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Mandatory “Big Data” slides first ...



amazon

12 million products
200 million Prime users

5 billion entities
500 billion facts

1+ trillion parameters



e World's biggest data center

entefy

is bigger than world’s
biggest airplane factory

10.7 million square feet
(Inner Mongolia Information Park, China)="—"
VS
4.2 million square feet
~ —{Boeing Everett Factory, Washmgton Us)

ENFACT







Massively Parallel Computation '”tmd_‘[‘)ced: ch 04, 08|
a [Dean, Ghemawat, ‘04,
(MPC) model Karlof vits|

o [Karloff, Suri, Vassilvitskii, “10]

A theoretical abstraction of tools for 0 [Goodrich, Sitchinava, Zhang, ‘11]
handling massive data

Examples:
2 MapReduce [Dean, Ghemawat, ‘04, ‘08]
o Hadoop [White, ‘12]
0 Pregel [Google, ‘09]
o Dryad [Isard, Budiu, Yu, Birrell, Fetterly, ‘07]
a Spark [Zaharia, Chowdhury, Franklin, Shenker, Stoica, ‘10]
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Massively Parallel Computation (MPC)

All-to-all synchronous-round communication

Parametrized:
T machines
Space S per machine (RAIM)

(desired) T * S = input size

Constraints per round:
Machine receives/sends at most S bits

Goal:
As few rounds as possible.
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CONGEST, :
LOCAL Streaming
Congested

clique




Today: A single technique
on a specific problem.



Simulation via Round Compression

Algorithm: A
Rounds: T
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Approximate Maximum Matching
in MPC with O(n) space per machine



Input:
2 an unweighted graph G = (V, E)

Output:

0 a constant-factor approximate
maximum matching




executes
» o

How to partition the graph? What local algorithm to use?




Random vertex partitioning

[Czumaij, tacki, Madry, Mitrovi¢, Onak, Sankowski ’17]
[Ghaffari, Gouleakis, Konrad, Mitrovi¢, Rubinfeld '18]
[Assadi, Bateni, Bernstein, Mirrokni, Stein ’19]
[Behnezhad, Hajiaghayi, Harris '19]

[Ghaffari, Lattanzi, Mitrovi¢ '19]

[Biswas, Eden, Liu, Mitrovi¢, Rubinfeld '22]
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Random vertex partitioning

VA colors/machines

A = maximum degree

Why VA colors/machines?

E[edges on Machine i]
= z Pr[e is on Machine i]

eeEk

1 =
(vB)’

< nA

n




What local algorithm to use?
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Greedy fractional matching
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" 1
1. Initially, for every e € E, set x, = -

2. Until each edge is frozen:
(A) Freeze edges incident to v for which
Yv = ZeEN(v) Xe =1
(B) For each unfrozen edge, set x, = 2 - x,,

3. Output g as a fraction:
\_

Can be implemented in O(log n) rounds in
LOCAL and MPC.

Observations: Can we implement it in O(1) MPC rounds? 1
- 4-approximate

- There are O(log n) until-loop iterations
- X, can be deduced from when
the endpoints of e cross the threshold
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MPC Simulation Idea:
- Sample a subgraph and estimate y,,.
- Use the estimates to freeze the edges.
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When y, = 1, then Pr[y;, < 1] = %
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1. Initially, for every e € E, set x, = -

2. Until each edge is frozen:
(A) Freeze edges incident to v for which

Yv = ZeEN(v) Xe 21
(B) For each unfrozen edge, set x, = 2 - x,,

3. Output g as a fractional matching
\_

Adjust the threshold — choose it randomly
at each step from [0.9, 1.1].

MPC Simulation Idea:
- Sample a subgraph and estimate y,,.
- Use the estimates to freeze the edges.

Vv Y

Iter 4
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1. Initially, for every e € E, set x, = - 1. Initially, for every e € E, set x, = -

2. Until each edge is frozen: te | 2. Until each edge is frozen:

(A) Freeze edges incident to v for which (A) Freeze edges incident to v for which an
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Algorithm: A But what is o(T)? Algorithm: =A

Rounds: T Rounds: o(T)




How much random thresholding gains?  Setup:

l.e., what can we tell about |y, — 3,|? - Yncolors/machines
- Random vertex partitioning

- @Goal: y, and y,, cross the

: : ime!
Consider a vertex v with d,, > n%9 and Iter 1 , threshold at the same time!




How much random thresholding gains?  Setup:

l.e., what can we tell about |y, — 3,|? - Yncolors/machines
- Random vertex partitioning

- @Goal: y, and y,, cross the

: : ime!
Consider a vertex v with d,, > n%9 and Iter 1 | threshold at the same time!

dy
'Yv=7



How much random thresholding gains?  Setup:

l.e., what can we tell about |y, — 3,|? - Yncolors/machines
- Random vertex partitioning

- @Goal: y, and y,, cross the

: : ime!
Consider a vertex v with d,, > n%9 and Iter 1 threshold at the same time!

dy
'Yv=7

~ 1
* W = \/ﬁZeeNlocauy(v) Xe = N ‘Nlocally(v)‘



How much random thresholding gains?  Setup:

l.e., what can we tell about |y, — 3,|? - Yncolors/machines
- Random vertex partitioning

- @Goal: y, and y,, cross the

L] L] I I
Consider a vertex v with d,, = n°?, and Iter 1 Enresnele #i8 Ui SR Eie.
— dv
"W T

~ 1
* W = \/_ZeENlocauy(v) Xe = = ‘Nlocally(v)‘

o E[|Niocary )|] = 2 2> n°4



How much random thresholding gains?  Setup:

l.e., what can we tell about |y, — 3,|? - Yncolors/machines
- Random vertex partitioning

- @Goal: y, and y,, cross the

L] L] I I
Consider a vertex v with d,, = n°?, and Iter 1 Enresnele #i8 Ui SR Eie.
— dv
"W T

~ 1
* W = \/_ZeENlocauy(v) Xe = = ‘Nlocally(v)‘

o E[|Niocary )|] = 2 2> n°4

. . dV
* With high prob: ‘chauy(v)‘ - < 103



How much random thresholding gains?  Setup:

l.e., what can we tell about |y, — 3,|? - Yncolors/machines
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How much random thresholding gains?
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d, > n%?

Iter 1;
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How much random thresholding gains?
l.e., what can we tell about |y, — y,|?

d, = n%?
Iter 1:
=02
Pr[random threshold "cuts" between y, and y;,] < g, = 07
Iter 2:
0(o,) + n~ Y4

Pr{random threshold "cuts" between y,, and y,,] < 0, =

0.2 < 100y

Threshold cuts between y and y in Iter 1.
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How much random thresholding gains?
l.e., what can we tell about |y, — y,|?

dv > n0.9
Iter 1:
02
Pr[random threshold "cuts" between y,, and y;,] < gy = 03
Iter 2: '
" ] —~ 0(0’1) _I_ n—O.Z
Pr[random threshold "cuts" between y,, and y,,] < 0, = % < 100,

Iter i:
Pr[random threshold "cuts" between y, and y,] < 10'g;  We aim for 10'g; < 0.0001.

After a constant fraction of iterations, After a constant fraction of iterations,
the probability error becomes too high. resample!
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How much random thresholding gains?
l.e., what can we tell about |y, — y,|?

How about d,, < n%??

] loegn . .
Assume that we simulate 5 iterations.
1
. . n2o 1
Then, after the simulation, x, = — = —=

Hence,y, < d, x, < 1.
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Random vertex partitioning Simulation by randomly offsetting
the threshold

Result: O(log n) - O(log log n) rounds
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Amazon -

YouTube -

LiveJournal -

Friendster -

[Ghaffari, Lattanzi, Mitrovi¢, ICML ‘19]
(red line: our work; blue line: prior work)



Some open questions

1. O(logn) approximate set cover in o(logn) rounds with O (n) space per machine.
2. ©(1) approximate max matching in 0(,/10g n) rounds with 0(n°?) space per machine.
3. ©(1) approximate densest subgraph in 0(,/log n) rounds with 0(n%°) space per machine.

4. ©(1) approximate densest subgraph in 5(,/10g n) rounds with 0(n°?) space per machine
and O (m) total space.






