Adversarially Robust Streaming Algorithms

Omri Ben-Eliezer

Part 1: Model and motivation

- Stream (x_1, Δ_1) , ..., (x_m, Δ_m) of updates, $x_i \in [n]$, $\Delta_i \in \mathbb{R}$
- Goal: compute $(1 + \epsilon)$ -approx of f over (frequency vector v of) stream $(f = # \text{ distinct elements } / \ell_2 \text{-norm } / \text{ entropy } / \text{ heavy hitters } / ...)$

- Stream (x_1, Δ_1) , ..., (x_m, Δ_m) of updates, $x_i \in [n]$, $\Delta_i \in \mathbb{R}$
- Goal: compute $(1 + \epsilon)$ -approx of f over (frequency vector v of) stream $(f = # \text{ distinct elements } / \ell_2 \text{-norm } / \text{ entropy } / \text{ heavy hitters } / ...)$

- Stream (x_1, Δ_1) , ..., (x_m, Δ_m) of updates, $x_i \in [n]$, $\Delta_i \in \mathbb{R}$
- Goal: compute $(1 + \epsilon)$ -approx of f over (frequency vector v of) stream $(f = # \text{ distinct elements } / \ell_2 \text{-norm } / \text{ entropy } / \text{ heavy hitters } / ...)$

- Stream (x_1, Δ_1) , ..., (x_m, Δ_m) of updates, $x_i \in [n]$, $\Delta_i \in \mathbb{R}$
- Goal: compute $(1 + \epsilon)$ -approx of f over (frequency vector v of) stream $(f = # \text{ distinct elements } / \ell_2 \text{-norm } / \text{ entropy } / \text{ heavy hitters } / ...)$

- Stream (x_1, Δ_1) , ..., (x_m, Δ_m) of updates, $x_i \in [n]$, $\Delta_i \in \mathbb{R}$
- Goal: compute $(1 + \epsilon)$ -approx of f over (frequency vector v of) stream $(f = # \text{ distinct elements } / \ell_2 \text{-norm } / \text{ entropy } / \text{ heavy hitters } / ...)$

- Stream (x_1, Δ_1) , ..., (x_m, Δ_m) of updates, $x_i \in [n]$, $\Delta_i \in \mathbb{R}$
- Goal: compute $(1 + \epsilon)$ -approx of f over (frequency vector v of) stream $(f = # \text{ distinct elements } / \ell_2 \text{-norm } / \text{ entropy } / \text{ heavy hitters } / ...)$

Randomized streaming algorithms

Problem	Space complexity
distinct elements (F_0)	$ ilde{\mathbf{O}}(\epsilon^{-2} + \log n)$ [IW'03, KNW'10, B'18, W'23,]
F_2 -estimation	$ ilde{0}(\epsilon^{-2}\log n$) [AMS'96,KNW'10,BDN'17,]
F_2 -heavy hitters	$ ilde{\mathrm{O}}(\epsilon^{-2}\log^2 n)$ [BCINWW'17]
entropy estimation	$ ilde{O}(\epsilon^{-2}\log^3 n)$ [CC'13]

*Deterministic algorithms: exponentially less efficient

Randomized streaming algorithms

Problem	Space complexity
distinct elements (F_0)	$ ilde{\mathbf{O}}(\epsilon^{-2} + \log n)$ [IW'03, KNW'10, B'18, W'23,]
F_2 -estimation	$ ilde{\mathrm{O}}(\epsilon^{-2}\log n$) [AMS'96,KNW'10,BDN'17,]
F_2 -heavy hitters	$ ilde{\mathrm{O}}(\epsilon^{-2}\log^2 n)$ [BCINWW'17]
entropy estimation	$ ilde{O}(\epsilon^{-2}\log^3 n)$ [CC'13]

But... proofs assume stream is fixed in advance!

*Deterministic algorithms: exponentially less efficient

- Feedback loop
- World's goal: break $(1 + \epsilon)$ -approximation

- Feedback loop
- World's goal: break $(1 + \epsilon)$ -approximation

- Feedback loop
- World's goal: break $(1 + \epsilon)$ -approximation

- Feedback loop
- World's goal: break $(1 + \epsilon)$ -approximation

- Feedback loop
- World's goal: break $(1 + \epsilon)$ -approximation

- Feedback loop
- World's goal: break $(1 + \epsilon)$ -approximation

- Feedback loop
- World's goal: break $(1 + \epsilon)$ -approximation

Key streaming technique: Linear sketching

F₂-estimation [Alon-Matias-Szegedy'96]:

Use $|Sv|_2$ to estimate $|v|_2$. Given stream update (x_t, Δ) , update: $Sv \leftarrow Sv + \Delta \cdot S_{*,x_t}$

			4-v	vise in	deper	ndent		.
	ε	-ε	$-\epsilon$	ε	$-\epsilon$	ε	ϵ	1
c –	-6	ε	- <i>ϵ</i>	- <i>ϵ</i>	 <i>ϵ</i>	- <i>ϵ</i>	$-\epsilon$	1
5 –	ε	$-\epsilon$	ε	 <i>ϵ</i>	- <i>ϵ</i>	- <i>ϵ</i>	$-\epsilon$	$\overline{\epsilon^2}$
	ε	ε	-ε	ε	ε	-ε	ε	↓↓
								-
				n				

$$\mathbb{E}_{S}[|Sv|_{2}^{2}] = \frac{1}{\epsilon^{2}} \mathbb{E}_{S}\left[\left(\sum_{j=1}^{n} S_{1j}v_{j}\right)^{2}\right] = \mathbb{E}_{S}\left[\sum_{j=1}^{n} v_{j}^{2} + \sum_{i\neq j} S_{1i}S_{1j}v_{i}v_{j}\right] = |v|_{2}^{2}$$

Linear sketching: not robust [Hardt-Woodruff'13] Also [AGM'12, BJWY'20, CLNSSS'22, CNSS'23,...]

Use $|Sv|_2$ to estimate $|v|_2$. What if S_{1*} correlations learned by adversary?

$$\mathbb{E}_{S}[|Sv|_{2}^{2}] = \frac{1}{\epsilon^{2}} \mathbb{E}_{S}\left[\left(\sum_{j=1}^{n} S_{1j}v_{j}\right)^{2}\right] = \mathbb{E}_{S}\left[\sum_{j=1}^{n} v_{j}^{2} + \sum_{i\neq j} S_{1i}S_{1j}v_{i}v_{j}\right] \neq |v|_{2}^{2}$$

Linear sketching: not robust [Hardt-Woodruff'13] Also [AGM'12, BJWY'20, CLNSSS'22, CNSS'23,...]

Use $|Sv|_2$ to estimate $|v|_2$.

 Actual attack of [HW13] works for general *r* × *n* sketch matrices and breaks *B*-approx. in *poly*(*rB*) rounds

• Proof idea: find vectors correlated with row space, boost, "peel" dimension. Iterate until remainder of sketch is constant dimensional

The need for robustness - examples

Part 2: Frameworks

How to make streaming algorithms robust?

- Sketch Switching [B., Jayaram, Woodruff, Yogev '20]
- Differential privacy [Hassidim, Kaplan, Mansour, Matias, Stemmer '20]
- Difference estimators [Woodruff, Zhou '21]
- "Best of both worlds" [Attias, Cohen, Shechner, Stemmer '23]

Sketch switching [B., Jayaram, Woodruff, Yogev '20]

 $(x_1, \Delta_1), (x_2, \Delta_2), \dots$

- Run λ copies of algorithm
- Maintain frozen-output visible copy + active copy.
- If frozen output incorrect:
 visible copy ← active copy
 active copy ← next copy

Output visible to adversary	A_1
Active copy	A_2
Future copy	A_3

Key notion: Flip number

$$\lambda_{\epsilon,m}(f) := max \begin{cases} k \mid \exists j_1, \dots, j_k \in [m] \\ \forall l \in [k-1] \end{cases} : f(v^{(j_{l+1})}) \notin (1 \pm \epsilon) \cdot f(v^{(j_l)}) \end{cases}$$

Theorem ([BJWY'20]): Let \mathcal{A} be a ("classical") ϵ -tracking streaming algorithm for f.

There exists an adversarially robust algorithm \mathcal{A}' for ϵ -tracking f using space $\lambda(f) \cdot Space(\mathcal{A})$.

Key notion: Flip number
$$\lambda_{\epsilon,m}(f) := max \left\{ k \mid \begin{array}{c} \exists j_1, \dots, j_k \in [m] \\ \forall l \in [k-1] \end{array} : f(v^{(j_{l+1})}) \notin (1 \pm \epsilon) \cdot f(v^{(j_l)}) \right\}$$

Theorem ([BJWY'20]): Let \mathcal{A} be a ("classical") ϵ -tracking streaming algorithm for f.

There exists an adversarially robust algorithm \mathcal{A}' for ϵ -tracking f using space $\lambda(f) \cdot Space(\mathcal{A})$.

Key notion: Flip number

Sketch switching: Proof idea

1. Assume of deterministic (Yao's minimax [Yao'77])

2. Only need active copy A_i
to be correct over
specific (fixed) stream:

"A_i-oblivious part" + "frozen output part"

* Hassidim-Kaplan-Mansour-Matias-Stemmer '20

** Woodruff-Zhou '21

*** Attias-Cohen-Shechner-Stemmer '23

**** Kaplan-Mansour-Nissim-Stemmer '21

Differential privacy framework [Hassidim-Kaplan-Mansour-Matias-Stemmer'20]

 $(x_1, \Delta_1), (x_2, \Delta_2), \dots$

Differential privacy framework [Hassidim-Kaplan-Mansour-Matias-Stemmer'20]

Why it works:

- Key idea -- Advanced composition [Dwork-Rothblum-Vadhan'10] in differential privacy supports $\approx \frac{1}{\epsilon^2}$ adaptive interactions provided "privacy level" ϵ .
- Interaction with each flip $\Rightarrow \varepsilon \approx \frac{1}{\sqrt{\lambda}}$
- ε -DP median requires $\approx \frac{1}{\varepsilon} \approx \sqrt{\lambda}$ copies to be accurate

Extremely useful in applications!

(e.g., robust count sketch [Cohen, Lyu, Nelson, Sarlós, Shechner, Stemmer '22], robust dynamic graph algorithms [Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer '22], ...)

Difference estimators framework [Woodruff, Zhou '21]

• Key notion: ε -difference estimator for vectors u and vapproximates f(u + v) - f(u)to $\pm \varepsilon \cdot f(u)$ error

 Framework stitches difference estimators at different scales

Difference estimators framework [Woodruff, Zhou '21]

- Key notion: ε -difference estimator for vectors u and vapproximates f(u + v) - f(u)to $\pm \varepsilon \cdot f(u)$ error
- Framework stitches difference estimators at different scales
- Near-optimal space complexity for insertion only + sliding window model, resolving [Braverman-Ostrovsky'07]

Is flip number always the right parameter?

Is flip number always the right parameter?

[B., Eden, Onak '22]: No. for insertion-deletion streams ($\lambda = m$) we get $\tilde{O}(m^{1/3})$ for distinct elements, $\tilde{O}(m^{2/5})$ for ℓ_2 -estimation Technique: differential privacy + sparse recovery

Is flip number always the right parameter?

[B., Eden, Onak '22]: No. for insertion-deletion streams ($\lambda = m$) we get $\tilde{O}(m^{1/3})$ for distinct elements, $\tilde{O}(m^{2/5})$ for ℓ_2 -estimation Technique: differential privacy + sparse recovery

Best known, but exponentially worse than static.

Dense-sparse tradeoff [B., Eden, Onak '22]

Part 3: Lessons

 Linear sketching: extremely useful in static settings, but breaks in r⁰⁽¹⁾ rounds in adversarial settings [HW'13, BJWY'20, CLNSSS'22, CNSS'23,...]

• Random sampling: another fundamental technique, more reliable in adversarial settings?

How many uniform samples needed so that *sample* will be **representative** of *data*?

Oblivious case:
$$\Theta(\frac{VC-DIM}{\epsilon^2})$$

[B., Yogev '19] Not enough for robust case! But $VC \cdot \frac{\log m}{\epsilon^2}$ suffices. [Alon, B., Dagan, Moran, Naor, Yogev '21]: $\Theta\left(\frac{\text{Littlestone-DIM}}{\epsilon^2}\right)$

 f_2

 f_3

[Braverman, Hassidim, Matias, Schain, Silwal, Zhou '21]:

Importance sampling & merge and reduce robust "for free"

⇒ Robustness of many existing algorithms!

Applications
Coreset construction, support vector machine,
Gaussian mixture models, k -means clustering,
k-median clustering, projective clustering, principal
component analysis, M -estimators, Bayesian
logistic regression, generative adversarial networks
(GANs), k-line center, j -subspace approximation,
Bregman clustering
Linear regression, generalized regression, spectral
approximation, low-rank approximation,
projection-cost preservation, L_1 -subspace
$\operatorname{embedding}$
Graph sparsification

(Taken from [BHMSSZ'21])

Formal separation between "sketching type" vs. "sampling type" algos? Yes! For "missing item finding" [Stoeckl'23, Chakrabarti-Stoeckl'23, Magen'24] (see also Menuhin-Naor'22)

Speaking about separations: robust graph coloring

Static streams: $(\Delta + 1)$ -coloring in $\tilde{O}(n)$ space [Assadi, Chen, Khanna'19]

Adversarially robust [Chakrabarti, Ghosh, Stoeckl'22], [Assadi, Chakrabarti, Ghosh, Stoeckl'23] "No free lunch" lower bound 🛞:

 $O(\Delta)$ colors requires $\Omega(n\Delta)$ space, O(n) space implies $\Omega(\Delta^2)$ colors Upper bounds via sketch switching + additional techniques: $O(\Delta^{2.5})$ colors in $\tilde{O}(n)$ space, or $O(\Delta^2)$ colors in $\tilde{O}(n\Delta^{1/3})$ space

Deterministic [Assadi, Chen, Sun '22]: $\tilde{O}(n)$ space implies $\exp(\Delta^{\Omega(1)})$ colors!

Lesson 2: White box vs black box

White box: adversary can see internal state of algorithm [Ajtai, Braverman, Jayram, Silwal, Sun, Woodruff, Zhou '22], [Feng, Woodruff '23]

Lesson 2: White box vs black box

White box: adversary can see internal state of algorithm [Ajtai, Braverman, Jayram, Silwal, Sun, Woodruff, Zhou '22], [Feng, Woodruff '23]

- Algorithms (e.g., n^{ε} -approx. F_0) from cryptographic primitives (e.g., SIS) and computationally-bounded adversary assumptions
- $\Omega(n)$ lower bound for approximate white-box F_p -estimation via reductions from deterministic GAP-EQUALITY problem in communication complexity

Lesson 3: Connections and applications [partial list]

• Techniques/notions:

"new": differential privacy [HKMMS'20], cryptography [ABJSSW'21], statistics / learning theory [ABDMNY'21], adaptive data analysis [KMNS'21] "standard": sparse recovery [BEO'22], communication complexity [CGS'22] + novel techniques like difference estimators [WZ'21]

• Applications/implications in:

dynamic data structures [BKMNSS'22], graph coloring [CGS'22, ACGS'23], sliding window streaming [WZ'21], machine learning [BHMSSZ'21, WZZ'23, CSWZZZ'23], analytics [RZCP'24], ...

Many connections waiting to be explored!

A few examples: algorithmic game theory, cognitive science, reinforcement learning

Lesson 4 (personal): randomness of history

Wenn ich nur erst die Sätze habe! Die Beweise werde ich schon finden. -- Bernhard Riemann (1826-1866)

A few (important/favorite) open questions

- $m^{o(1)}$ space for robust streaming F_0 or F_2 ?
- Alternatively, $m^{\Omega(1)}$ lower bound for same problems? (Not known even for pseudo-deterministic algorithms!)
- Interesting beyond worst case adversarial models [Cherapanamjeri, Silwal, Woodruff, Zhang, Zhang, Zhou'23, Sedigurchi, Stemmer, Shechner'23]
 - streaming vs. streaming?
 - Distribution-maintaining adversaries?
 - Models for robust dynamic graph algorithms?
- "Practical deployment"