Distribution Testing:
Hypothesis Testing
from Very Little (or
Very Private) Data

Clément Canonne (University of Sydney)

Disclaimer

Disclaimer

]]
amlng_ [C] o

PI’Obabllity JIi;;/zgcg)thesis testing for high-dimensional
INTRODUCTION TO Distributions multinomials: A selective review

PROPERTY

Sivaraman Balakrishnan, Larry Wasserman

New algorithms for estimating parameters of distributions Foundations and Trends® in
over big domains need signiﬁcant]y fewer samples. Ann. Appl. Stat. 12(2): 727-749 (June 2018). DOI: 10.1214/18-A0AS11555F Communications and Information Theory

19:6

=i[m] By Ronitt Rubinfeld
DOI: 10.1145/2331042.2331052 ABOUT FIRST PAGE CITED BY REFERENCES
e

15 http:/ /theoryofcomputing.org ISSN 1557-2862
: THEORY OF COMPUTING
§ - AN OPEN ACCESS JOURNAL
:é Endorsed by ACM SIGACT
Theory of Computing Library "51

Graduate Surveys 9

A Survey on Distribution Testing: Your Data is Big.
But is it Blue?

by Clément L. Canonne
Published: August 15, 2020 (100 pages)

Disclaimer

]]
amlng_ [C] o

PI’Obabllity JIi;;/z;:cs)thesis testing for high-dimensional
INTRODUCTION TO Distributions multinomials: A selective review

PROPERTY

Sivaraman Balakrishnan, Larry Wasserman

19:6

New algorithms for estimating parameters of distributions Foundations and Trends® in
I E s I I N G over big domains need significantly fewer samples. Ann. Appl. Stat. 12(2): 727-749 (June 2018). DOI: 10.1214/18-A0AS11555F Communications and Information Theory
34

[Elasfs3[m] By Ronitt Rubinfeld
: DOI: 10.1145/2331042.2331052 ABOUT FIRST PAGE CITED BY REFERENCES
e

15 http: / f/theoryofcomputing.org ISSN 1557-2862
: THEORY OF COMPUTING
é - AN OPEN ACCESS JOURNAL
:é Endorsed by ACM SIGACT
Theory of Computing Library "51

Graduate Surveys 9

A Survey on Distribution Testing: Your Data is Big.
But is it Blue?

by Clément L. Canonne
Published: August 15, 2020 (100 pages)

Outline

 What is distribution testing?

 What type of properties are we talking about?
* What are some baselines?

 What are variants, settings, models?

* Uniformity testing!

* Privacy? (It's in the title!)

* Some open problems

Property testing

"Distribution” testing?

What does it mean to be far?

Total variation distance:

day(p.a) = sup (b(5) ~a($) = 5llp —all, € 0.1

"a measure of how distinguishable two distributions are given
a single sample”

Properties

Testing by learning?

So everything is hard...

So everything is hard... what do we do?

A couple simple tricks

Uniformity testing

You have n i.i.d. samples from some unknown distribution
over

[k]={1,2,...,k}

and want to know: is it the uniform distribution? Or is it
statistically far from it, say, at total variation distance ?

You have n i.i.d. samples from some unknown distribution
over

[k]={1,2,...,k}

and want to know: is it the uniform distribution? Or is it
statistically far from it, say, at total variation distance ?

Everybody knows that the dice are loaded
Everybody rolls with their fingers crossed

k=50, n=1000 =50, n=1000000
30000

20000

25000

15000
20000

15000
10000

10000

5000
5000

k=50, n=1000 k=50, n=1000

Uniformity testing algorithm:

Input: € in [0,1], ni.i.d. samples from unknown p over [K]
Output: accept or reject

* If p=u, accept with probability > .99
 If TV(p,u)>¢, reject with probability > .99

Uniformity testing & ldentity testing

.99 is arbitrary*®

Optimal n is ©(Vk/=?)

Nice, but how?

(Some ideas?)

Nice, but how? And also, what?

* Data efficiency: does the algo achieve optimal sample complexity?
* Time efficiency: how fast is the algo to run ?

e Memory efficiency: how much memory does the algo require ?
 Simplicity: is the algo simple to describe and implement?
 Simplicity': is the algo simple to analyse?

 Robustness: how "tolerant" is the algo to noise?

* Elegance: OK, that's a bit subjective, but you get it
 Generalizable: Does the algo have useful "bonus features"?

Nice, but how? And also, what?

Empirical subset weighting

e>1/k1/4

Sample complexity Notes References
k1/2
Collision-based =n Tricky [GRO0O, DGPP19]
kl/z
Unique elements - e> 1/k1/4 [Pan08]
kl/z
Modified y? = Nope [VV17, ADK15, DKN15]
kl/Q
Empirical distance to uniform en Biased [DGPP18]
. . k
Random binary hashing — Fun (+ fast, small space) [ACT19]
£
k1/2
Bipartite collisions — £>> 1/k1/10 [DGKR19]
k1/2

Key Insight (4 of the Dwarfs)

Forget about TV distance, €, distance is a good proxy:

1 VEk

Aoy (P we) = 5 p = well, < 571 — will

soifpisat TV ¢, itis at €, 2 2¢/Vk.

Key Insight (4 of the Dwarfs)
Also,

k k

Ip—ully = (p(i) —1/k)* =) p(i)* —1/k = ||p|5 — 1/k

so it suffices to estimate ||pll.. How?

Collisions

Fact. L

Pr [z=y]=) p(i)*=|pl

T,y~Pp —

l.e., the squared €, norm is the "collision probability."

Collisions

Natural idea.

Z Lo, =2)

s;ét

Take n samples xi,...Xx,. For each of the (2) pairs, check if a collision
occurs. Count those collisions, and use the result as unbiased estimator
for |Ipll.?; threshold appropriately.

Collisions

Natural idea.

Z Lo, =2)

s;ét

Take n samples xi,...x,. For each of the {n choose 2} pairs, check if a
collision occurs. Count those collisions, and use the result as unbiased
estimator for |Ipll.%; threshold appropriately.

& Simple & Fast & Intuitive & Elegant Not so simple'

Collisions

More detail:

We want to threshold Z; at (1+2<?)/k or so, to distinguish uniform (E[Z,] =
1/k) from far from uniform (E[Z:] = llpll.*>(1+4<2)/k).

So we want to bound the variance of Z; and use Chebyshev's inequality.
This gets... messy.

(Getting ©(Vk/=*) is not hard. The optimal ©(Vk/s?)
is challenging.)

Unique elements

Take n samples, count the number Z, of elements that appear exactly once.

Unique elements

Take n samples, count the number Z, of elements that appear exactly once.

5[2:) = n)_p(i)(1 - p()""

Unique elements

Take n samples, count the number Z, of elements that appear exactly once.

5[2:) = n'y_p(i) (1~ p(i)""

Under uniform: =n - n?/k Under "far" p: =n - n?|lpllz? £ n - n?/k - 2n%e?/k

Unique elements

More detail:
Assuming the variance is small enough,

the n®c?/k gap in expectation

+ Chebyshev (again)
+ all approximations from the previous slide holding

let us test as long as n=Q(Vk/s?).

Unique elements

More detail:
Assuming the variance is small enough,

the n®c?/k gap in expectation

+ Chebyshev (again)
+ all approximations from the previous slide holding

let us test as long as n=Q(Vk/s?).

 Simple & Fast & Intuitive & Elegant

Unigue elements

More detail:
Assuming the variance is small enough,

the n®c?/k gap in expectation
+ Chebyshev (again)
+ all approximations from the previous slide holding

let us test as long as n=Q(Vk/s?).

Problem: can't work for € >> 1/k%, since then n > k (but we can't have that
many distinct elements...)

Next stop: x?

Idea: the ¥? divergence between distributions is a metrie thing, related to
KL divergence and others. Pearson's x? test is a staple of Statistics. Can we
have a test inspired by that?

Next stop: x?

Idea: the ¥? divergence between distributions is a metrie thing, related to
KL divergence and others. Pearson's x? test is a staple of Statistics. Can we
have a test inspired by that?

N,,;—nkz—Ni
-y, M

where N; = # times we see i among the n samples.

Next stop: x?

Idea: the ¥? divergence between distributions is a metrie thing, related to
KL divergence and others. Pearson's x? test is a staple of Statistics. Can we
have a test inspired by that?

N,,;—nk’z—Ni
-y, M

where N; = # times we see i among the n samples. It works.*
(E[Z3] = nkllpll2? and, again, Chebyshev.)

Plugin estimator: why are we doing all this?

We've been doing a lot of specific stuff, with ad hoc estimators. Why?

Plugin estimator: why are we doing all this?

We've been doing a lot of specific stuff, with ad hoc estimators. Why?

Can't we just:

take our n samples

compute the empirical distribution p

see if the "plugin" distance TV(p,u) is large
be done

W e

Plugin estimator: why are we doing all this?

Of course not: the empirical distance TV(p,u) will be very large
TV(p,u) = 1-0(1)
even if p is uniform, for any n < k.

k=50, n=1000

Plugin estimator: why are we doing all this?

But still yes: the empirical distance TV(p,u) will be very large
TV(p,u) = 1-0(1)

even if p is uniform, for any n < k, indeed.

But that "o(1)" is not the same if p=u and if TV(p,u) > €. And somehow
that's enough!

Plugin estimator: why are we doing all this?

But still yes: the empirical distance TV(p,u) will be very large
TV(p,u) = 1-0(1)

even if p is uniform, for any n < k, indeed.

But that "o(1)" is not the same if p=u and if TV(p,u) > €. And somehow
that's enough!

Need more than Chebyshev for that one.

Plugin estimator: why are we doing all this?

& Simple & Fast Intuitive?!? « Elegant & Generalises

Also, the first one we see not relying on €, norm as a proxy.

Binary hashing

| don't like big numbers, like k.

Binary hashing
| don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(}2))
and a coin with bias a (Bernoulli(’2ta)) can be done

with ©(1/a?) samples.

Binary hashing
| don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(}2))
and a coin with bias a (Bernoulli(’2ta)) can be done

with ©(1/a?) samples.

If we had k=2, we could use that.

Binary hashing
| don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(}2))
and a coin with bias a (Bernoulli(*2xa)) can be done

with ©(1/a?) samples.

If we had k=2, we could use that. So let's make k=2.

Binary hashing

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a
sampleisinS, it's tails; otherwise, it's heads.

Binary hashing

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a
sampleisinS, it's tails; otherwise, it's heads.

* Of course, if p=u, then p(S)=|S|/k=%. Fair coin!

Binary hashing

Partition the domain [k] in two equal parts at random, S and [k]\S. Then if a
sampleisinS, it's tails; otherwise, it's heads.

* Of course, if p=u, then p(S)=|S|/k=%. Fair coin!
 IfTV(p,u) =2 €, however...

r [IP(S) —u(S)] = e/ V) | = (1)

Biased coin! (With constant probability over choice of S)

Binary hashing
Now we can use our fact, with o := £/Vk. Give sample complexity

O(1/a?) = O(k/e?)

Binary hashing
Now we can use our fact, with o := £/Vk. Gives sample complexity
0(1/0?) = O(k/e?)
& Simple & Fast VFun & Elegant & Generalises Not optimal

("Sometimes optimal®: very useful in some settings!)

And now, for
something
completely
different

(Differential) Privacy

& https://differentialprivacy.org/

https://differentialprivacy.org/

(Differential) Privacy

Forallx ~ x'and S C),

Pr[A(xX") € S] < e’ Pr[A(x) €]

(Differential) Privacies

e (Central) Privacy: Trust the Center
e Local Privacy: Trust Nobody

e Shuffle Privacy: Trust The Middle Box

(Differential) Privacies

sssss

sssss

re

R

Differentially Private Testing

Domain Compression

[Acharya—Canonne—Han-Sun—Tyagi'20], [Amin—-Joseph—Mao'20] O
* trade domain size for statistical distance using shared randomness a
» develop a "private-coin" protocol, get a "public-coin" one for free!

Theorem 2.12 (Domain Compression Lemma). There exist absolute ’e
constants ¢y, co > 0 such that the following holds. For any 2 <[< k
and any p.q € A,

L
]‘?_[r dTV(pH: qH) = C1 '\/:dTV(p: q)] > Ca,
where II = (II;, .. .1I,) is a uniformly random partition of [1] in L subsets,

and prr € A, denotes the probability distribution on [L] induced by p
and II via prr(i) = p(11;).

Claim: all the shuffle privacy bounds are
“immediate”

(For every hard-earned upper bound, the second is free!)

"
/&%x

Amplification by shuffling

[Feldman—McMillan—Talwar’21] (also [22])

» develop a locally private protocol, get a shuffle private one for free!
* (just make sure you handled the low-privacy regime)

Open Problems

- From Theory to Practice (but really): come on, bimodality?
- Tight Instance-Optimal Identity Testing

- Asymmetric closeness testing: ~-private v. o,-private

- "Locally Private DKW"? (Learning the CDF of a distribution)

- Memory-Limited Testing

Thank you!

	Slide 1: Distribution Testing: Hypothesis Testing from Very Little (or Very Private) Data
	Slide 2: Disclaimer
	Slide 3: Disclaimer
	Slide 4: Disclaimer
	Slide 5: Outline
	Slide 6: Property testing
	Slide 7: "Distribution" testing?
	Slide 8: What does it mean to be far?
	Slide 9: Properties
	Slide 10: Testing by learning?
	Slide 11: So everything is hard...
	Slide 12: So everything is hard... what do we do?
	Slide 13: A couple simple tricks
	Slide 14: Uniformity testing
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Nice, but how?
	Slide 21: Nice, but how? And also, what?
	Slide 22: Nice, but how? And also, what?
	Slide 23: Key Insight (4 of the Dwarfs)
	Slide 24: Key Insight (4 of the Dwarfs)
	Slide 25: Collisions
	Slide 26: Collisions
	Slide 27: Collisions
	Slide 28: Collisions
	Slide 29: Unique elements
	Slide 30: Unique elements
	Slide 31: Unique elements
	Slide 32: Unique elements
	Slide 33: Unique elements
	Slide 34: Unique elements
	Slide 35: Next stop: χ²
	Slide 36: Next stop: χ²
	Slide 37: Next stop: χ²
	Slide 38: Plugin estimator: why are we doing all this?
	Slide 39: Plugin estimator: why are we doing all this?
	Slide 40: Plugin estimator: why are we doing all this?
	Slide 41: Plugin estimator: why are we doing all this?
	Slide 42: Plugin estimator: why are we doing all this?
	Slide 43: Plugin estimator: why are we doing all this?
	Slide 44: Binary hashing
	Slide 45: Binary hashing
	Slide 46: Binary hashing
	Slide 47: Binary hashing
	Slide 48: Binary hashing
	Slide 49: Binary hashing
	Slide 50: Binary hashing
	Slide 51: Binary hashing
	Slide 52: Binary hashing
	Slide 53: And now, for something completely different
	Slide 54: (Differential) Privacy
	Slide 55: (Differential) Privacy
	Slide 56: (Differential) Privacies
	Slide 57: (Differential) Privacies
	Slide 58: Differentially Private Testing
	Slide 59: Domain Compression
	Slide 60: Claim: all the shuffle privacy bounds are “immediate”
	Slide 61: Amplification by shuffling
	Slide 62: Open Problems
	Slide 63: Thank you!

