Sublinear Subgraph Counting

C. Seshadhri (Seshadhri Comandur)

Dept. of Computer Science \& Engg
UC Santa Cruz

Amazon Scholar
AWS

aWs

Thanks to my teachers

Manindra Agrawal

Bernard Chazelle

Mike Saks

Tamara Kolda

Ali Pinar

Thanks to my collaborators

Talya Eden

Dana Ron

Sublinear graph algorithms

- How much of a graph needs to be seen for an (approximate) algorithmic task?

- How to sample a large graph?

Sublinear subgraph counting

- Approximate H -count in G
- G is simple, undirected
- Think about G sparse, results hold in general
- Not property testing!
- G stored as adjacency list

What's the model?

- [Goldreich-Ron 02] "Standard sparse graph model"
- Vertex query: Get a uniform random vertex
- Degree query: For vertex v, get degree d_{v}
- Neighbor query: For vertex v, get a uar neighbor u
- Edge query:

Given vertices u, v, check if edge (u, v) present

- (Get uar edge)

Tool \#1: Heavy vertices/edges

Shedding weight

A simple question

m = \#edges
n = \#vertices

Avg degree $=\sum_{v} d_{v} / \mathrm{n}$

$$
\bar{d}=2 \mathrm{~m} / \mathrm{n}
$$

- Estimate the average degree of a graph
- Consider "obvious procedure": sample uniform random vertices, take the average
- [Feige 02] $O(\sqrt{n})$ samples give a 2 -approximation
- Average is in [m/n, 2m/n]
- For $\mathrm{n}=10^{8}$, only 10,000 samples!

Why 2 ? And why \sqrt{n} ?

Star graph
Average degree ≈ 2
o(n) samples only leaves, so empirical avg = 1

Average degree $\approx c / 2$
$\ll \sqrt{n} / c$ samples will not hit clique. Empirical avg $=2$

The variance problem

$$
\begin{array}{cc}
d_{1} & \downarrow \\
& d_{2} \\
& \mathbf{E}\left[X_{1}\right]=\bar{d} \\
& \operatorname{var}\left[X_{1}\right] \leq \frac{\sum_{v} d_{v}^{2}}{n}
\end{array}
$$

Choose k iid samples, so $\mathbf{E}[X]=k \cdot \bar{d}$

$$
\operatorname{var}[X]=k \cdot \operatorname{var}\left[X_{1}\right]
$$

Chebyshev

$$
\begin{array}{r}
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq \varepsilon \mathbf{E}[X]] \leq \frac{\operatorname{var}[X]}{\varepsilon^{2} \mathbf{E}[X]^{2}}=\frac{\operatorname{var}\left[X_{1}\right]}{\varepsilon^{2} k \mathbf{E}\left[X_{1}\right]^{2}} \\
k \approx \frac{\operatorname{var}\left[X_{1}\right]}{\mathbf{E}\left[X_{1}\right]^{2}} \quad k \approx \frac{\sum_{v} d_{v}^{2}}{n \bar{d}^{2}}
\end{array}
$$

We can have numerator n^{2} but denominator $\Theta(n)$

We can have avg deg $=0(1)$ but avg sq deg $=\Omega$ (n)

The variance problem

$$
k \approx \frac{\sum_{v} d_{v}^{2}}{n \bar{d}^{2}}
$$

- Need to reduce variance
- Can we simply drop "large" outcomes?
- Word of the day: Winsorize

But these are degrees!

- Avg degree of light vertices is (1/2)-approx of avg degree
- But light degrees cannot be too large
- So avg light degree has lower variance

The variance problem

$$
\begin{gathered}
Y_{1}=\left\{\begin{array}{ll}
d_{v} & d_{v}<\sqrt{m / \varepsilon} \\
0 & \text { else }
\end{array} \quad k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\max \left(Y_{1}\right)}{\mathbf{E}\left[Y_{1}\right]} \leq \frac{\sqrt{m}}{\bar{d}} \leq \frac{n}{\sqrt{m}}\right. \\
\operatorname{var}\left[Y_{1}\right] \leq \mathbf{E}\left[Y_{1}^{2}\right] \leq \max \left(Y_{1}\right) \mathbf{E}\left[Y_{1}\right]
\end{gathered}
$$

- \sqrt{n} samples suffice to estimate average light degree
- That gives (1/2)-approximation to true average degree
- Clean expression that deals with all (sparse to dense) cases
- But wait...how do we even sample Y ?

A tale of two tails

$$
\begin{array}{ll}
X=n^{*} \text { (avg of } k \text { uar degrees) } & Y=n^{*} \text { (avg of } k \text { uar Winsorized degrees) } \\
E[X]=2 m & E[Y]=\text { sum of light degrees } \geq(1-\varepsilon) m \\
& X \geq Y
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Pr}[X<(1-\varepsilon) m] \leq \operatorname{Pr}[Y<(1-\varepsilon) m] \\
& \operatorname{Pr}[X \geq(1+\varepsilon)(2 m)] \leq 1-\varepsilon
\end{aligned}
$$

Chebyshev on Y, like previous slide

Markov on X ([Feige 02] is tighter)

Take min of $O(1 / \varepsilon)$ estimates for full proof
\sqrt{n} samples give $(2+\varepsilon)$-approx to average degree

Tool \#2: Graph orientations

Get some direction

Back to a simple question

m = \#edges
$\mathrm{n}=$ \#vertices

Avg degree $=\sum_{v} d_{v} / \mathrm{n}$

$$
\bar{d}=2 \mathrm{~m} / \mathrm{n}
$$

- Estimate the average degree of a graph
- Beat the obvious procedure of sampling random degrees
- Can we exploit graph structure?
- [Goldreich-Ron 08] (1+ع)-approximation in $\mathrm{O}(\sqrt{n})$ time

Know thy neighbor

1. Pick uar vertex u
2. Pick uar neighbor v
3. If $d_{u}<d_{v}$, output $2 d_{u}$
4. If $d_{u}>d_{v}$, output 0
(If equal, break ties consistently.)

Orient G into a DAG as follows

$$
\begin{aligned}
& u<v \text { : if } d_{u}<d_{v} \text { or } \\
& \qquad d_{u}=d_{v} \text { and id }(u)<i d(v)
\end{aligned}
$$

What do you expect?

What do you expect?

What do you expect?

- We have an unbiased estimator for average degree

$$
k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\max \left(Y_{1}\right)}{\mathbf{E}\left[Y_{1}\right]}
$$

What's the max?

$$
\begin{gathered}
2 m \geq \sum_{\text {green } v} d_{v} \geq\left(d_{u}^{+}\right)^{2} \\
\max _{u} d_{u}^{+} \leq \sqrt{2 m}
\end{gathered}
$$

$$
k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\max \left(Y_{1}\right)}{\mathbf{E}\left[Y_{1}\right]} \leq \frac{\sqrt{2 m}}{\bar{d}} \leq \frac{n}{\sqrt{m}}
$$

- So $O(\sqrt{n})$ queries suffice to get $(1+\varepsilon)$-approx of average degree

Tool \#3: Chiba-Nishizeki

A really really useful fact

Triangle counting

- Approximate triangle in G
- About as classic as it gets
- [Eden-Levi-Ron-S 15] (1+を)-estimate to t in time:

$$
\begin{aligned}
& \text { Ignoring log } \\
& \text { and } \varepsilon
\end{aligned} \quad O^{*}\left(\frac{n}{t^{1 / 3}}+\frac{m^{3 / 2}}{t}\right) \quad \text { Optimal! }
$$

A simple estimator

1. Pick uar (u,v)
2. Pick uar neighbor w from lower degree endpoint
3. Check if (u, v, w) is a triangle

$$
\text { Success prob }=\frac{1}{m} \sum_{e=(u, v) \in E} \frac{t_{e}}{\min \left(d_{u}, d_{v}\right)}
$$

- Assume access to uar edges
- [Assadi-Kapralov-Khanna 18]
- We want to estimate average t_{e}, \# triangles containing e
- $\mathrm{t}=3 m\left(\sum_{e} t_{e} / m\right)$

An unbiased estimator ${ }_{\text {1. pick uar }(u, v)}$

2. Pick uar neighbor w from lower degree endpoint
3. Check if (u, v, w) is a triangle, output $Y_{1}=\min \left(d_{u}, d_{v}\right)$, else 0

$$
\text { Expectation }=\frac{1}{m} \sum_{e=(u, v) \in E} \frac{t_{e}}{\min \left(d_{u}, d_{v}\right)} \cdot \min \left(d_{u}, d_{v}\right)=\frac{1}{m} \sum_{e \in E} t_{e}
$$

$$
k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\max \left(Y_{1}\right)}{\mathbf{E}\left[Y_{1}\right]}=\frac{\max _{(u, v) \in E} \min \left(d_{u}, d_{v}\right)}{\mathbf{E}\left[Y_{1}\right]}
$$

Chiba-Nishizeki to the rescue

$$
\sum_{(u, v) \in E} \min \left(d_{u}, d_{v}\right) \leq m \cdot \sqrt{2 m}
$$

- [Chiba-Nishizeki 85] In the context of clique counting and arboricity
- So average $\min \left(\mathrm{d}_{\mathrm{u}}, \mathrm{d}_{\mathrm{v}}\right)$ is at most \sqrt{m}

An unbiased estimator ${ }_{\text {1. pick uar }(u, v)}$

$$
\begin{aligned}
& \text { 2. Pick uar neighbor w from } \\
& \text { lower degree endpoint } \\
& \text { 3. Check if }(u, v, w) \text { is a triangle, } \\
& \text { output } Y_{1}=\min \left(d_{u}, d_{v}\right) \text {, else } 0 \\
& \text { If } \min \left(d_{u}, d_{v}\right) \leq \sqrt{m} \\
& k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\max \left(Y_{1}\right)}{\mathbf{E}\left[Y_{1}\right]} \leq \frac{\sqrt{m}}{\mathbf{E}\left[Y_{1}\right]} \\
& \mathbf{E}\left[Y_{1}\right]=\frac{\sum_{e} t_{e}}{m} \\
& =\frac{m^{3 / 2}}{t}
\end{aligned}
$$

Reducing variance

1. Pick uar (u, v)
2. Repeat $\left.\left(1+\min \left(d_{u}, d_{v}\right) / \sqrt{m}\right)\right)$ times
a) Pick uar neighbor w from lower degree endpoint
b) Check if (u, v, w) is a triangle, set Z_{i} $=\min \left(d_{u}, d_{v}\right)$, else 0
3. Output $Y_{1}=$ average Z_{i}

Variance of average of iid variables $=$ Average of variance

$$
\begin{gathered}
\operatorname{var}\left[Y_{1}\right]=\frac{\operatorname{var}\left[Z_{1}\right]}{\min \left(d_{u}, d_{v}\right) / \sqrt{m}} \leq \frac{\max \left(Z_{1}\right) \mathbf{E}\left[Z_{1}\right]}{\min \left(d_{u}, d_{v}\right) / \sqrt{m}}=\sqrt{m} \mathbf{E}\left[Y_{1}\right] \\
k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\sqrt{m}}{\mathbf{E}\left[Y_{1}\right]}
\end{gathered}
$$

The punchline

1. Pick uar (u, v)
2. Repeat $\left.\left(1+\min \left(d_{u}, d_{v}\right) / \sqrt{m}\right)\right)$ times
a) Pick uar neighbor w from lower degree endpoint
b) Check if (u, v, w) is a triangle, set Z_{i}

$$
=\min \left(d_{u}, d_{v}\right) \text {, else } 0
$$

3. Output $Y_{1}=$ average Z_{i}
[Chiba-Nishizeki 85]!

$$
k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\sqrt{m}}{\mathbf{E}\left[Y_{1}\right]}=\frac{m^{3 / 2}}{t}
$$

$$
\leq \sqrt{2} m^{3 / 2}
$$

Runtime per sample $=\frac{1}{m} \sum_{(u, v) \in E}\left(1+\frac{\min \left(d_{u}, d_{v}\right)}{\sqrt{m}}\right)=1+\frac{\sum_{(u, v) \in E} \min \left(d_{u}, d_{v}\right)}{m^{3 / 2}}$

$$
\leq 3
$$

To finish...

$k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}}=\frac{m^{3 / 2}}{t}$

1. Pick uar (u, v)
2. Repeat $\left.\left(1+\min \left(d_{u}, \mathrm{~d}_{\mathrm{v}}\right) / \sqrt{m}\right)\right)$ times
a) Pick uar neighbor w from lower degree endpoint
b) Check if (u, v, w) is a triangle, set Z_{i} $=\min \left(d_{u}, d_{v}\right)$, else 0
3. Output $Y_{1}=$ average Z_{i}

- $\mathrm{m}^{3 / 2} / \mathrm{t}$ algorithm for estimating triangle count
- Assuming uar edges
- Optimal!

Tool \#4: Simulating edge samples

Fake it till you make it

Fake uar edge samples

Sample R

- Query all degrees in R
- Set up data structure that:

1. Samples u in R proportional to d_{u} / d_{R}
2. Output uar edge incident to v (uar nbr of u)

- This gives uar edge incident to R, in $O(1)$ time
- Can we use these as generic "uar" edges?

What do we need?

1. Pick uar (u,v)
2. Repeat $\left.\left(1+\min \left(d_{u}, d_{v}\right) / \sqrt{m}\right)\right)$ times
a) Pick uar neighbor w from lower degree endpoint
b) Check if (u, v, w) is a triangle, set Z_{i} $=\min \left(d_{u}, d_{v}\right)$, else 0
3. Output $Y_{1}=$ average Z_{i}

$$
k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}}=\frac{\sum_{(u, v) \in E_{R}} \min \left(d_{u}, d_{v}\right)}{t_{R}}
$$

- When is t_{R} good estimate for total triangle count?
- Denominator $\left(\mathrm{t}_{\mathrm{R}}\right)$ should not too small
- Numerator is easy to deal with (Markov)

Tool \#1: Heavy Vertices

- Can we simply drop "large" outcomes?
- Word of the day: Winsorize

But these are degrees!

At most $(\varepsilon t)^{1 / 3}$ heavy vertices

At most εt fully heavy triangles

- At least (1- ε)t triangles incident to light vertices
- Average t_{v} of light vertices gives (1/3)-approx to average t_{v}

$$
k \approx \frac{\operatorname{var}\left[Y_{1}\right]}{\mathbf{E}\left[Y_{1}\right]^{2}} \leq \frac{\max \left(Y_{1}\right)}{\mathbf{E}\left[Y_{1}\right]} \approx \frac{t^{2 / 3}}{t / n}=\frac{n}{t^{1 / 3}}
$$

In total...

1. Pick uar (u,v)
2. Repeat $\left.\left(1+\min \left(d_{u}, d_{v}\right) / \sqrt{m}\right)\right)$ times
a) Pick uar neighbor w from lower degree endpoint
b) Check if (u, v, w) is a triangle, set $Z_{i}=\min \left(d_{u}\right.$, d_{v}), else 0
3. Output $Y_{1}=$ average Z_{i}

Sample R

$$
\frac{n}{t^{1 / 3}}+\frac{m^{3 / 2}}{t}
$$

- Direct analysis gives 3 -approx for t
- Optimal complexity for constant factor approx
- Getting ($1+\varepsilon$)-approx needs little more work
- Same tools, just need to determine whether vertex is heavy/light

Tool \#1: Heavy Vertices

Tool \#2: Graph orientations

Tool \#3: Chiba-Nishizeki

$$
\sum_{(u, v) \in E} \min \left(d_{u}, d_{v}\right) \leq m \cdot \sqrt{2 m}
$$

Tool \#4: Simulating edge samples

Some survey-ish slides

If you're in the audience, I hope I cited you

Sublinear subgraph counting

- [Eden-Levi-Ron-S 15, Eden-Ron-S 20] Clique counting, standard model

$$
\frac{n}{C^{1 / 3}}+\frac{m^{k / 2}}{C}
$$

- [Gonen-Ron-Shavitt 15, Eden-Ron-S 17] k-Star counting, standard model

$$
\frac{n}{C^{1 /(k+1)}}+\frac{m}{C^{1 / k}} \leq n^{1-1 /(k+1)}
$$

The arboricity connection

- The degeneracy/arboricity α is: max min (or avg) degree of a subgraph
- The \sqrt{m} is really α !
- [Eden-Ron-S 18, Eden-Ron-S 20] One can get α in all the complexities
- For any minor-free family graphs:
- Clique estimation in $\mathrm{O}(\mathrm{n} / \mathrm{C})$
- k -Star estimation in $\mathrm{n}^{1-1 / \mathrm{k}}$ (instead of $\mathrm{n}^{1-1 /(\mathrm{k}+1)}$)

Sampling uar edge/clique

- [Eden-Ron-Rosenbaum 18, Eden-Rosenbaum 20, Eden-Mossel-Rubinfeld 21, TetekThorup 22, Eden-Narayanan-Tetek 23] Sampling uar edges
- [Fichtenberger-Gao-Peng 20, Eden-Ron-Rosenbaum 22] Sampling cliques - [FGP20] does arbitrary subgraphs but needs uar edges

Model with uar edges

- Access to uniform random edges

- [Aliakbarpour-Biswas-Goulekis-Peebles-Rubinfeld-Yodpinyanee 18] k-star counting

$$
\frac{n}{C^{1 /(k+1)}}+\frac{m}{C^{1 / k}}
$$

- [Assadi-Khanna-Kapralov 19, Fichtenberger-Gao-Peng 20] Any H-subgraph!

$$
\frac{m^{e(H)}}{C}
$$

$$
\frac{n}{C^{1 / 3}}+\frac{m^{k / 2}}{C}
$$

- [Chierichetti-Dasgupta-Kumar-Lattanzi-Sarlos 16, Tetek-Thorup 22] Full neighbor list in one query

Independent set queries

- A different model, but again, you don't see the whole graph
- [Beame-HarPeled-Ramamoorthy-Rashtchian-Sinha 18] Edge estimation
- [Addanki-McGregor-Musco 22]
- [Bhattacharya-Bishnu-Ghosh-Mishra 21] Triangles with tripartite queries

But is it practical?

Constants matter, only when they don't

What do you mean?

- Algorithms can be implemented "off the shelf"?
- Small constant factors
- Ideas can be used for faster algorithms?
- Coding sublinear sampling algorithms
- Write papers in other conferences?
- Design algorithms that non-TCS people care about
- Solve algorithmic problems others care about?
- Either write SciPy package everyone uses, or make some money

Estimating the degree distribution

- [Eden-Jain-Pinar-Ron-S 18] Total of 0.01n degree queries in all cases

Sublinear triangle counting (for real)

Accuracy over 100 independent runs 3% of edges seen, graphs have $300 \mathrm{M}-30 \mathrm{~B}$ edges

- [Bera S 20] Sublinear triangle counting
- In the real-world, one cannot sample uniform random vertices
- Need to use random walks from "seed vertices"
- Assume mixing time bounds
- Need to couple random walk with Tools \#1-\#4
- [Bera-Choudhari-Haddadan-Ahmadian 24] General clique counting

Estimating m (or n)

- [Dasgupta-Kumar-Sarlos 14, Chierichetti-Dasgupta-Kumar-LattanziSarlos 16, BenEliezer-Eden-Oren-Fotakis 22]
- What is the right model?

- [Goldreich-Ron 02] G is bounded degree, stored as adjacency list
- n vertices, d degree bound
- Youcan-select (random) vertices/seeds
- You can crawl from these seeds
- BFS, Random walks
- You can look up edges

The query models...?

- You start with one/few random vertices
- You can crawl from these seeds
- BFS, Random walks
- You can look up edges
- Mixing time of graph is small

Words of wisdom

Tina Eliassi-Rad
"All of us (applied researchers) are really running sublinear graphs algorithms, because our data collection is incomplete.

Our data is a random snapshot of the ground truth"

A deep question

Tina Eliassi-Rad
"If I run my favorite graph algorithm on the sample, what does that say about the whole?
How should I collect my graph data?"

Concrete sublinear questions

- Triangle statistics and clustering coefficients
- Distribution of PageRank values

- Cluster/community structure of the graph

Less concrete sublinear questions

- Output of Graph Neural Net

- Output of downstream ML task

Time for coffee?

Dana, Talya, and I are working on a survey

