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Part 1: Model and motivation



Streaming: The classical model

• Stream (𝑥!, Δ!)	, … , (𝑥" , Δ") of updates, 𝑥# ∈ [𝑛], Δ# ∈ ℝ
• Goal: compute (1 + 𝜖)-approx of 𝑓 over (frequency vector 𝑣 of) stream

 (𝑓 = # distinct elements / ℓ!-norm / entropy / heavy hitters / …)
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Randomized streaming algorithms

*Deterministic algorithms: exponentially less efficient

Problem Space complexity

distinct elements (𝐹!) Õ(𝜖"# + log 𝑛	) 
[IW’03, KNW’10, B’18, W’23, …]

𝐹#-estimation Õ(𝜖"# log 𝑛	) [AMS’96,KNW’10,BDN’17,…] 

𝐹#-heavy hitters Õ(𝜖"# log# 𝑛	) [BCINWW’17] 

entropy estimation Õ(𝜖"# log$ 𝑛	) [CC’13]



Randomized streaming algorithms

But… proofs assume stream is fixed in advance!

*Deterministic algorithms: exponentially less efficient

Problem Space complexity

distinct elements (𝐹!) Õ(𝜖"# + log 𝑛	) 
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𝐹#-heavy hitters Õ(𝜖"# log# 𝑛	) [BCINWW’17] 

entropy estimation Õ(𝜖"# log$ 𝑛	) [CC’13]



Streaming: The adaptive/adversarial model

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation



Streaming: The adaptive/adversarial model

(𝑥", Δ")

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation



Streaming: The adaptive/adversarial model

(𝑥", Δ")

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation



Streaming: The adaptive/adversarial model

𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation



Streaming: The adaptive/adversarial model

𝑦" 𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation



Streaming: The adaptive/adversarial model

𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation



Streaming: The adaptive/adversarial model

(𝑥! 𝑦" ,
	 Δ!(𝑦"))

𝑦"

• Feedback loop
• World’s goal: break 1 + 𝜖 -approximation



Key streaming technique: Linear sketching

𝑭𝟐-estimation	[Alon-Matias-Szegedy’96]:

Use	|𝑆𝑣|2	to	estimate	 𝑣 2.
Given	stream	update	(𝑥3 , Δ),	
update:	𝑆𝑣 ← 𝑆𝑣 + Δ ⋅ 𝑆∗,6!
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Linear sketching: not robust [Hardt-Woodruff’13] 
Also [AGM’12, BJWY’20, CLNSSS’22, CNSS’23,…]

Use	|𝑆𝑣|2	to	estimate	 𝑣 2.
What	if	𝑆!∗	correlations	
learned	by	adversary?
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Linear sketching: not robust [Hardt-Woodruff’13] 
Also [AGM’12, BJWY’20, CLNSSS’22, CNSS’23,…]

Use	|𝑆𝑣|2	to	estimate	 𝑣 2.

• Actual	attack	of	[HW13]	works	
for	general	𝑟	×	𝑛	sketch	matrices	and	
breaks	𝐵-approx.	in	𝑝𝑜𝑙𝑦(𝑟𝐵)	rounds

• Proof idea: find vectors correlated with row space, boost, “peel” 
dimension. Iterate until remainder of sketch is constant dimensional

𝑺𝟏𝟏 …

...

…

𝑆!"  

𝑺 =

𝑛

𝑟



The need for robustness - examples 

Search Engine 
Optimization (SEO)

Actual adversarial attacks Gradient descent



How to make streaming algorithms robust?

Part 2: Frameworks

• Sketch Switching [B., Jayaram, Woodruff, Yogev ‘20]

• Differential privacy [Hassidim, Kaplan, Mansour, Matias, Stemmer ‘20]

• Difference estimators [Woodruff, Zhou ‘21]

• “Best of both worlds” [Attias, Cohen, Shechner, Stemmer ‘23]



Sketch switching [B., Jayaram, Woodruff, Yogev ‘20]

…

𝑥!, Δ! , 𝑥2, Δ2 , …

Active copy

Output visible to adversary 𝐴!

𝐴"

𝐴#

𝐴$

Future copy

• Run 𝜆 copies of algorithm

• Maintain frozen-output 
visible copy + active copy.

• If frozen output incorrect: 
visible copy ← active copy
active copy ← next copy



Key notion: Flip number

𝝀𝝐,𝒎 𝒇 := 𝒎𝒂𝒙 	𝒌	 |	
∃𝒋𝟏, … , 𝒋𝒌 ∈ 𝒎
∀𝒍 ∈ 𝒌 − 𝟏

: 	𝒇 𝒗(𝒋𝒍+𝟏) ∉ 𝟏 ± 𝝐 ⋅ 𝒇 𝒗(𝒋𝒍)

Theorem ([BJWY’20]): 
Let 𝒜 be a (“classical”) 𝜖-tracking 
streaming algorithm for 𝑓.

There exists an adversarially robust 
algorithm 𝒜′ for 𝜖-tracking 𝑓
using space 𝜆 𝑓 ⋅ 𝑆𝑝𝑎𝑐𝑒(𝒜). 



Key notion: Flip number

𝑓 = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
Insertion only setting ⇒

𝜆 𝑓 = 𝑂
log 𝑛
𝜖𝑓( 𝑥# ) = 1

𝑓 {𝑥#, … , 𝑥$} ≤ 𝑛
Theorem ([BJWY’20]): 
Let 𝒜 be a (“classical”) 𝜖-tracking 
streaming algorithm for 𝑓.

There exists an adversarially robust 
algorithm 𝒜′ for 𝜖-tracking 𝑓
using space 𝜆 𝑓 ⋅ 𝑆𝑝𝑎𝑐𝑒(𝒜). 

𝝀𝝐,𝒎 𝒇 := 𝒎𝒂𝒙 	𝒌	 |	
∃𝒋𝟏, … , 𝒋𝒌 ∈ 𝒎
∀𝒍 ∈ 𝒌 − 𝟏

: 	𝒇 𝒗(𝒋𝒍+𝟏) ∉ 𝟏 ± 𝝐 ⋅ 𝒇 𝒗(𝒋𝒍)



Insertion only (Δ > 0): 

𝜆 = 𝑂
log 𝑛
𝜀

Key notion: Flip number

Turnstile model (general Δ, insertion/deletion): 

𝜆 = 𝑚 in worst case!



Sketch switching: Proof idea

𝑥!, Δ! , 𝑥2, Δ2 , …

Active copy

Past copies 𝐴!, … , 𝐴'("

𝐴'(!

𝐴'

𝐴')!, … , 𝐴$Future copies

1. Assume         deterministic 
(Yao’s minimax [Yao’77])

2. Only need active copy 𝐴! 
to be correct over 
specific (fixed) stream:

“𝐴!-oblivious part” 
+

“frozen output part”

Frozen copy



𝑂(𝜆)
[BJWY’20]

𝑂(𝜖 ⋅ 𝜆)
Difference 

estimators **

6𝑂 𝜆
Differential 

privacy *

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
“best of both 
worlds” ***

7Ω 𝜆
for specific 

problem 
****

* Hassidim-Kaplan-Mansour-Matias-Stemmer ’20

** Woodruff-Zhou ‘21

*** Attias-Cohen-Shechner-Stemmer ‘23

**** Kaplan-Mansour-Nissim-Stemmer ‘21



𝑥!, Δ! , 𝑥", Δ" , …

11

15

13

𝐴!

𝐴"

𝐴+

𝑡 ≈ 𝜆	
𝑐𝑜𝑝𝑖𝑒𝑠 …

Private median

Differential privacy framework 
[Hassidim-Kaplan-Mansour-Matias-Stemmer’20]

Private threshold
(sparse vector technique)



Why it works:
• Key idea -- Advanced composition [Dwork-Rothblum-Vadhan‘10] in differential 

privacy supports ≈ "
##

 adaptive interactions provided “privacy level” 𝜀.

• Interaction with each flip ⇒ 𝜀 ≈ "
$

•  𝜀-DP median requires ≈ "
#
≈ 𝜆 copies to be accurate

Extremely useful in applications!  
(e.g., robust count sketch [Cohen, Lyu, Nelson, Sarlós, Shechner, Stemmer ‘22], robust dynamic 
graph algorithms [Beimel, Kaplan, Mansour, Nissim, Saranurak, Stemmer ‘22], …)

Differential privacy framework 
[Hassidim-Kaplan-Mansour-Matias-Stemmer’20]



Difference estimators framework
[Woodruff, Zhou ‘21]

• Key notion: 𝜀-difference 
estimator for vectors 𝑢 and 𝑣 
approximates 𝑓 𝑢 + 𝑣 − 𝑓(𝑢)  
to ±𝜀 ⋅ 𝑓(𝑢) error

• Framework stitches difference 
estimators at different scales

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒



Difference estimators framework
[Woodruff, Zhou ‘21]

• Key notion: 𝜀-difference 
estimator for vectors 𝑢 and 𝑣 
approximates 𝑓 𝑢 + 𝑣 − 𝑓(𝑢)  
to ±𝜀 ⋅ 𝑓(𝑢) error

• Framework stitches difference 
estimators at different scales

• Near-optimal space complexity 
for insertion only + sliding 
window model, resolving 
[Braverman-Ostrovsky’07]

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒

Problem [BJWY’20] [HKMMS’20] [WZ’21]

Distinct Elements 
𝐹!

insert only
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𝜖&.%
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𝐹' estimation, 
𝑝 ∈ 0,2

insert only 
Õ

log 𝑛
𝜖"

O
log#.% 𝑛
𝜖&.% Õ

log 𝑛
𝜖&

𝐹' with deletions, 
flip number 𝜆 Õ

𝜆 ⋅ log& 𝑛
𝜖& O

log" 𝑛 𝜆
𝜖&

Õ
𝜆 ⋅ log& 𝑛

𝜖



𝑂(𝜆)
[BJWY’20]

𝑂(𝜖 ⋅ 𝜆)
[WZ ‘21]

Difference 
estimators

6𝑂 𝜆
[HKMMS ‘20]
Differential 

privacy

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
[ACSS, ‘23]

“best of 
both worlds”

7Ω 𝜆 *
[KMNS, ‘21]
*for specific 

problem

Is flip number always the right parameter?



[B., Eden, Onak ‘22]: No. for insertion-deletion streams (𝝀 = 𝒎) we get
6𝑂(𝑚!/:) for distinct elements,     6𝑂(𝑚"/;) for ℓ"-estimation

Technique: differential privacy + sparse recovery
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estimators

6𝑂 𝜆
[HKMMS ‘20]
Differential 

privacy

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
[ACSS, ‘23]

“best of 
both worlds”

7Ω 𝜆 *
[KMNS, ‘21]
*for specific 

problem

Is flip number always the right parameter?

1
0



[B., Eden, Onak ‘22]: No. for insertion-deletion streams (𝝀 = 𝒎) we get
6𝑂(𝑚!/:) for distinct elements,     6𝑂(𝑚"/;) for ℓ"-estimation

Technique: differential privacy + sparse recovery

𝑂(𝜆)
[BJWY’20]

𝑂(𝜖 ⋅ 𝜆)
[WZ ‘21]

Difference 
estimators

6𝑂 𝜆
[HKMMS ‘20]
Differential 

privacy

Generic frameworks:
flip number overhead

6𝑂 𝜖 ⋅ 𝜆
[ACSS, ‘23]

“best of 
both worlds”

7Ω 𝜆 *
[KMNS, ‘21]
*for specific 

problem

Is flip number always the right parameter?

Best known, but exponentially worse than static.

1
0



𝑐 ⋅ 𝑚!/;

𝐶 ⋅ 𝑚!/;

Sparse recovery regime,
use “for all” solution 
[Gilbert, Strauss, Tropp, Vershynin ‘07] stream

𝐹<
privacy regime, 𝜆 ≤ 𝑚2/;

Dense-sparse tradeoff [B., Eden, Onak ‘22]



Part 3: Lessons



Lesson 1: Sampling over sketching

• Linear sketching: extremely useful 
in static settings, but breaks in 𝑟=(!) 
rounds in adversarial settings 
[HW’13, BJWY’20, CLNSSS’22, CNSS’23,…]

• Random sampling: another 
fundamental technique, more 
reliable in adversarial settings?

𝐒𝟏𝟏 … 𝐒𝟏𝒏
…

𝑺𝒓𝟏 … 𝑺𝒓𝒏

𝑺 =

𝑛

𝑟



How many uniform samples needed so that
sample will be representative of data?

Oblivious case: Θ(>?@ABC
D"

)

[B., Yogev ‘19] Not enough for robust case! 
But  𝑉𝐶 ⋅ KLMNO!  suffices. 
[Alon, B., Dagan, Moran, Naor, Yogev ‘21]:

Θ EFGGHIJGKLI@ABC
M"

 

Lesson 1: Sampling over sketching



Lesson 1: Sampling over sketching

[Braverman, Hassidim, Matias, Schain, Silwal, Zhou ‘21]:

• Importance sampling & merge and reduce robust “for free”

⇒ Robustness of many 
     existing algorithms!

(Taken from [BHMSSZ’21])
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Lesson 1: Sampling over sketching

Formal separation between ״sketching
type” vs. “sampling type” algos?
Yes! For ”missing item finding”
[Stoeckl’23, Chakrabarti-Stoeckl’23,
Magen’24] (see also Menuhin-Naor’22)

Random oracle = fixed random string, no 
  storage cost

Random tape = randomness on the fly, 
              costs to store it

Random seed = randomness at beginning
Pseudo-deterministic [GGMW’19] = 
“deterministic with prob. 1 − 𝛿”

(Taken from [CS’23])
𝑚 (log scale)



Speaking about separations: robust graph coloring

Static streams: (Δ + 1)-coloring in <𝑂 𝑛  space [Assadi, Chen, Khanna’19]

Adversarially robust [Chakrabarti, Ghosh, Stoeckl’22], [Assadi, Chakrabarti, Ghosh, Stoeckl’23]

”No free lunch” lower bound L: 
      𝑂(Δ) colors requires Ω(𝑛Δ) space, 𝑂(𝑛) space implies Ω(Δ") colors

Upper bounds via sketch switching + additional techniques:
 𝑂(Δ".;) colors in 6𝑂(𝑛) space, or 𝑂(Δ") colors in 6𝑂(𝑛Δ!/:) space

Deterministic [Assadi, Chen, Sun ‘22]: <𝑂(𝑛) space implies exp(Δ( " ) colors!



Lesson 2: White box vs black box

White box: adversary can see internal state of algorithm 
[Ajtai, Braverman, Jayram, Silwal, Sun, Woodruff, Zhou ‘22], [Feng, Woodruff ‘23]

< 01101011… >



Lesson 2: White box vs black box

White box: adversary can see internal state of algorithm 
[Ajtai, Braverman, Jayram, Silwal, Sun, Woodruff, Zhou ‘22], [Feng, Woodruff ‘23]

• Algorithms (e.g., 𝑛P-approx. 𝐹Q) from cryptographic primitives (e.g., SIS) and 
computationally-bounded adversary assumptions
• Ω(𝑛) lower bound for approximate white-box 𝐹R-estimation via reductions from 

deterministic GAP-EQUALITY problem in communication complexity



Lesson 3: Connections and applications [partial list]

• Techniques/notions: 
“new”: differential privacy [HKMMS’20], cryptography [ABJSSW’21], statistics / learning theory 
[ABDMNY’21], adaptive data analysis [KMNS’21] 
“standard”: sparse recovery [BEO’22], communication complexity [CGS’22]
+ novel techniques like difference estimators [WZ’21]

• Applications/implications in:  
dynamic data structures [BKMNSS’22], graph coloring [CGS’22, ACGS’23], sliding window 
streaming [WZ’21], machine learning [BHMSSZ’21, WZZ’23, CSWZZZ’23], analytics [RZCP’24], …

• Many connections waiting to be explored! 
A few examples: algorithmic game theory, cognitive science, reinforcement learning



Lesson 4 (personal): randomness of history

Wenn ich nur erst die Sätze habe! Die 
Beweise werde ich schon finden.
-- Bernhard Riemann (1826-1866)



A few (important/favorite) open questions

• 𝑚N(!) space for robust streaming 𝐹< or 𝐹2?
• Alternatively, 𝑚O(!) lower bound for same problems? 

  (Not known even for pseudo-deterministic algorithms!)

• Interesting beyond worst case adversarial models [Cherapanamjeri, Silwal, 
Woodruff, Zhang, Zhang, Zhou’23, Sedigurchi, Stemmer, Shechner’23]
• streaming vs. streaming?
• Distribution-maintaining adversaries?
• Models for robust dynamic graph algorithms?

• “Practical deployment”


