
Graph algorithms in the

Massively Parallel Computation (MPC) model

Slobodan Mitrović
(UC Davis)

Mandatory “Big Data” slides first …

12 million products

200 million Prime users

5 billion entities

500 billion facts

1+ trillion parameters

10.7 million square feet
(Inner Mongolia Information Park, China)

vs
4.2 million square feet

(Boeing Everett Factory, Washington, US)

Examples:

❑ MapReduce [Dean, Ghemawat, ‘04, ‘08]

❑ Hadoop [White, ‘12]

❑ Pregel [Google, ‘09]

❑ Dryad [Isard, Budiu, Yu, Birrell, Fetterly, ‘07]

❑ Spark [Zaharia, Chowdhury, Franklin, Shenker, Stoica, ‘10]

Introduced:

❑ [Dean, Ghemawat, ‘04, ‘08]

❑ [Karloff, Suri, Vassilvitskii, ‘10]

❑ [Goodrich, Sitchinava, Zhang, ‘11]

Massively Parallel Computation
(MPC) model

A theoretical abstraction of tools for
handling massive data

Massively Parallel Computation (MPC)

All-to-all synchronous-round communication

Massively Parallel Computation (MPC)

T machines

S

S

S (desired) T * S ≈ input size

SS

Parametrized:

Space S per machine (RAM)

All-to-all synchronous-round communication

Massively Parallel Computation (MPC)

T machines

S

S

S

All-to-all synchronous-round communication

(desired) T * S ≈ input size

SS

Parametrized:

Space S per machine (RAM)

Constraints per round:

Machine receives/sends at most S bits

Massively Parallel Computation (MPC)

T machines

S

S

S (desired) T * S ≈ input size

SS

Parametrized:

Space S per machine (RAM)

Constraints per round:

Machine receives/sends at most S bits

Goal:

As few rounds as possible.

All-to-all synchronous-round communication

information

speed

O(1)

Npoly log N

space

distance

N = input size

N0.01

information

speed

O(1)

Npoly log N

space

distance

N = input size

centralized

N0.01

information

speed

O(1)

Npoly log N

space

distance

N = input size

centralized

N0.01

LOCAL

information

speed

O(1)

Npoly log N

space

distance

N = input size

centralized

N0.01

PRAM

LOCAL

information

speed

O(1)

Npoly log N

space

distance

N = input size

centralized

N0.01

MPCPRAM

LOCAL

MPC

PRAM

Congested
clique

CONGEST,
LOCAL

LCA

Streaming

Today: A single technique

on a specific problem.

1
2 3

6
5

4

Algorithm: A
Rounds: T

LOCAL/PRAM

Simulation via Round Compression

1
2 3

6
5

4

LOCAL/PRAM

Algorithm: A
Rounds: T

simulate

Algorithm: ≈A
Rounds: o(T)

2
5

4

2
3

5 4

1 3

6
4

1

6 5
4

MPC

Simulation via Round Compression

Approximate Maximum Matching

in MPC with O(n) space per machine

G

Input:
❑ an unweighted graph G = (V, E)

Output:
❑ a constant-factor approximate

maximum matching

G

partitions

executes

How to partition the graph? What local algorithm to use?

G

Random vertex partitioning

- [Czumaj, Łącki, Mądry, Mitrović, Onak, Sankowski ’17]
- [Ghaffari, Gouleakis, Konrad, Mitrović, Rubinfeld ’18]
- [Assadi, Bateni, Bernstein, Mirrokni, Stein ’19]
- [Behnezhad, Hajiaghayi, Harris ’19]
- [Ghaffari, Lattanzi, Mitrović ’19]
- [Biswas, Eden, Liu, Mitrović, Rubinfeld ’22]

Random vertex partitioning

Δ colors/machines

Δ = maximum degree

Random vertex partitioning

Δ = maximum degree

Δ colors/machines

Random vertex partitioning

Δ = maximum degree

Δ colors/machines

Random vertex partitioning

Why Δ colors/machines?

E edges on Machine i

= ෍

𝑒∈𝐸

Pr e is on Machine i

Δ = maximum degree

Δ colors/machines

Random vertex partitioning

Why Δ colors/machines?

E edges on Machine i

= ෍

𝑒∈𝐸

Pr e is on Machine i

≤ 𝑛Δ
1

Δ
2 = 𝑛

executes

What local algorithm to use?

Greedy fractional matching
(centralized)

𝑣

𝑎

𝑏

𝑐

𝑑
𝑒

𝑣

1

𝑛 1

𝑛

1

𝑛

1

𝑛1

𝑛

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

𝑣

1

𝑛 1

𝑛

1

𝑛

1

𝑛1

𝑛

𝑦𝑣

1

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒

𝑣

2

𝑛 2

𝑛

2

𝑛

2

𝑛2

𝑛

𝑦𝑣

1

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒

𝑣

2

𝑛 2

𝑛

2

𝑛

2

𝑛2

𝑛

1

𝑦𝑣

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒

𝑣

2

𝑛 4

𝑛

2

𝑛

4

𝑛4

𝑛

1

𝑦𝑣

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒

𝑣

2

𝑛 8

𝑛

2

𝑛

8

𝑛8

𝑛

1

𝑦𝑣

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒

𝑣

2

𝑛 8

𝑛

2

𝑛

8

𝑛8

𝑛

1

𝑦𝑣

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒

𝑣

2

𝑛 8

𝑛

2

𝑛

8

𝑛8

𝑛

1

𝑦𝑣

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

𝑣

2

𝑛 8

𝑛

2

𝑛

8

𝑛8

𝑛

1

𝑦𝑣

Observations:
- 4-approximate
- There are O(log n) until-loop iterations
- 𝑥𝑒 can be deduced from when

the endpoints of 𝑒 cross the threshold

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

𝑣

2

𝑛 8

𝑛

2

𝑛

8

𝑛8

𝑛

1

𝑦𝑣

Observations:
- 4-approximate
- There are O(log n) until-loop iterations
- 𝑥𝑒 can be deduced from when

the endpoints of 𝑒 cross the threshold

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Can be implemented in O(log n) rounds in
LOCAL and MPC.

𝑣

2

𝑛 8

𝑛

2

𝑛

8

𝑛8

𝑛

1

𝑦𝑣

Observations:
- 4-approximate
- There are O(log n) until-loop iterations
- 𝑥𝑒 can be deduced from when

the endpoints of 𝑒 cross the threshold

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Can be implemented in O(log n) rounds in
LOCAL and MPC.

Can we implement it in O(1) MPC rounds?

𝑣

2

𝑛 8

𝑛

2

𝑛

8

𝑛8

𝑛

1

𝑦𝑣

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Greedy fractional matching
(centralized)

𝑎

𝑏

𝑐

𝑑
𝑒MPC Simulation Idea:

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

1

𝑦𝑣෥𝑦𝑣

Greedy fractional matching
(centralized)

MPC Simulation Idea:
- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Iter 1

1

𝑦𝑣෥𝑦𝑣

Greedy fractional matching
(centralized)

MPC Simulation Idea:
- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Iter 2

1

𝑦𝑣෥𝑦𝑣

Greedy fractional matching
(centralized)

MPC Simulation Idea:
- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Iter 3

1

𝑦𝑣෥𝑦𝑣

Greedy fractional matching
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Iter 4

In the worst case,
how large Pr ෦𝑦𝑣 < 1 and 𝑦𝑣 ≥ 1 is?

1

𝑦𝑣෥𝑦𝑣

When 𝑦𝑣 = 1, then Pr ෦𝑦𝑣 < 1 =
1

2
.

Greedy fractional matching
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Iter 4

1

𝑦𝑣෥𝑦𝑣

Adjust the threshold – choose it randomly
at each step from [0.9, 1.1].

Greedy fractional matching
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

Iter 4

0.92

𝑦𝑣෥𝑦𝑣

Greedy fractional matching with random thresholding
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

1.04

𝑦𝑣෥𝑦𝑣

Greedy fractional matching with random thresholding
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

0.93

𝑦𝑣෥𝑦𝑣

Greedy fractional matching with random thresholding
(centralized)

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

MPC Simulation Idea:

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

0.98

𝑦𝑣෥𝑦𝑣

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

- Sample a subgraph and estimate 𝑦𝑣.
- Use the estimates to freeze the edges.

Greedy fractional matching with random thresholding
(centralized)

MPC Simulation Idea:

1
2 3

6
5

4

LOCAL/PRAM

Algorithm: A
Rounds: T

simulate

Algorithm: ≈A
Rounds: o(T)

2
5

4

2
3

5 4

1 3

6
4

1

6 5
4

MPC

1
2 3

6
5

4

LOCAL/PRAM

Algorithm: A
Rounds: T

simulate

Algorithm: ≈A
Rounds: o(T)

2
5

4

2
3

5 4

1 3

6
4

1

6 5
4

MPC

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which
yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 1

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

1. Initially, for every 𝑒 ∈ 𝐸, set 𝑥𝑒 =
1

𝑛

2. Until each edge is frozen:
(A) Freeze edges incident to 𝑣 for which an

estimate of yv = σ𝑒∈𝑁(𝑣) 𝑥𝑒 ≥ 𝑅𝑛𝑑(0.9, 1.1)

(B) For each unfrozen edge, set 𝑥𝑒 = 2 ⋅ 𝑥𝑒
3. Output

𝑥

2
as a fractional matching

But what is o(T)?

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

• 𝑦𝑣 =
d𝑣

𝑛

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

• 𝑦𝑣 =
d𝑣

𝑛

• ෥𝑦𝑣 = 𝑛σ𝑒∈𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)
𝑥𝑒 =

1

𝑛
𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

• 𝑦𝑣 =
d𝑣

𝑛

• ෥𝑦𝑣 = 𝑛σ𝑒∈𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)
𝑥𝑒 =

1

𝑛
𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)

• 𝐸 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 =
d𝑣

𝑛
≥ 𝑛0.4

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

• 𝑦𝑣 =
d𝑣

𝑛

• ෥𝑦𝑣 = 𝑛σ𝑒∈𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)
𝑥𝑒 =

1

𝑛
𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)

• 𝐸 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 =
d𝑣

𝑛
≥ 𝑛0.4

• With high prob: 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 −
dv

𝑛
≤ 𝑛0.3

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

• 𝑦𝑣 =
d𝑣

𝑛

• ෥𝑦𝑣 = 𝑛σ𝑒∈𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)
𝑥𝑒 =

1

𝑛
𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)

• 𝐸 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 =
d𝑣

𝑛
≥ 𝑛0.4

• With high prob: 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 −
dv

𝑛
≤ 𝑛0.3

• With high prob: |𝑦𝑣 − ෥𝑦𝑣| ≤ 𝑛−0.2

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

• 𝑦𝑣 =
d𝑣

𝑛

• ෥𝑦𝑣 = 𝑛σ𝑒∈𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)
𝑥𝑒 =

1

𝑛
𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)

• 𝐸 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 =
d𝑣

𝑛
≥ 𝑛0.4

• With high prob: 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 −
dv

𝑛
≤ 𝑛0.3

• With high prob: |𝑦𝑣 − ෥𝑦𝑣| ≤ 𝑛−0.2

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

What is the probability that a random
threshold “cuts” between ෥𝑦𝑣 and 𝑦𝑣?

Before: When 𝑦𝑣 = 1, Pr ෦𝑦𝑣 < 1 =
1

2
.

Setup:
- 𝑛 colors/machines
- Random vertex partitioning
- Goal: ෥𝑦𝑣 and 𝑦𝑣 cross the

threshold at the same time!Consider a vertex 𝑣 with d𝑣 ≥ 𝑛0.9, and Iter 1

• 𝑦𝑣 =
d𝑣

𝑛

• ෥𝑦𝑣 = 𝑛σ𝑒∈𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)
𝑥𝑒 =

1

𝑛
𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚(𝑣)

• 𝐸 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 =
d𝑣

𝑛
≥ 𝑛0.4

• With high prob: 𝑁𝒍𝒐𝒄𝒂𝒍𝒍𝒚 𝑣 −
dv

𝑛
≤ 𝑛0.3

• With high prob: |𝑦𝑣 − ෥𝑦𝑣| ≤ 𝑛−0.2

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

What is the probability that a random
threshold “cuts” between ෥𝑦𝑣 and 𝑦𝑣?

≤
𝑛−0.2

1.1 − 0.9

Before: When 𝑦𝑣 = 1, Pr ෦𝑦𝑣 < 1 =
1

2
.

d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2
Iter 2:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎2 =
𝑂 𝜎1 + 𝑛−0.2

0.2
≤ 10𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

𝑣

𝑎 𝑏 𝑐 𝑑

𝑒

Threshold cuts between 𝑦 and ෤𝑦 in Iter 1.

d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2
Iter 2:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎2 =
𝑂 𝜎1 + 𝑛−0.2

0.2
≤ 10𝜎1

…
Iter i:
Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 10𝑖𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

We aim for 10𝑖𝜎1 ≤ 0.0001.

d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2
Iter 2:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎2 =
𝑂 𝜎1 + 𝑛−0.2

0.2
≤ 10𝜎1

…
Iter i:
Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 10𝑖𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

After a constant fraction of iterations,
the probability error becomes too high.

We aim for 10𝑖𝜎1 ≤ 0.0001.

d𝑣 ≥ 𝑛0.9

Iter 1:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎1 =
𝑛−0.2

0.2
Iter 2:

Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 𝜎2 =
𝑂 𝜎1 + 𝑛−0.2

0.2
≤ 10𝜎1

…
Iter i:
Pr random threshold "cuts" between 𝑦𝑣 and ෥𝑦𝑣 ≤ 10𝑖𝜎1

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

After a constant fraction of iterations,
the probability error becomes too high.

After a constant fraction of iterations,
resample!

We aim for 10𝑖𝜎1 ≤ 0.0001.

How about d𝑣 ≤ 𝑛0.9?

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

How about d𝑣 ≤ 𝑛0.9?

Assume that we simulate
log 𝑛

20
iterations.

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

How about d𝑣 ≤ 𝑛0.9?

Assume that we simulate
log 𝑛

20
iterations.

Then, after the simulation, 𝑥𝑒 ≤
𝑛
1
20

𝑛
=

1

𝑛0.95

Hence, y𝑣 ≤ d𝑣 𝑥𝑒 ≪ 1.

How much random thresholding gains?
I.e., what can we tell about |𝑦𝑣 −෦𝑦𝑣|?

G

partitions

executes

Random vertex partitioning Simulation by randomly offsetting

the threshold

Result: O(log n) → O(log log n) rounds

rounds

|E|

O(1)

1

Centralized

computation

O(log n)

log n

O(log log n)

n
1+Θ(1)

[Lattanzi, Moseley,
Suri, Vassilvitskii ‘11]

nn
Θ(1)

O(log
1/2

n)

PRAM
[Israeli, Shiloach;

Israeli, Itai ‘86]

[Ghaffari, Uitto ‘19]

n = |V|
Approximate
Max Matching

[Czumaj, Łącki, Mądry, M, Onak, Sankowski ’17
Ghaffari, Gouleakis, Konrad, M, Rubinfeld ’18
Assadi, Bateni, Bernstein, Mirrokni, Stein ’19

Behnezhad, Hajiaghayi, Harris ‘19]

space

~

[Ghaffari, Lattanzi, Mitrović, ICML ‘19]
(red line: our work; blue line: prior work)

Some open questions

1. O(log 𝑛) approximate set cover in 𝑜(log 𝑛) rounds with 𝑂(𝑛) space per machine.

2. Θ(1) approximate max matching in 𝑜 log 𝑛 rounds with 𝑂(𝑛0.9) space per machine.

3. Θ(1) approximate densest subgraph in 𝑜 log 𝑛 rounds with 𝑂(𝑛0.9) space per machine.

4. Θ(1) approximate densest subgraph in ෨𝑂 log 𝑛 rounds with 𝑂(𝑛0.9) space per machine

and ෨𝑂 𝑚 total space.

