
Adversarially Robust
Streaming Algorithms

Omri Ben-Eliezer

Part 1: Model and motivation

Streaming: The classical model

• Stream (𝑥!, Δ!)	, … , (𝑥" , Δ") of updates, 𝑥# ∈ [𝑛], Δ# ∈ ℝ
• Goal: compute (1 + 𝜖)-approx of 𝑓 over (frequency vector 𝑣 of) stream

 (𝑓 = # distinct elements / ℓ!-norm / entropy / heavy hitters / …)

Streaming: The classical model

Insert one
unit of 𝑥"

• Stream (𝑥!, Δ!)	, … , (𝑥" , Δ") of updates, 𝑥# ∈ [𝑛], Δ# ∈ ℝ
• Goal: compute (1 + 𝜖)-approx of 𝑓 over (frequency vector 𝑣 of) stream

 (𝑓 = # distinct elements / ℓ!-norm / entropy / heavy hitters / …)

Streaming: The classical model

• Stream (𝑥!, Δ!)	, … , (𝑥" , Δ") of updates, 𝑥# ∈ [𝑛], Δ# ∈ ℝ
• Goal: compute (1 + 𝜖)-approx of 𝑓 over (frequency vector 𝑣 of) stream

 (𝑓 = # distinct elements / ℓ!-norm / entropy / heavy hitters / …)

Insert one
unit of 𝑥"

Streaming: The classical model

• Stream (𝑥!, Δ!)	, … , (𝑥" , Δ") of updates, 𝑥# ∈ [𝑛], Δ# ∈ ℝ
• Goal: compute (1 + 𝜖)-approx of 𝑓 over (frequency vector 𝑣 of) stream

 (𝑓 = # distinct elements / ℓ!-norm / entropy / heavy hitters / …)

delete seven
units of 𝑥!

Streaming: The classical model

• Stream (𝑥!, Δ!)	, … , (𝑥" , Δ") of updates, 𝑥# ∈ [𝑛], Δ# ∈ ℝ
• Goal: compute (1 + 𝜖)-approx of 𝑓 over (frequency vector 𝑣 of) stream

 (𝑓 = # distinct elements / ℓ!-norm / entropy / heavy hitters / …)

delete seven
units of 𝑥!

Streaming: The classical model

• Stream (𝑥!, Δ!)	, … , (𝑥" , Δ") of updates, 𝑥# ∈ [𝑛], Δ# ∈ ℝ
• Goal: compute (1 + 𝜖)-approx of 𝑓 over (frequency vector 𝑣 of) stream

 (𝑓 = # distinct elements / ℓ!-norm / entropy / heavy hitters / …)

𝑚 = 𝑛#(")

𝐹$ 𝑣 = 	4
#%!

&

𝑣#
$

delete seven
units of 𝑥!

Randomized streaming algorithms

*Deterministic algorithms: exponentially less efficient

Problem Space complexity

distinct elements (𝐹!) Õ(𝜖"# + log 𝑛)
[IW’03, KNW’10, B’18, W’23, …]

𝐹#-estimation Õ(𝜖"# log 𝑛) [AMS’96,KNW’10,BDN’17,…]

𝐹#-heavy hitters Õ(𝜖"# log# 𝑛) [BCINWW’17]

entropy estimation Õ(𝜖"# log$ 𝑛) [CC’13]

Randomized streaming algorithms

But… proofs assume stream is fixed in advance!

*Deterministic algorithms: exponentially less efficient

Problem Space complexity

distinct elements (𝐹!) Õ(𝜖"# + log 𝑛)
[IW’03, KNW’10, B’18, W’23, …]

𝐹#-estimation Õ(𝜖"# log 𝑛) [AMS’96,KNW’10,BDN’17,…]

𝐹#-heavy hitters Õ(𝜖"# log# 𝑛) [BCINWW’17]

entropy estimation Õ(𝜖"# log$ 𝑛) [CC’13]

Streaming: The adaptive/adversarial model

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation

Streaming: The adaptive/adversarial model

(𝑥", Δ")

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation

Streaming: The adaptive/adversarial model

(𝑥", Δ")

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation

Streaming: The adaptive/adversarial model

𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation

Streaming: The adaptive/adversarial model

𝑦" 𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation

Streaming: The adaptive/adversarial model

𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation

Streaming: The adaptive/adversarial model

(𝑥! 𝑦" ,
	 Δ!(𝑦"))

𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation

Key streaming technique: Linear sketching

𝑭𝟐-estimation	[Alon-Matias-Szegedy’96]:

Use	|𝑆𝑣|2	to	estimate	 𝑣 2.
Given	stream	update	(𝑥3 , Δ),	
update:	𝑆𝑣 ← 𝑆𝑣 + Δ ⋅ 𝑆∗,6!

𝝐 −𝝐 −𝝐 𝝐 −𝝐 𝝐 𝝐
−𝝐 𝝐 −𝝐 −𝝐 𝝐 −𝝐 −𝝐
𝝐 −𝝐 𝝐 𝝐 −𝝐 −𝝐 −𝝐
𝝐 𝝐 −𝝐 𝝐 𝝐 −𝝐 𝝐

𝑺 =

𝑛

1
𝜖!

4-wise independent

𝔼7 𝑆𝑣 2
2 	=

1
𝜖2
𝔼7 4

8%!

&

𝑆!8𝑣8

2

= 𝔼7 4
8%!

&

𝑣82 +4
#98

𝑆!#𝑆!8𝑣#𝑣8 = 𝑣 2
2

Linear sketching: not robust [Hardt-Woodruff’13]
Also [AGM’12, BJWY’20, CLNSSS’22, CNSS’23,…]

Use	|𝑆𝑣|2	to	estimate	 𝑣 2.
What	if	𝑆!∗	correlations	
learned	by	adversary?

𝝐 −𝝐 −𝝐 𝝐 −𝝐 𝝐 𝝐
−𝝐 𝝐 −𝝐 −𝝐 𝝐 −𝝐 −𝝐
𝝐 −𝝐 𝝐 𝝐 −𝝐 −𝝐 −𝝐
𝝐 𝝐 −𝝐 𝝐 𝝐 −𝝐 𝝐

𝑺 =

𝑛

1
𝜖!

𝔼7 𝑆𝑣 2
2 	=

1
𝜖2
𝔼7 4

8%!

&

𝑆!8𝑣8

2

= 𝔼7 4
8%!

&

𝑣82 +4
#98

𝑆!#𝑆!8𝑣#𝑣8 = 𝑣 2
2

Linear sketching: not robust [Hardt-Woodruff’13]
Also [AGM’12, BJWY’20, CLNSSS’22, CNSS’23,…]

Use	|𝑆𝑣|2	to	estimate	 𝑣 2.

• Actual	attack	of	[HW13]	works	
for	general	𝑟	×	𝑛	sketch	matrices	and	
breaks	𝐵-approx.	in	𝑝𝑜𝑙𝑦(𝑟𝐵)	rounds

• Proof idea: find vectors correlated with row space, boost, “peel”
dimension. Iterate until remainder of sketch is constant dimensional

𝑺𝟏𝟏 …

...

…

𝑆!"

𝑺 =

𝑛

𝑟

The need for robustness - examples

Search Engine
Optimization (SEO)

Actual adversarial attacks Gradient descent

How to make streaming algorithms robust?

Part 2: Frameworks

• Sketch Switching [B., Jayaram, Woodruff, Yogev ‘20]

• Differential privacy [Hassidim, Kaplan, Mansour, Matias, Stemmer ‘20]

• Difference estimators [Woodruff, Zhou ‘21]

• “Best of both worlds” [Attias, Cohen, Shechner, Stemmer ‘23]

Sketch switching [B., Jayaram, Woodruff, Yogev ‘20]

…

𝑥!, Δ! , 𝑥2, Δ2 , …

Active copy

Output visible to adversary 𝐴!

𝐴"

𝐴#

𝐴$

Future copy

• Run 𝜆 copies of algorithm

• Maintain frozen-output
visible copy + active copy.

• If frozen output incorrect:
visible copy ← active copy
active copy ← next copy

Key notion: Flip number

𝝀𝝐,𝒎 𝒇 := 𝒎𝒂𝒙 	𝒌	 |	
∃𝒋𝟏, … , 𝒋𝒌 ∈ 𝒎
∀𝒍 ∈ 𝒌 − 𝟏

: 	𝒇 𝒗(𝒋𝒍+𝟏) ∉ 𝟏 ± 𝝐 ⋅ 𝒇 𝒗(𝒋𝒍)

Theorem ([BJWY’20]):
Let 𝒜 be a (“classical”) 𝜖-tracking
streaming algorithm for 𝑓.

There exists an adversarially robust
algorithm 𝒜′ for 𝜖-tracking 𝑓
using space 𝜆 𝑓 ⋅ 𝑆𝑝𝑎𝑐𝑒(𝒜).

Key notion: Flip number

𝑓 = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
Insertion only setting ⇒

𝜆 𝑓 = 𝑂
log 𝑛
𝜖𝑓(𝑥#) = 1

𝑓 {𝑥#, … , 𝑥$} ≤ 𝑛
Theorem ([BJWY’20]):
Let 𝒜 be a (“classical”) 𝜖-tracking
streaming algorithm for 𝑓.

There exists an adversarially robust
algorithm 𝒜′ for 𝜖-tracking 𝑓
using space 𝜆 𝑓 ⋅ 𝑆𝑝𝑎𝑐𝑒(𝒜).

𝝀𝝐,𝒎 𝒇 := 𝒎𝒂𝒙 	𝒌	 |	
∃𝒋𝟏, … , 𝒋𝒌 ∈ 𝒎
∀𝒍 ∈ 𝒌 − 𝟏

: 	𝒇 𝒗(𝒋𝒍+𝟏) ∉ 𝟏 ± 𝝐 ⋅ 𝒇 𝒗(𝒋𝒍)

Insertion only (Δ > 0):

𝜆 = 𝑂
log 𝑛
𝜀

Key notion: Flip number

Turnstile model (general Δ, insertion/deletion):

𝜆 = 𝑚 in worst case!

Sketch switching: Proof idea

𝑥!, Δ! , 𝑥2, Δ2 , …

Active copy

Past copies 𝐴!, … , 𝐴'("

𝐴'(!

𝐴'

𝐴')!, … , 𝐴$Future copies

1. Assume deterministic
(Yao’s minimax [Yao’77])

2. Only need active copy 𝐴!
to be correct over
specific (fixed) stream:

“𝐴!-oblivious part”
+

“frozen output part”

Frozen copy

𝑂(𝜆)
[BJWY’20]

𝑂(𝜖 ⋅ 𝜆)
Difference

estimators **

6𝑂 𝜆
Differential

privacy *

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
“best of both
worlds” ***

7Ω 𝜆
for specific

problem

* Hassidim-Kaplan-Mansour-Matias-Stemmer ’20

** Woodruff-Zhou ‘21

*** Attias-Cohen-Shechner-Stemmer ‘23

**** Kaplan-Mansour-Nissim-Stemmer ‘21

𝑥!, Δ! , 𝑥", Δ" , …

11

15

13

𝐴!

𝐴"

𝐴+

𝑡 ≈ 𝜆	
𝑐𝑜𝑝𝑖𝑒𝑠 …

Private median

Differential privacy framework
[Hassidim-Kaplan-Mansour-Matias-Stemmer’20]

Private threshold
(sparse vector technique)

Why it works:
• Key idea -- Advanced composition [Dwork-Rothblum-Vadhan‘10] in differential

privacy supports ≈ "
##

 adaptive interactions provided “privacy level” 𝜀.

• Interaction with each flip ⇒ 𝜀 ≈ "
$

• 𝜀-DP median requires ≈ "
#
≈ 𝜆 copies to be accurate

Extremely useful in applications!
(e.g., robust count sketch [Cohen, Lyu, Nelson, Sarlós, Shechner, Stemmer ‘22], robust dynamic
graph algorithms [Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer ‘22], …)

Differential privacy framework
[Hassidim-Kaplan-Mansour-Matias-Stemmer’20]

Difference estimators framework
[Woodruff, Zhou ‘21]

• Key notion: 𝜀-difference
estimator for vectors 𝑢 and 𝑣
approximates 𝑓 𝑢 + 𝑣 − 𝑓(𝑢)
to ±𝜀 ⋅ 𝑓(𝑢) error

• Framework stitches difference
estimators at different scales

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒

Difference estimators framework
[Woodruff, Zhou ‘21]

• Key notion: 𝜀-difference
estimator for vectors 𝑢 and 𝑣
approximates 𝑓 𝑢 + 𝑣 − 𝑓(𝑢)
to ±𝜀 ⋅ 𝑓(𝑢) error

• Framework stitches difference
estimators at different scales

• Near-optimal space complexity
for insertion only + sliding
window model, resolving
[Braverman-Ostrovsky’07]

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒

Problem [BJWY’20] [HKMMS’20] [WZ’21]

Distinct Elements
𝐹!

insert only

Õ&

'

1
𝜖"

+
log 𝑛
𝜖

O0

1

log#.% 𝑛
𝜖&.%

+
log&.% 𝑛
𝜖#.%

Õ
1
𝜖&
+
log 𝑛
𝜖

𝐹' estimation,
𝑝 ∈ 0,2

insert only
Õ

log 𝑛
𝜖"

O
log#.% 𝑛
𝜖&.% Õ

log 𝑛
𝜖&

𝐹' with deletions,
flip number 𝜆 Õ

𝜆 ⋅ log& 𝑛
𝜖& O

log" 𝑛 𝜆
𝜖&

Õ
𝜆 ⋅ log& 𝑛

𝜖

𝑂(𝜆)
[BJWY’20]

𝑂(𝜖 ⋅ 𝜆)
[WZ ‘21]

Difference
estimators

6𝑂 𝜆
[HKMMS ‘20]
Differential

privacy

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
[ACSS, ‘23]

“best of
both worlds”

7Ω 𝜆 *
[KMNS, ‘21]
*for specific

problem

Is flip number always the right parameter?

[B., Eden, Onak ‘22]: No. for insertion-deletion streams (𝝀 = 𝒎) we get
6𝑂(𝑚!/:) for distinct elements, 6𝑂(𝑚"/;) for ℓ"-estimation

Technique: differential privacy + sparse recovery

𝑂(𝜆)
[BJWY’20]

𝑂(𝜖 ⋅ 𝜆)
[WZ ‘21]

Difference
estimators

6𝑂 𝜆
[HKMMS ‘20]
Differential

privacy

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
[ACSS, ‘23]

“best of
both worlds”

7Ω 𝜆 *
[KMNS, ‘21]
*for specific

problem

Is flip number always the right parameter?

1
0

[B., Eden, Onak ‘22]: No. for insertion-deletion streams (𝝀 = 𝒎) we get
6𝑂(𝑚!/:) for distinct elements, 6𝑂(𝑚"/;) for ℓ"-estimation

Technique: differential privacy + sparse recovery

𝑂(𝜆)
[BJWY’20]

𝑂(𝜖 ⋅ 𝜆)
[WZ ‘21]

Difference
estimators

6𝑂 𝜆
[HKMMS ‘20]
Differential

privacy

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
[ACSS, ‘23]

“best of
both worlds”

7Ω 𝜆 *
[KMNS, ‘21]
*for specific

problem

Is flip number always the right parameter?

Best known, but exponentially worse than static.

1
0

𝑐 ⋅ 𝑚!/;

𝐶 ⋅ 𝑚!/;

Sparse recovery regime,
use “for all” solution
[Gilbert, Strauss, Tropp, Vershynin ‘07] stream

𝐹<
privacy regime, 𝜆 ≤ 𝑚2/;

Dense-sparse tradeoff [B., Eden, Onak ‘22]

Part 3: Lessons

Lesson 1: Sampling over sketching

• Linear sketching: extremely useful
in static settings, but breaks in 𝑟=(!)
rounds in adversarial settings
[HW’13, BJWY’20, CLNSSS’22, CNSS’23,…]

• Random sampling: another
fundamental technique, more
reliable in adversarial settings?

𝐒𝟏𝟏 … 𝐒𝟏𝒏
…

𝑺𝒓𝟏 … 𝑺𝒓𝒏

𝑺 =

𝑛

𝑟

How many uniform samples needed so that
sample will be representative of data?

Oblivious case: Θ(>?@ABC
D"

)

[B., Yogev ‘19] Not enough for robust case!
But 𝑉𝐶 ⋅ KLMNO! suffices.
[Alon, B., Dagan, Moran, Naor, Yogev ‘21]:

Θ EFGGHIJGKLI@ABC
M"

Lesson 1: Sampling over sketching

Lesson 1: Sampling over sketching

[Braverman, Hassidim, Matias, Schain, Silwal, Zhou ‘21]:

• Importance sampling & merge and reduce robust “for free”

⇒ Robustness of many
 existing algorithms!

(Taken from [BHMSSZ’21])

n

n

r (log scale)
Sp

ac
e

(lo
g

sc
al

e)

Space complexity of MIF in different models at n=210

1

1

n3/5 n2/3n1/2

AR, ra
ndom se

edDet
er

mini
sti

c a
nd

 ps
eu

do
-d

et
er

mins
iti

c

AR, random tape

AR, random oracle

10

n1/3

n1/5

n1/6

n1/8

Lesson 1: Sampling over sketching

Formal separation between ״sketching
type” vs. “sampling type” algos?
Yes! For ”missing item finding”
[Stoeckl’23, Chakrabarti-Stoeckl’23,
Magen’24] (see also Menuhin-Naor’22)

Random oracle = fixed random string, no
 storage cost

Random tape = randomness on the fly,
 costs to store it

Random seed = randomness at beginning
Pseudo-deterministic [GGMW’19] =
“deterministic with prob. 1 − 𝛿”

(Taken from [CS’23])
𝑚 (log scale)

Speaking about separations: robust graph coloring

Static streams: (Δ + 1)-coloring in <𝑂 𝑛 space [Assadi, Chen, Khanna’19]

Adversarially robust [Chakrabarti, Ghosh, Stoeckl’22], [Assadi, Chakrabarti, Ghosh, Stoeckl’23]

”No free lunch” lower bound L:
 𝑂(Δ) colors requires Ω(𝑛Δ) space, 𝑂(𝑛) space implies Ω(Δ") colors

Upper bounds via sketch switching + additional techniques:
 𝑂(Δ".;) colors in 6𝑂(𝑛) space, or 𝑂(Δ") colors in 6𝑂(𝑛Δ!/:) space

Deterministic [Assadi, Chen, Sun ‘22]: <𝑂(𝑛) space implies exp(Δ(") colors!

Lesson 2: White box vs black box

White box: adversary can see internal state of algorithm
[Ajtai, Braverman, Jayram, Silwal, Sun, Woodruff, Zhou ‘22], [Feng, Woodruff ‘23]

< 01101011… >

Lesson 2: White box vs black box

White box: adversary can see internal state of algorithm
[Ajtai, Braverman, Jayram, Silwal, Sun, Woodruff, Zhou ‘22], [Feng, Woodruff ‘23]

• Algorithms (e.g., 𝑛P-approx. 𝐹Q) from cryptographic primitives (e.g., SIS) and
computationally-bounded adversary assumptions
• Ω(𝑛) lower bound for approximate white-box 𝐹R-estimation via reductions from

deterministic GAP-EQUALITY problem in communication complexity

Lesson 3: Connections and applications [partial list]

• Techniques/notions:
“new”: differential privacy [HKMMS’20], cryptography [ABJSSW’21], statistics / learning theory
[ABDMNY’21], adaptive data analysis [KMNS’21]
“standard”: sparse recovery [BEO’22], communication complexity [CGS’22]
+ novel techniques like difference estimators [WZ’21]

• Applications/implications in:
dynamic data structures [BKMNSS’22], graph coloring [CGS’22, ACGS’23], sliding window
streaming [WZ’21], machine learning [BHMSSZ’21, WZZ’23, CSWZZZ’23], analytics [RZCP’24], …

• Many connections waiting to be explored!
A few examples: algorithmic game theory, cognitive science, reinforcement learning

Lesson 4 (personal): randomness of history

Wenn ich nur erst die Sätze habe! Die
Beweise werde ich schon finden.
-- Bernhard Riemann (1826-1866)

A few (important/favorite) open questions

• 𝑚N(!) space for robust streaming 𝐹< or 𝐹2?
• Alternatively, 𝑚O(!) lower bound for same problems?

 (Not known even for pseudo-deterministic algorithms!)

• Interesting beyond worst case adversarial models [Cherapanamjeri, Silwal,
Woodruff, Zhang, Zhang, Zhou’23, Sedigurchi, Stemmer, Shechner’23]
• streaming vs. streaming?
• Distribution-maintaining adversaries?
• Models for robust dynamic graph algorithms?

• “Practical deployment”

