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Disclaimer



Outline

• What is distribution testing?

• What type of properties are we talking about?

• What are some baselines?

• What are variants, settings, models?

• Uniformity testing!

• Privacy? (It's in the title!)

• Some open problems



Property testing



"Distribution" testing?



What does it mean to be far?

Total variation distance:

"a measure of how distinguishable two distributions are given 
a single sample"



Properties



Testing by learning?



So everything is hard...



So everything is hard... what do we do?



A couple simple tricks



Uniformity testing



You have n i.i.d. samples from some unknown distribution 
over

[k]={1,2,...,k}

and want to know: is it the uniform distribution? Or is it 
statistically far from it, say, at total variation distance ε?



You have n i.i.d. samples from some unknown distribution 
over

[k]={1,2,...,k}

and want to know: is it the uniform distribution? Or is it 
statistically far from it, say, at total variation distance ε?

Everybody knows that the dice are loaded
Everybody rolls with their fingers crossed





Uniformity testing algorithm:

Input: ε in [0,1], n i.i.d. samples from unknown p over [k]

Output: accept or reject

• If p=u, accept with probability ≥ .99

• If TV(p,u)>ε, reject with probability ≥ .99



Uniformity testing ⇔ Identity testing

.99 is arbitrary*

Optimal n is Θ(√k/ε²)



Nice, but how?

(Some ideas?)



Nice, but how? And also, what?

• Data efficiency: does the algo achieve optimal sample complexity?

• Time efficiency: how fast is the algo to run ?

• Memory efficiency: how much memory does the algo require ?

• Simplicity: is the algo simple to describe and implement?

• Simplicity': is the algo simple to analyse?

• Robustness: how "tolerant" is the algo to noise?

• Elegance: OK, that's a bit subjective, but you get it

• Generalizable: Does the algo have useful "bonus features"?



Nice, but how? And also, what?



Key Insight (4 of the Dwarfs)

Forget about TV distance, ℓ₂ distance is a good proxy:

so if p is at TV ≥ ε, it is at ℓ₂ ≥ 2ε/√k.



Key Insight (4 of the Dwarfs)

Also,

so it suffices to estimate ∥p∥₂. How?



Collisions

Fact.

I.e., the squared ℓ₂ norm is the "collision probability."



Collisions

Natural idea.

Take n samples x₁,...xₙ. For each of the n
2

 pairs, check if a collision 
occurs. Count those collisions, and use the result as unbiased estimator 
for ∥p∥₂²; threshold appropriately.



Collisions

Natural idea.

Take n samples x₁,...xₙ. For each of the {n choose 2} pairs, check if a 
collision occurs. Count those collisions, and use the result as unbiased 
estimator for ∥p∥₂²; threshold appropriately.

 Simple Fast Intuitive Elegant Not so simple'



Collisions

More detail:

We want to threshold Z₁ at (1+2ε²)/k or so, to distinguish uniform (𝔼[Z₁] = 
1/k) from far from uniform (𝔼[Z₁] = ∥p∥₂²≥(1+4ε²)/k).

So we want to bound the variance of Z₁ and use Chebyshev's inequality. 
This gets... messy.

(Getting Θ(√k/ε⁴) is not hard. The optimal Θ(√k/ε²) 
is challenging.)



Unique elements

Take n samples, count the number Z₂ of elements that appear exactly once.



Unique elements

Take n samples, count the number Z₂ of elements that appear exactly once.



Unique elements

Take n samples, count the number Z₂ of elements that appear exactly once.

Under uniform: ≈n - n²/k Under "far" p: ≈n - n²∥p∥₂² ≤ n - n²/k - 2n²ε²/k



Unique elements

More detail:

Assuming the variance is small enough, 

 the n²ε²/k gap in expectation
 + Chebyshev (again) 
 + all approximations from the previous slide holding

let us test as long as n=Ω(√k/ε²).



Unique elements

More detail:

Assuming the variance is small enough, 

 the n²ε²/k gap in expectation
 + Chebyshev (again) 
 + all approximations from the previous slide holding

let us test as long as n=Ω(√k/ε²).

Simple Fast Intuitive Elegant



Unique elements

More detail:

Assuming the variance is small enough, 

 the n²ε²/k gap in expectation
 + Chebyshev (again) 
 + all approximations from the previous slide holding

let us test as long as n=Ω(√k/ε²).

Problem: can't work for ε ≫ 1/k¼, since then n ≫ k (but we can't have that 
many distinct elements...)



Next stop: χ²

Idea: the χ² divergence between distributions is a metric thing, related to 
KL divergence and others. Pearson's χ² test is a staple of Statistics. Can we 
have a test inspired by that?



Next stop: χ²

Idea: the χ² divergence between distributions is a metric thing, related to 
KL divergence and others. Pearson's χ² test is a staple of Statistics. Can we 
have a test inspired by that?

where Nᵢ = # times we see i among the n samples. 



Next stop: χ²

Idea: the χ² divergence between distributions is a metric thing, related to 
KL divergence and others. Pearson's χ² test is a staple of Statistics. Can we 
have a test inspired by that?

where Nᵢ = # times we see i among the n samples. It works.*

(𝔼[Z₃] = nk∥p∥₂²  and, again, Chebyshev.)



Plugin estimator: why are we doing all this?

We've been doing a lot of specific stuff, with ad hoc estimators. Why?



Plugin estimator: why are we doing all this?

We've been doing a lot of specific stuff, with ad hoc estimators. Why?

Can't we just:
1. take our n samples

2. compute the empirical distribution p̂

3. see if the "plugin" distance TV(p̂,u) is large

4. be done

?



Plugin estimator: why are we doing all this?

Of course not: the empirical distance TV(p̂,u) will be very large

TV(p̂,u) = 1-o(1)

even if p is uniform, for any n ≪ k.



Plugin estimator: why are we doing all this?

But still yes: the empirical distance TV(p̂,u) will be very large

TV(p̂,u) = 1-o(1)

even if p is uniform, for any n ≪ k, indeed.

But that "o(1)" is not the same if p=u and if TV(p,u) > ε. And somehow 
that's enough!



Plugin estimator: why are we doing all this?

But still yes: the empirical distance TV(p̂,u) will be very large

TV(p̂,u) = 1-o(1)

even if p is uniform, for any n ≪ k, indeed.

But that "o(1)" is not the same if p=u and if TV(p,u) > ε. And somehow 
that's enough!

Need more than Chebyshev for that one.



Plugin estimator: why are we doing all this?

 Simple Fast  Intuitive?!?  Elegant  Generalises

Also, the first one we see not relying on ℓ₂ norm as a proxy.



Binary hashing

I don't like big numbers, like k.



Binary hashing

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½))
and a coin with bias α (Bernoulli(½±α)) can be done
with Θ(1/α²) samples.



Binary hashing

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½))
and a coin with bias α (Bernoulli(½±α)) can be done
with Θ(1/α²) samples.

If we had k=2, we could use that.



Binary hashing

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½))
and a coin with bias α (Bernoulli(½±α)) can be done
with Θ(1/α²) samples.

If we had k=2, we could use that. So let's make k=2.



Binary hashing

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a 
sample is in S, it's tails; otherwise, it's heads.



Binary hashing

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a 
sample is in S, it's tails; otherwise, it's heads.

• Of course, if p=u, then p(S)=|S|/k=½. Fair coin!



Binary hashing

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a 
sample is in S, it's tails; otherwise, it's heads.

• Of course, if p=u, then p(S)=|S|/k=½. Fair coin!

• If TV(p,u) ≥ ε, however...

Biased coin! (With constant probability over choice of S)



Binary hashing

Now we can use our fact, with α := ε/√k. Give sample complexity

Θ(1/α²) = Θ(k/ε²)



Binary hashing

Now we can use our fact, with α := ε/√k. Gives sample complexity

Θ(1/α²) = Θ(k/ε²)

Simple Fast Fun Elegant  Generalises  Not optimal

("Sometimes optimal": very useful in some settings!)



And now, for 
something 
completely 
different



(Differential) Privacy

 https://differentialprivacy.org/

https://differentialprivacy.org/


(Differential) Privacy



(Differential) Privacies

• (Central) Privacy: Trust the Center

• Local Privacy: Trust Nobody

• Shuffle Privacy: Trust The Middle Box



(Differential) Privacies



Differentially Private Testing



Domain Compression

[Acharya–Canonne–Han–Sun–Tyagi'20], [Amin–Joseph–Mao'20]
• trade domain size for statistical distance using shared randomness

• develop a "private-coin" protocol, get a "public-coin" one for free!



Claim: all the shuffle privacy bounds are 
“immediate”

(For every hard-earned upper bound, the second is free!)



Amplification by shuffling

[Feldman–McMillan–Talwar’21] (also [‘22])
• develop a locally private protocol, get a shuffle private one for free!

• (just make sure you handled the low-privacy regime)



Open Problems

- From Theory to Practice (but really): come on, bimodality?

- Tight Instance-Optimal Identity Testing

- Asymmetric closeness testing: 𝜚₁-private v. 𝜚₂-private

- "Locally Private DKW"? (Learning the CDF of a distribution)

- Memory-Limited Testing



Thank you!


	Slide 1:  Distribution Testing: Hypothesis Testing from Very Little (or Very Private) Data
	Slide 2: Disclaimer
	Slide 3: Disclaimer
	Slide 4: Disclaimer
	Slide 5: Outline
	Slide 6: Property testing
	Slide 7: "Distribution" testing?
	Slide 8: What does it mean to be far?
	Slide 9: Properties
	Slide 10: Testing by learning?
	Slide 11: So everything is hard...
	Slide 12: So everything is hard... what do we do?
	Slide 13: A couple simple tricks
	Slide 14: Uniformity testing
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Nice, but how?
	Slide 21: Nice, but how? And also, what?
	Slide 22: Nice, but how? And also, what?
	Slide 23: Key Insight (4 of the Dwarfs)
	Slide 24: Key Insight (4 of the Dwarfs)
	Slide 25: Collisions
	Slide 26: Collisions
	Slide 27: Collisions
	Slide 28: Collisions
	Slide 29: Unique elements
	Slide 30: Unique elements
	Slide 31: Unique elements
	Slide 32: Unique elements
	Slide 33: Unique elements
	Slide 34: Unique elements
	Slide 35: Next stop: χ²
	Slide 36: Next stop: χ²
	Slide 37: Next stop: χ²
	Slide 38: Plugin estimator: why are we doing all this?
	Slide 39: Plugin estimator: why are we doing all this?
	Slide 40: Plugin estimator: why are we doing all this?
	Slide 41: Plugin estimator: why are we doing all this?
	Slide 42: Plugin estimator: why are we doing all this?
	Slide 43: Plugin estimator: why are we doing all this?
	Slide 44: Binary hashing
	Slide 45: Binary hashing
	Slide 46: Binary hashing
	Slide 47: Binary hashing
	Slide 48: Binary hashing
	Slide 49: Binary hashing
	Slide 50: Binary hashing
	Slide 51: Binary hashing
	Slide 52: Binary hashing
	Slide 53: And now, for something completely different
	Slide 54: (Differential) Privacy
	Slide 55: (Differential) Privacy
	Slide 56: (Differential) Privacies
	Slide 57: (Differential) Privacies
	Slide 58: Differentially Private Testing
	Slide 59: Domain Compression
	Slide 60: Claim: all the shuffle privacy bounds are “immediate”
	Slide 61: Amplification by shuffling
	Slide 62: Open Problems
	Slide 63: Thank you!

