

Distribution Testing: Hypothesis Testing from Very Little (or Very Private) Data

Clément Canonne (University of Sydney)

Disclaimer

Disclaimer

Taming Big Probability Distributions

New algorithms for estimating parameters of distributions over big domains need significantly fewer samples.

 By Ronitt Rubinfeld

 DOI: 10.1145/2331042.2331052

Theory of Computing Library Graduate Surveys 9 POF

A Survey on Distribution Testing: Your Data is Big. But is it Blue?

by *Clément L. Canonne* Published: August 15, 2020 (100 pages)

Open Access

lune 2018

Hypothesis testing for high-dimensional multinomials: A selective review

Sivaraman Balakrishnan, Larry Wasserman

Ann. Appl. Stat. 12(2): 727-749 (June 2018). DOI: 10.1214/18-AOAS1155SF

ABOUT FIRST PAG	GE CITED BY	REFERENCES
-----------------	-------------	------------

Foundations and Trends[®] in Communications and Information Theory 19:6

> Topics and Techniques in Distribution Testing Clément L. Canonne

now

the essence of knowledge

Disclaimer

Taming Big Probability Distributions

New algorithms for estimating parameters of distributions over big domains need significantly fewer samples.

By Ronitt Rubinfeld 回就成回 DOI: 10.1145/2331042.2331052

1011110011011100

http://theoryofcomputing.org ISSN 1557-2862 THEORY OF COMPUTING - AN OPEN ACCESS JOURNAL Endorsed by ACM SIGACT

a Open Access lune 2018

ABOUT

Theory of Computing Library **Graduate Surveys 9**

A Survey on Distribution Testing: Your Data is Big. But is it Blue?

by Clément L. Canonne Published: August 15, 2020 (100 pages)

Hypothesis testing for high-dimensional

CITED BY

multinomials: A selective review

Sivaraman Balakrishnan, Larry Wasserman

FIRST PAGE

PDF

Ann. Appl. Stat. 12(2): 727-749 (June 2018). DOI: 10.1214/18-AOAS1155SF

REFERENCES

Foundations and Trends® in Communications and Information Theory 19:6

> **Topics and Techniques** in Distribution Testing Clément L. Canonne

Outline

- What is distribution testing?
- What type of properties are we talking about?
- What are some **baselines**?
- What are variants, settings, models?
- Uniformity testing!
- **Privacy**? (It's in the title!)
- Some open problems

Property testing

"Distribution" testing?

What does it mean to be far?

Total variation distance:

$$d_{TV}(\mathbf{p}, \mathbf{q}) = \sup_{S \subseteq [k]} (\mathbf{p}(S) - \mathbf{q}(S)) = \frac{1}{2} \|\mathbf{p} - \mathbf{q}\|_{1} \in [0, 1]$$

"a measure of *how distinguishable* two distributions are given a single sample"

Properties

Testing by learning?

So everything is hard...

So everything is hard... what do we do?

A couple simple tricks

Uniformity testing

You have n i.i.d. samples from some unknown distribution over

[**k**]={1,2,...,**k**}

and want to know: is it *the* uniform distribution? Or is it **statistically far** from it, say, at total variation distance ϵ ?

You have n i.i.d. samples from some unknown distribution over

[**k**]={1,2,...,**k**}

and want to know: is it *the* uniform distribution? Or is it **statistically far** from it, say, at total variation distance ϵ ?

Everybody knows that the dice are loaded Everybody rolls with their fingers crossed

Uniformity testing algorithm:

Input: ε in [0,1], n i.i.d. samples from unknown p over [k] Output: accept or reject

- If p=u, accept with probability $\geq .99$
- If $TV(p,u) \ge \epsilon$, reject with probability $\ge .99$

Uniformity testing \Leftrightarrow Identity testing

.99 is arbitrary*

Optimal **n** is $\Theta(\sqrt{k}/\epsilon^2)$

Nice, but how?

(Some ideas?)

Nice, but how? And also, what?

- **Data efficiency:** does the algo achieve optimal sample complexity?
- **Time efficiency:** how fast is the algo to run ?
- **Memory efficiency:** how much memory does the algo require ?
- **Simplicity:** is the algo simple to describe and implement?
- **Simplicity':** is the algo simple to *analyse*?
- **Robustness**: how "tolerant" is the algo to noise?
- **Elegance:** OK, that's a bit subjective, but you get it
- **Generalizable**: Does the algo have useful "bonus features"?

Nice, but how? And also, what?

	Sample complexity	Notes	References
Collision-based	$\frac{k^{1/2}}{\varepsilon^2}$	Tricky	[GR00, DGPP19]
Unique elements	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/4}$	[Pan08]
Modified χ^2	$\frac{k^{1/2}}{\varepsilon^2}$	Nope	[VV17, ADK15, DKN15]
Empirical distance to uniform	$\frac{k^{1/2}}{\varepsilon^2}$	Biased	[DGPP18]
Random binary hashing	$\frac{k}{\varepsilon^2}$	Fun (+ fast, small space)	[ACT19]
Bipartite collisions	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/10}$	[DGKR19]
Empirical subset weighting	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/4}$	

Key Insight (4 of the Dwarfs)

Forget about TV distance, ℓ_2 distance is a good proxy:

$$d_{\mathrm{TV}}(\mathbf{p}, \mathbf{u}_k) = \frac{1}{2} \|\mathbf{p} - \mathbf{u}_k\|_1 \le \frac{\sqrt{k}}{2} \|\mathbf{p} - \mathbf{u}_k\|_2$$

so if p is at TV $\geq \varepsilon$, it is at $\ell_2 \geq 2\varepsilon/\sqrt{k}$.

Key Insight (4 of the Dwarfs)

Also,

$$\|\mathbf{p} - \mathbf{u}_k\|_2^2 = \sum_{i=1}^k (\mathbf{p}(i) - 1/k)^2 = \sum_{i=1}^k \mathbf{p}(i)^2 - 1/k = \|\mathbf{p}\|_2^2 - 1/k$$

so it suffices to estimate $||p||_2$. How?

Collisions

Fact. $\Pr_{x,y\sim \mathbf{p}} [x = y] = \sum_{i=1}^{k} \mathbf{p}(i)^2 = \|\mathbf{p}\|_2^2$

I.e., the squared ℓ_2 norm is the "collision probability."

Collisions

Natural idea.

$$Z_{1} = \frac{1}{\binom{n}{2}} \sum_{s \neq t} \mathbb{1}_{\{x_{s} = x_{t}\}}$$

Take n samples $x_1,...x_n$. For each of the $\binom{n}{2}$ pairs, check if a *collision* occurs. Count those collisions, and use the result as unbiased estimator for $\|p\|_2^2$; threshold appropriately.

Collisions

Natural idea.

$$Z_1 = \frac{1}{\binom{n}{2}} \sum_{s \neq t} \mathbb{1}_{\{x_s = x_t\}}$$

Take n samples $x_1,...x_n$. For each of the {n choose 2} pairs, check if a collision occurs. Count those collisions, and use the result as unbiased estimator for $||p||_2^2$; threshold appropriately.

Not so simple'

More detail:

We want to threshold Z_1 at $(1+2\epsilon^2)/k$ or so, to distinguish **uniform** ($\mathbb{E}[Z_1] = 1/k$) from **far from uniform** ($\mathbb{E}[Z_1] = ||p||_2^2 \ge (1+4\epsilon^2)/k$).

So we want to bound the variance of Z_1 and use Chebyshev's inequality. This gets... messy.

(Getting $\Theta(\sqrt{k/\epsilon^4})$ is not hard. The optimal $\Theta(\sqrt{k/\epsilon^2})$ is challenging.)

Take n samples, count the number Z₂ of elements that appear exactly **once**.

Take n samples, count the number Z₂ of elements that appear exactly **once**.

$$\mathbb{E}[Z_2] = n \sum_{i=1}^k \mathbf{p}(i)(1 - \mathbf{p}(i))^{n-1}$$

Take n samples, count the number Z₂ of elements that appear exactly **once**.

$$\mathbb{E}[Z_2] = n \sum_{i=1}^k \mathbf{p}(i)(1 - \mathbf{p}(i))^{n-1}$$

Under uniform: $\approx n - n^2/k$ Under "far" p: $\approx n - n^2 ||p||_2^2 \le n - n^2/k - 2n^2 \epsilon^2/k$

More detail:

Assuming the variance is small enough,

the $n^2 \epsilon^2 / k$ gap in expectation

+ Chebyshev (again)

+ all approximations from the previous slide holding

let us test as long as $n=\Omega(\sqrt{k/\epsilon^2})$.

More detail:

Assuming the variance is small enough,

the $n^2 \epsilon^2/k$ gap in expectation + Chebyshev (again) + all approximations from the previous slide holding let us test as long as $n=\Omega(\sqrt{k/\epsilon^2})$.

More detail:

Assuming the variance is small enough,

the $n^2 \epsilon^2/k$ gap in expectation + Chebyshev (again) + all approximations from the previous slide holding let us test as long as $n=\Omega(\sqrt{k/\epsilon^2})$.

Problem: can't work for $\varepsilon \gg 1/k^{\frac{1}{4}}$, since then $n \gg k$ (but we can't have that many distinct elements...)

Next stop: χ^2

Idea: the χ^2 divergence between distributions is a metric thing, related to KL divergence and others. Pearson's χ^2 test is a staple of Statistics. Can we have a test inspired by that?

Next stop:
$$\chi^2$$

Idea: the χ^2 divergence between distributions is a metric thing, related to KL divergence and others. Pearson's χ^2 test is a staple of Statistics. Can we have a test inspired by that?

$$Z_3 = \sum_{i=1}^k \frac{(N_i - n/k)^2 - N_i}{n/k}$$

where $N_i = \#$ times we see i among the n samples.

Next stop:
$$\chi^2$$

Idea: the χ^2 divergence between distributions is a metric thing, related to KL divergence and others. Pearson's χ^2 test is a staple of Statistics. Can we have a test inspired by that?

$$Z_3 = \sum_{i=1}^k \frac{(N_i - n/k)^2 - N_i}{n/k}$$

where $N_i = \#$ times we see i among the n samples. It works.*

 $(\mathbb{E}[Z_3] = nk ||p||_2^2 \text{ and, again, Chebyshev.})$

We've been doing a lot of specific stuff, with ad hoc estimators. Why?

We've been doing a lot of specific stuff, with ad hoc estimators. Why?

Can't we just:

- 1. take our **n** samples
- 2. compute the empirical distribution \hat{p}
- 3. see if the "plugin" distance $TV(\hat{p}, u)$ is large
- 4. be done

?

Of course not: the empirical distance $TV(\hat{p},u)$ will be very large $TV(\hat{p},u) = 1-o(1)$

even if p is uniform, for any $n \ll k$.

But still yes: the empirical distance $TV(\hat{p},u)$ will be very large $TV(\hat{p},u) = 1-o(1)$ even if p is uniform, for any $n \ll k$, indeed.

But that "o(1)" is not the same if p=u and if $TV(p,u) > \varepsilon$. And somehow that's enough!

But still yes: the empirical distance $TV(\hat{p},u)$ will be very large $TV(\hat{p},u) = 1-o(1)$ even if p is uniform, for any $n \ll k$, indeed.

But that "o(1)" is not the same if p=u and if $TV(p,u) > \varepsilon$. And somehow that's enough!

Need more than Chebyshev for that one.

Simple Si

Also, the first one we see not relying on ℓ_2 norm as a proxy.

I don't like big numbers, like k.

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½)) and a coin with bias α (Bernoulli(½± α)) can be done with $\Theta(1/\alpha^2)$ samples.

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½)) and a coin with bias α (Bernoulli(½± α)) can be done with $\Theta(1/\alpha^2)$ samples.

If we had k=2, we could use that.

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½)) and a coin with bias α (Bernoulli(½± α)) can be done with $\Theta(1/\alpha^2)$ samples.

If we had k=2, we could use that. So let's make k=2.

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a sample is in S, it's *tails*; otherwise, it's *heads*.

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a sample is in S, it's *tails*; otherwise, it's *heads*.

• Of course, if p=u, then p(S)=|S|/k=½. Fair coin!

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a sample is in S, it's *tails*; otherwise, it's *heads*.

- Of course, if p=u, then $p(S)=|S|/k=\frac{1}{2}$. Fair coin!
- If $TV(p,u) \ge \varepsilon$, however...

$$\Pr_{S \subseteq [k]} \left[\left| \mathbf{p}(S) - \mathbf{u}_k(S) \right| = \Omega(\varepsilon/\sqrt{k}) \right] = \Omega(1)$$

Biased coin! (With constant probability over choice of S)

Now we can use our fact, with $\alpha := \epsilon/\sqrt{k}$. Give sample complexity

 $\Theta(1/\alpha^2) = \Theta(k/\epsilon^2)$

Now we can use our fact, with $\alpha := \epsilon/\sqrt{k}$. Gives sample complexity

 $\Theta(1/\alpha^2) = \Theta(k/\epsilon^2)$

Simple 🗸 Fast JFun 🗸 Elegant 🗸 Generalises Not optimal

("Sometimes optimal": very useful in some settings!)

And now, for something completely different

(Differential) Privacy

(Differential) Privacy

For all $x \sim x'$ and $S \subseteq \mathcal{Y}$,

$\Pr[A(\mathbf{x'}) \in S] \le e^{\varrho} \Pr[A(\mathbf{x}) \in S]$

(Differential) Privacies

- (Central) Privacy: Trust the Center
- Local Privacy: Trust Nobody
- Shuffle Privacy: Trust The Middle Box

(Differential) Privacies

Differentially Private Testing

Domain Compression

[Acharya–Canonne–Han–Sun–Tyagi'20], [Amin–Joseph–Mao'20]

- trade domain size for statistical distance using shared randomness
- develop a "private-coin" protocol, get a "public-coin" one for free!

Theorem 2.12 (Domain Compression Lemma). There exist absolute constants $c_1, c_2 > 0$ such that the following holds. For any $2 \leq l \leq k$ and any $\mathbf{p}, \mathbf{q} \in \Delta_k$,

$$\Pr_{\Pi} \left[\mathrm{d}_{\mathrm{TV}}(\mathbf{p}_{\Pi}, \mathbf{q}_{\Pi}) \geq c_1 \sqrt{\frac{\mathsf{L}}{k}} \mathrm{d}_{\mathrm{TV}}(\mathbf{p}, \mathbf{q}) \right] \geq c_2 \,,$$

where $\Pi = (\Pi_1, \dots, \Pi_{\mathbf{L}})$ is a uniformly random partition of [k] in \mathbf{L} subsets, and $\mathbf{p}_{\Pi} \in \Delta_{\mathbf{L}}$ denotes the probability distribution on $[\mathbf{L}]$ induced by \mathbf{p} and Π via $\mathbf{p}_{\Pi}(i) = \mathbf{p}(\Pi_i)$.

Claim: all the shuffle privacy bounds are "immediate"

(For every hard-earned upper bound, the second is free!)

Amplification by shuffling

[Feldman–McMillan–Talwar'21] (also ['22])

- develop a locally private protocol, get a shuffle private one for free!
- (just make sure you handled the low-privacy regime)

Open Problems

- From Theory to Practice (but really): come on, *bimodality*?
- Tight Instance-Optimal Identity Testing
- Asymmetric closeness testing: <u>Q1</u>-private v. <u>Q2</u>-private
- "Locally Private DKW"? (Learning the CDF of a distribution)
- Memory-Limited Testing

Thank you!

