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Sublinear graph algorithms

* How much of a graph needs to be

seen for an (approximate) algorithmic task?

* How to sample a large graph?

Algorithm




Sublinear subgraph counting

Py

* Approximate H-count in G

* Gis simple, undirected
* Think about G sparse, results hold in general
* Not property testing!

* G stored as adjacency list



What's the model?
n known initially

\\ V is not known
Nothing else known

Algorithm can crawl/BFS from
some random starting vertices

* [Goldreich-Ron 02] “Standard sparse graph model”

* Vertex query: Get a uniform random vertex

* Degree query: For vertex v, get degree d,

* Neighbor query: For vertex v, get a uar neighbor u

e Edge query: Given vertices u, v, check if edge (u,v) present

* (Get uar edge)



Tool #1: Heavy vertices/edges

Shedding weight



A simple question %

m = #edges
n = #vertices

Avg degree = )., d,/n

d =2m/n

* Estimate the average degree of a graph

* Consider “obvious procedure”: sample uniform random vertices, take
the average

* [Feige 02] O(+/n) samples give a 2-approximation
e Average isin [m/n, 2m/n]
* For n =108, only 10,000 samples!



Why 2? And why v/n?

-

Star graph

Average degree = 2

o(n) samples only leaves, so
empirical avg =1

O

c\/n clique

n — c+/n cycle

Average degree = ¢/2

<< +/n/c samples will not hit
cliqgue. Empirical avg = 2



The variance problem

A — VL

dq d,

Choose k iid samples, so E[X] =k - d
var| X| = k - var[X]

Chebyshev

Pr[|X — BLX]| = eB[x]] < 2 = e

We can have numerator n2

2
k ~ V&I‘[Xl] k ~ Zv dfu but denominator ©(n)

We can have avg deg = O(1)
but avg sq deg = Q(n)



The variance problem

\\/\VW _______________________

di < dy < dy <

* Need to reduce variance

e Can we simply drop “large” outcomes?
* Word of the day: Winsorize




But these are degrees!
Light

Heavy At most 2/em

Sum of degrees of heavy vertices

light vertices 2

2 x (Light—light edges)
+ (Light-heavy edges) >

(1 —¢e)m

At most em
heavy-heavy edges

dy < \/m/e dy, > \/m/e

» Avg degree of light vertices is (1/2)-approx of avg degree

e But light degrees cannot be too large
* So avg light degree has lower variance
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The variance problem

var[Y7] < E[Y{?] < max(Y;)E[Y1]

* \/n samples suffice to estimate average light degree
* That gives (1/2)-approximation to true average degree

* Clean expression that deals with all (sparse to dense) cases

* But wait...how do we even sample Y?
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A tale of two tails

X = n*(avg of k uar degrees) Y = n*(avg of k uar Winsorized degrees)
E[X] =2m E[Y] = sum of light degrees > (1-€)m
XY
PrlX < (1—¢e)m] <PrlY < (1 —¢e)m] Chebyshev on Y, like previous slide
PriX>(1+¢)2m)|<1-—¢ Markov on X ([Feige 02] is tighter)

Take min of O(1/€) estimates for full proof

\/n samples give (2+€)-approx to average degree



Tool #2: Graph orientations

Get some direction



Back to a simple question

R

m = #edges
n = #vertices

Avg degree = )., d,/n

d =2m/n

* Estimate the average degree of a graph
* Beat the obvious procedure of sampling random degrees
* Can we exploit graph structure?

* [Goldreich-Ron 08] (1+€)-approximation in O(x/n) time



Know thy neighbor

[Eden-Ron-S 17]

Pick uar vertex u

Pick uar neighbor v
If d, < d,, output 2d,
If d, >d,, output O

B wN e

Yy

(If equal, break ties consistently.)

Orient G into a DAG as follows
d : Degree
v u<v:ifd, <d,or

d;l_ . Outdegree d,=d,and id(u) <id(v)




What do you expect?



What do you expect?




What do you expect?

2d,

%
u
Sum of outdegrees is m

) /

E[Yl]:%Zu%Qd“ :%Zuzdi =t =d

n

* We have an unbiased estimator for average degree

_, var|Y; max (Y1)
ke~ E[i‘l]Z] < E[Y1]




What’s the max?

dy > dy > df 2m > Zgreen v dy > (d+)2

u

\Y

u max, d,” < v/2m

~ var[YVi] - max(¥Y1) ~ v2m -~ _n_
o & E[Y:]? < E[Y1] =7 = Um

* So 0(y/n ) queries suffice to get (1+&)-approx of average degree



Tool #3: Chiba-Nishizeki

A really really useful fact



Triangle counting
E N\

* Approximate triangle in G

* About as classic as it gets

e [Eden-Levi-Ron-S 15] (1+€)-estimate to t in time:
lgnoring log — —— ( n | m3/2) Optimal!

*
and € O £1/3 ;
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A simple estimator

=

Pick uar (u,v)
2. Pick uar neighbor w from

W .
lower degree endpoint
% ff\\ 3. Check if (u,v,w) is a triangle
e
u \/

te
du,dy)

_ 1
Success prob = - Ze:(u,v)eE —

* Assume access to uar edges
* [Assadi-Kapralov-Khanna 18]

* We want to estimate average t. , # triangles containing e
* t=3m(Qete/m)
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An unbiased estimator

1. Pick uar (u,v)

2. Pick uar neighbor w from
lower degree endpoint

3. Check if (u,v,w) is a triangle,
output Y; = min(d,, d,), else O

. 1 te
Expectation = — Z , -min(d,, d,) Z e

e=(u,v)eEFE mm(du, dv) eEE

I~ var|Y7 ] < max(Yy1) maXquEmln (dy, dy)
~ EVL? = "EM] . By %
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Chiba-Nishizeki to the rescue

Z min(d,,d,) < m - V2m %

(uw,w)EE

* [Chiba-Nishizeki 85] In the context of clique counting and arboricity

* So average min(d,, d,) is at most \/m



An unbiased estimator,

Pick uar (u,v)
2. Pick uar neighbor w from

lower degree endpoint
% . 3. Checkif (u,v,w) is a triangle,
AN output Y; = min(d,, d,), else O

Iif min(d,,d,) <+vm

_, var|Yi] max(Y7)
R e
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Reducing variance

1. Pick uar (u,v)
2. Repeat (1 + min(d,,d,)/v/m)) times

oy a) Pick uar neighbor w from lower
% N degree endpoint
| A b) Check if (u,v,w) is a triangle, set 7,
u Y

= min(d,, d,), else O
3. Output Y; = average Z;

Variance of average of iid variables = Average of variance

V&I’[Zl] maX(Zl)E[Zl]
min(d, )/\/_ min(dy, dy)//m

var[Y7] = = mE[Y]]

L~ var|Yi] < m

~ E[Y1]2 E[Yl

28



The punchline 1. Pick uar (u)

2. Repeat (1 + min(d,,d,)/v/m)) times
a) Pick uar neighbor w from lower

W
% N degree endpoint
| A b) Check if (u,v,w) is a triangle, set Z,
=min(d,, d,), else 0
u v

3. Output Y; = average Z;
[Chiba-Nishizeki 85]!

var|Y1 ] vm m3/2 3
~ < — < /2
1 min(d,, dy) <§ ,gu V)EE min(d,, dfu_D
l —_ — ]_ ) p— 4
Runtime per sample . E)GE ( + Jm 1 4 7
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To fi nis h 1. Pick uar (u,v)

2. Repeat (1 + min(d,,d,)/+/m)) times
a) Pick uar neighbor w from lower
degree endpoint
b) Check if (u,v,w) is a triangle, set Z;
= min(d,, d,), else O
u v 3. Output Y, = average Z;

- — Runtime per sample <3

* m3/2/t algorithm for estimating triangle count
* Assuming uar edges

* Optimal!
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Tool #4: Simulating edge samples

Fake it till you make it



Fake uar edge samples

* Query all degrees in R

e Set up data structure that:
1. Samples uin R proportional to d,/dg
2. Output uar edge incident to v (uar nbr of u)

* This gives uar edge incident to R, in O(1) time
e Can we use these as generic “uar” edges?
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What do we need? 1. Pick uar (u,v)
2. Repeat (1 + min(d,,d,)/+/m)) times
a) Pick uar neighbor w from lower

V s R \/ \/ \l/ W _____________ degree endpoint
b) Check if (u,v,w) is a triangle, set Z,

= min(d,, d,), else O
3. Output Y, = average Z;

~ V&I‘[Yl] Z(u,v)EER min(dua dv)
k=~ =
E[Y1]? —

LR

* When is t; good estimate for total triangle count?
* Denominator (tg) should not too small

 Numerator is easy to deal with (Markov)



Tool #1: Heavy Vertices

e Can we simply drop “large” outcomes?
* Word of the day: Winsorize
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But these are degrees!
Light

Heavy At most (gt)1/3
heavy vertices

At most €1
fully heavy triangles

t’U <t2/3/€1/3 tv Zt2/3/€1/3

* At least (1-€)t triangles incident to light vertices
* Average t, of light vertices gives (1/3)-approx to average t,

I~y var|Y1 | < max (Y1) _ t2/3 n
T EMN]? = EM] T ¢/n (/3
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1. Pickuar (u,v)
W 2. Repeat (1+ min(d,d,)/+/m))times

| n tOta ‘ vee a) Pick uar neighbor w from lower degree

h endpoint

\ M b) Check if (u,v,w) is a triangle, set Z, = min(d,,
\ d,), else 0
/ u

v 3. OutputY, = average Z

$1/3 7 ¢

* Direct analysis gives 3-approx for t
* Optimal complexity for constant factor approx

* Getting (1+€)-approx needs little more work
* Same tools, just need to determine whether vertex is heavy/light



Tool #1: Heavy Vertices
NV NN W\
Tool #2: Graph orientations




Tool #3: Chiba-Nishizeki

Z min(d,,d,) < m-vV2m

(u,v)EE

Tool #4: Simulating edge samples

L ™
—\/
Sample R \



Some survey-ish slides

If you’re in the audience, | hope | cited you



Sublinear subgraph counting

Oﬁ Yo O

X

* [Eden-Levi-Ron-S 15, Eden-Ron-S 20] Clique counting, standard model

n mk/2

cist o

* [Gonen-Ron-Shavitt 15, Eden-Ron-S 17] k-Star counting, standard model

n m 1-1/(k+1)
O1/(k+1) ™ CO1/k sn

AN
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The arboricity connection

* The degeneracy/arboricity a is: max min (or avg) degree of a
subgraph
* The ymisreally a !

» [Eden-Ron-S 18, Eden-Ron-S 20] One can get a in all the complexities

* For any minor-free family graphs:
* Cligue estimation in O(n/C)
e k-Star estimation in n1Vk(instead of n1-1/(k+1))



Sampling uar edge/c\iquep@
y w
X

e [Eden-Ron-Rosenbaum 18, Eden-Rosenbaum 20, Eden-Mossel-Rubinfeld 21, Tetek-
Thorup 22, Eden-Narayanan-Tetek 23] Sampling uar edges

* [Fichtenberger-Gao-Peng 20, Eden-Ron-Rosenbaum 22] Sampling cliques
* [FGP20] does arbitrary subgraphs but needs uar edges
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Model with uar edges

* Access to uniform random edges

« [Aliakbarpour-Biswas-Goulekis-Peebles-Rubinfeld-Yodpinyanee 18] k-star counting

n m
C1/(k+1) T C1/k
* [Assadi-Khanna-Kapralov 19, Fichtenberger-Gao-Peng 20] Any H-subgraph!

n m
me(H) C'1/3 T C
C
* [Chierichetti-Dasgupta-Kumar-Lattanzi-Sarlos 16, Tetek-Thorup 22] Full neighbor list
In one query
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Independent set queries

* A different model, but again, you don’t see the whole graph

* [Beame-HarPeled-Ramamoorthy-Rashtchian-Sinha 18] Edge estimation
e [Addanki-McGregor-Musco 22]

* [Bhattacharya-Bishnu-Ghosh-Mishra 21] Triangles with tripartite queries
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But is it practical?

Constants matter, only when they don’t



What do you mean?

* Algorithms can be implemented “off the shelf”?
 Small constant factors

* |deas can be used for faster algorithms?
* Coding sublinear sampling algorithms

* Write papers in other conferences?
e Design algorithms that non-TCS people care about

* Solve algorithmic problems others care about?
* Either write SciPy package everyone uses, or make some money



Estimating the degree distribution

amazon0601 | — actual | web-Google | — actual
~—— SADDLES ~— SADDLES
— V8§ 111/ — VS
VS.inv : VS_inv
— OWS 10° L — OWS
OWS_inv OWS.inv
ES 1041 ES
FF S FF
— RWJ < 108l — RWJ
— INLinv — IN.inv
102}
10t}
0 ‘ ‘ ‘ ) .
[0 s s sy siamy Sty siomg T L L T/ T/ B T/ LA T2
degree d degree d

e [Eden-Jain-Pinar-Ron-S 18] Total of 0.01n degree queries in all cases



Sublinear triangle counting (for real)

Accuracy of TETRIS

—
o

Il Median Error %
Il Max Error %

(o]

------------------------------------------- 5%

1.4

orkut sinaweibo twitter friendster
Real world graph datasets

Accuracy over 100 independent runs
3% of edges seen, graphs have 300M — 30B edges

Relative Error Percentage (%)

[Bera S 20] Sublinear triangle counting

* |[n the real-world, one cannot sample uniform random vertices
* Need to use random walks from “seed vertices”
* Assume mixing time bounds

* Need to couple random walk with Tools #1 - #4
[Bera-Choudhari-Haddadan-Ahmadian 24] General clique counting
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Estimating m (or n)

e [Dasgupta-Kumar-Sarlos 14, Chierichetti-Dasgupta-Kumar-Lattanzi-
Sarlos 16, BenEliezer-Eden-Oren-Fotakis 22]

* What is the right model?
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But that's how all
your experiments
are run!

The

Not true

* [Goldreich-Ron 02] G is bounded degree, stored as adjacency list
* nvertices, d degree bound

* You can crawl from these seeds
* BFS, Random walks

* You can look up edges

50



The query models...?

* You start with one/few random vertices

* You can crawl! from these seeds
* BFS, Random walks

* You can look up edges
* Mixing time of graph is small

%
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Words of wisdom

Tina Eliassi-Rad

“All of us (applied researchers) are really running sublinear graphs
algorithms, because our data collection is incomplete.

Our data is a random snapshot of the ground truth”



A deep guestion

Tina Eliassi-Rad

“If | run my favorite graph algorithm on the sample, what does that say
about the whole?

How should | collect my graph data?”



Concrete sublinear questions

* Triangle statistics and clustering coefficients

* Distribution of PageRank values . & o :

PageRank @ @

* Cluster/community structure of the graph




Less concrete sublinear questions

* Output of Graph Neural Net allr e
e Qutput of downstream ML task




Time for coffee?

Dana, Talya, and | are working on a survey



