{v}}}{\sqrt{n}}\right| \leq n^{0.3}$
- With high prob: $\left|y_{v}-\widetilde{y_{v}}\right| \leq n^{-0.2}$

Before: When $y_{v}=1, \operatorname{Pr}\left[\widetilde{y_{v}}<1\right]=\frac{1}{2}$.

What is the probability that a random threshold "cuts" between $\widetilde{y_{v}}$ and y_{v} ?

$$
\leq \frac{n^{-0.2}}{1.1-0.9}
$$

How much random thresholding gains?

l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?
$\mathrm{d}_{v} \geq n^{0.9}$
Iter 1 :
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{1}=\frac{n^{-0.2}}{0.2}$

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?
$\mathrm{d}_{v} \geq n^{0.9}$

Iter 1 :

$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{1}=\frac{n^{-0.2}}{0.2}$
Iter 2:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{2}=\frac{O\left(\sigma_{1}\right)+n^{-0.2}}{0.2} \leq 10 \sigma_{1}$

How much random thresholding gains?

l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?
$\mathrm{d}_{v} \geq n^{0.9}$
Iter 1 :
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{1}=\frac{n^{-0.2}}{0.2}$
Iter 2:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{2}=\frac{O\left(\sigma_{1}\right)+n^{-0.2}}{0.2} \leq 10 \sigma_{1}$
Iter i:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq 10^{i} \sigma_{1} \quad$ We aim for $10^{i} \sigma_{1} \leq 0.0001$.

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?
$\mathrm{d}_{v} \geq n^{0.9}$
Iter 1:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{1}=\frac{n^{-0.2}}{0.2}$
Iter 2:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{2}=\frac{O\left(\sigma_{1}\right)+n^{-0.2}}{0.2} \leq 10 \sigma_{1}$
Iter i:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq 10^{i} \sigma_{1}$
We aim for $10^{i} \sigma_{1} \leq 0.0001$.

After a constant fraction of iterations, the probability error becomes too high.

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?
$\mathrm{d}_{v} \geq n^{0.9}$
Iter 1:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{1}=\frac{n^{-0.2}}{0.2}$
Iter 2:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq \sigma_{2}=\frac{O\left(\sigma_{1}\right)+n^{-0.2}}{0.2} \leq 10 \sigma_{1}$ Iter i:
$\operatorname{Pr}\left[\right.$ random threshold "cuts" between y_{v} and $\left.\widetilde{y_{v}}\right] \leq 10^{i} \sigma_{1} \quad$ We aim for $10^{i} \sigma_{1} \leq 0.0001$.

After a constant fraction of iterations, the probability error becomes too high.

After a constant fraction of iterations, resample!

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

How about $\mathrm{d}_{v} \leq n^{0.9}$?

How much random thresholding gains? l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

How about $\mathrm{d}_{v} \leq n^{0.9}$?
Assume that we simulate $\frac{\log n}{20}$ iterations.

How much random thresholding gains?
l.e., what can we tell about $\left|y_{v}-\widetilde{y_{v}}\right|$?

How about $\mathrm{d}_{v} \leq n^{0.9}$?
Assume that we simulate $\frac{\log n}{20}$ iterations.
Then, after the simulation, $x_{e} \leq \frac{n^{\frac{1}{20}}}{n}=\frac{1}{n^{0.95}}$
Hence, $\mathrm{y}_{v} \leq \mathrm{d}_{v} x_{e} \ll 1$.

Random vertex partitioning

Simulation by randomly offsetting the threshold

Result: $O(\log n) \rightarrow O(\log \log n)$ rounds
$\mathrm{n}=|\mathrm{V}|$
rounds PRAM

[Ghaffari, Lattanzi, Mitrović, ICML '19] (red line: our work; blue line: prior work)

Some open questions

1. $O(\log n)$ approximate set cover in $o(\log n)$ rounds with $O(n)$ space per machine.
2. $\Theta(1)$ approximate max matching in $o(\sqrt{\log n})$ rounds with $O\left(n^{0.9}\right)$ space per machine.
3. $\Theta(1)$ approximate densest subgraph in $o(\sqrt{\log n})$ rounds with $O\left(n^{0.9}\right)$ space per machine.
4. $\Theta(1)$ approximate densest subgraph in $\tilde{O}(\sqrt{\log n})$ rounds with $O\left(n^{0.9}\right)$ space per machine and $\widetilde{O}(m)$ total space.

