
Sublinear Subgraph Counting

C. Seshadhri (Seshadhri Comandur)

1

Dept. of Computer Science & Engg
UC Santa Cruz

Amazon Scholar
AWS

Thanks to my teachers

2

Manindra Agrawal
Bernard Chazelle Mike Saks

Ali PinarTamara Kolda

Thanks to my collaborators

3

Dana RonTalya Eden

Sublinear graph algorithms

• How much of a graph needs to be
 seen for an (approximate) algorithmic task?

• How to sample a large graph?

4

v

v

v

Algorithm

Q1

A1

Q2

A2

Sublinear subgraph counting

• Approximate H-count in G
• G is simple, undirected
• Think about G sparse, results hold in general
• Not property testing!

• G stored as adjacency list

5

H
H

H

H

What’s the model?

• [Goldreich-Ron 02] “Standard sparse graph model”
• Vertex query: Get a uniform random vertex
• Degree query: For vertex v, get degree dv

• Neighbor query: For vertex v, get a uar neighbor u
• Edge query: Given vertices u, v, check if edge (u,v) present
• (Get uar edge)

6

v

v

v

n known initially

V is not known
Nothing else known

Algorithm can crawl/BFS from
some random starting vertices

Tool #1: Heavy vertices/edges

Shedding weight

7

A simple question

• Estimate the average degree of a graph
• Consider “obvious procedure”: sample uniform random vertices, take

the average
• [Feige 02] O(𝑛) samples give a 2-approximation
• Average is in [m/n, 2m/n]
• For n = 108, only 10,000 samples!

8

Avg degree = ∑!𝑑!/n
= 2m/n

m = #edges
n = #vertices

d

Why 2? And why 𝑛?

9

Star graph

Average degree ≈ 2

o(n) samples only leaves, so
empirical avg = 1

c 𝑛	clique

𝑛 − 𝑐 𝑛 cycle

Average degree ≈ c/2

<< 𝑛/𝑐 samples will not hit
clique. Empirical avg = 2

The variance problem

10

𝑑! 𝑑" 𝑑# 𝑑$ 𝑑%&! 𝑑%

Choose k iid samples, so E[X] = k · dE[X1] = d

var[X] = k · var[X1]var[X1] ≤
∑

v
d
2

v

n

Pr
[

|X −E[X]| ≥ εE[X]
]

≤ var[X]
ε2E[X]2

=
var[X1]

ε2kE[X1]2

k ≈

∑
v
d
2

v

nd
2

We can have avg deg = O(1)
but avg sq deg = Ω(n)

We can have numerator n2

but denominator Θ(n)
k ≈

var[X1]
E[X1]2

Chebyshev

The variance problem

• Need to reduce variance

• Can we simply drop “large” outcomes?
• Word of the day: Winsorize

11

𝑑! 𝑑" 𝑑# 𝑑$ 𝑑%&! 𝑑%

k ≈

∑
v
d
2

v

nd
2

≤ ≤ ≤ ≤

But these are degrees!

• Avg degree of light vertices is (1/2)-approx of avg degree
• But light degrees cannot be too large
• So avg light degree has lower variance

12

dv <
√

m/ε dv ≥
√

m/ε

Heavy

Light

At most 2
√

εm

heavy vertices

At most εm
heavy-heavy edges

Sum of degrees of
light vertices ≥

2 x (Light–light edges)
+ (Light-heavy edges) ≥

(1− ε)m

The variance problem

• 𝑛 samples suffice to estimate average light degree
• That gives (1/2)-approximation to true average degree

• Clean expression that deals with all (sparse to dense) cases

13

𝑑! 𝑑" 𝑑# 𝑑$ 𝑑%&! 𝑑%

k ≈
var[Y1]
E[Y1]2

≤ ≤ ≤ ≤

Y1 =
{

dv dv <
√

m/ε

0 else
≤

max(Y1)
E[Y1]

≤
√

m

d
≤ n

√

m

• But wait…how do we even sample Y?

var[Y1] ≤ E[Y 2
1] ≤ max(Y1)E[Y1]

A tale of two tails

14

X = n*(avg of k uar degrees) Y = n*(avg of k uar Winsorized degrees)

Pr[X < (1− ε)m] ≤ Pr[Y < (1− ε)m]

E[X] = 2m E[Y] = sum of light degrees ≥ (1-ε)m

X ≥ Y

Chebyshev on Y, like previous slide

Pr[X ≥ (1 + ε)(2m)] ≤ 1− ε Markov on X ([Feige 02] is tighter)

Take min of O(1/ε) estimates for full proof

𝑛 samples give (2+ε)-approx to average degree

Tool #2: Graph orientations

Get some direction

15

Back to a simple question

• Estimate the average degree of a graph
• Beat the obvious procedure of sampling random degrees
• Can we exploit graph structure?

• [Goldreich-Ron 08] (1+ε)-approximation in O(𝑛) time

16

Avg degree = ∑!𝑑!/n
= 2m/n

m = #edges
n = #vertices

d

Know thy neighbor

17

[Eden-Ron-S 17]

u v

1. Pick uar vertex u
2. Pick uar neighbor v
3. If du < dv , output 2du
4. If du > dv , output 0

(If equal, break ties consistently.)

Orient G into a DAG as follows

u ≺ v: if du < dv or
 du = dv and id(u) < id(v)

dv

d+
v

: Degree

: Outdegree

Y1

What do you expect?

18

u

What do you expect?

19

u

v

What do you expect?

• We have an unbiased estimator for average degree

20

u

v

2du

2du

E[Y1] =
1

n

∑
u

d
+
u

du

· 2du =
1

n

∑
u
2d+

u

Sum of outdegrees is m

=
2m

n
= d

k ≈
var[Y1]
E[Y1]2

≤
max(Y1)
E[Y1]

What’s the max?

• So 𝑂(𝑛) queries suffice to get (1+ε)-approx of average degree

21

v

dv ≥ du ≥ d+
u

u

2m ≥
∑

green v
dv ≥ (d+

u
)2

maxu d
+
u
≤

√
2m

k ≈
var[Y1]
E[Y1]2

≤
max(Y1)
E[Y1]

≤
√

2m

d
≤ n

√

m

Tool #3: Chiba-Nishizeki

A really really useful fact

22

Triangle counting

• Approximate triangle in G
• About as classic as it gets

• [Eden-Levi-Ron-S 15] (1+ε)-estimate to t in time:

23

v

v

v

O∗

(

n

t1/3
+

m
3/2

t

)

Ignoring log
and ε

Optimal!

A simple estimator

• Assume access to uar edges
• [Assadi-Kapralov-Khanna 18]

• We want to estimate average te , # triangles containing e
• t = 3𝑚(∑' 𝑡'/𝑚)

24

u v

w

1. Pick uar (u,v)
2. Pick uar neighbor w from

lower degree endpoint
3. Check if (u,v,w) is a triangle

=
1
m

∑
e=(u,v)∈E

te
min(du,dv)

Success prob

e

An unbiased estimator

25

u v

w

1. Pick uar (u,v)
2. Pick uar neighbor w from

lower degree endpoint
3. Check if (u,v,w) is a triangle,
 output Y1 = min(du, dv), else 0

=
1

m

∑

e=(u,v)∈E

te

min(du, dv)
·min(du, dv) =

1

m

∑

e∈E

teExpectation

k ≈
var[Y1]
E[Y1]2

≤
max(Y1)
E[Y1]

=
max(u,v)∈E min(du, dv)

E[Y1]

Chiba-Nishizeki to the rescue

• [Chiba-Nishizeki 85] In the context of clique counting and arboricity

• So average min(du, dv) is at most 𝑚

26

∑

(u,v)∈E

min(du, dv) ≤ m ·
√
2m

u

2du

2du

An unbiased estimator

27

u v

w

1. Pick uar (u,v)
2. Pick uar neighbor w from

lower degree endpoint
3. Check if (u,v,w) is a triangle,
 output Y1 = min(du, dv), else 0

k ≈
var[Y1]
E[Y1]2

≤
max(Y1)
E[Y1]

min(du, dv) ≤
√
mIf

≤
√
m

E[Y1]
E[Y1] =

∑
e
te

m

=

m
3/2

t

Reducing variance

28

u v

w

1. Pick uar (u,v)
2. Repeat (1 + min(du,dv)/ 𝑚)) times

a) Pick uar neighbor w from lower
degree endpoint

b) Check if (u,v,w) is a triangle, set Zi
= min(du, dv), else 0

3. Output Y1 = average Zi

Variance of average of iid variables = Average of variance

var[Y1] =
var[Z1]

min(du, dv)/
√
m

≤
max(Z1)E[Z1]

min(du, dv)/
√
m

=
√

mE[Y1]

k ≈
var[Y1]
E[Y1]2

≤
√
m

E[Y1]

The punchline

29

u v

w

1. Pick uar (u,v)
2. Repeat (1 + min(du,dv)/ 𝑚)) times

a) Pick uar neighbor w from lower
degree endpoint

b) Check if (u,v,w) is a triangle, set Zi
= min(du, dv), else 0

3. Output Y1 = average Zi

k ≈
var[Y1]
E[Y1]2

≤
√
m

E[Y1]
=

m
3/2

t

Runtime per sample =
1

m

∑

(u,v)∈E

(

1 +
min(du, dv)

√

m

)

= 1 +

∑
(u,v)∈E min(du, dv)

m3/2

≤
√
2m

3/2

[Chiba-Nishizeki 85]!

≤ 3

To finish…

• m3/2/t algorithm for estimating triangle count
• Assuming uar edges

• Optimal!

30

u v

w

1. Pick uar (u,v)
2. Repeat (1 + min(du,dv)/ 𝑚)) times

a) Pick uar neighbor w from lower
degree endpoint

b) Check if (u,v,w) is a triangle, set Zi
= min(du, dv), else 0

3. Output Y1 = average Zi

k ≈
var[Y1]
E[Y1]2

=

m
3/2

t
Runtime per sample < 3

Tool #4: Simulating edge samples

Fake it till you make it

31

Fake uar edge samples

• Query all degrees in R
• Set up data structure that:

1. Samples u in R proportional to du/dR
2. Output uar edge incident to v (uar nbr of u)

• This gives uar edge incident to R, in O(1) time
• Can we use these as generic “uar” edges?

32

Sample R

What do we need?

• When is tR good estimate for total triangle count?
• Denominator (tR) should not too small

• Numerator is easy to deal with (Markov)

33

R

1. Pick uar (u,v)
2. Repeat (1 + min(du,dv)/ 𝑚)) times

a) Pick uar neighbor w from lower
degree endpoint

b) Check if (u,v,w) is a triangle, set Zi
= min(du, dv), else 0

3. Output Y1 = average Zi

k ≈
var[Y1]
E[Y1]2

=

∑
(u,v)∈ER

min(du, dv)

tR

Tool #1: Heavy Vertices

• Can we simply drop “large” outcomes?
• Word of the day: Winsorize

34

𝑡! 𝑡" 𝑡# 𝑡$ 𝑡%&! 𝑡%≤ ≤ ≤ ≤

But these are degrees!

• At least (1-ε)t triangles incident to light vertices
• Average tv of light vertices gives (1/3)-approx to average tv

35

tv < t2/3/ε1/3 tv ≥ t2/3/ε1/3

Heavy

Light

At most (εt)1/3

heavy vertices

At most εt
fully heavy triangles

k ≈
var[Y1]
E[Y1]2

≤
max(Y1)
E[Y1]

Y1 = tv

≈

t2/3

t/n
=

n

t1/3

In total…

• Direct analysis gives 3-approx for t
• Optimal complexity for constant factor approx

• Getting (1+ε)-approx needs little more work
• Same tools, just need to determine whether vertex is heavy/light

36

Sample R

w

u v

1. Pick uar (u,v)
2. Repeat (1 + min(du,dv)/ 𝑚)) times

a) Pick uar neighbor w from lower degree
endpoint

b) Check if (u,v,w) is a triangle, set Zi = min(du,
dv), else 0

3. Output Y1 = average Zi

n

t1/3
+
m

3/2

t

Tool #1: Heavy Vertices

37

𝑑! 𝑑" 𝑑# 𝑑$ 𝑑%&! 𝑑%≤ ≤ ≤ ≤

Tool #2: Graph orientations

u

v

du vs dv

Tool #3: Chiba-Nishizeki

38

Tool #4: Simulating edge samples

∑

(u,v)∈E

min(du, dv) ≤ m ·
√
2m

Sample R

Some survey-ish slides

If you’re in the audience, I hope I cited you

39

Sublinear subgraph counting

• [Eden-Levi-Ron-S 15, Eden-Ron-S 20] Clique counting, standard model

40

v

v

v

H
H

H

H

• [Gonen-Ron-Shavitt 15, Eden-Ron-S 17] k-Star counting, standard model

n

C1/3
+

mk/2

C

n

C1/(k+1)
+

m

C1/k
≤ n

1−1/(k+1)

The arboricity connection
• The degeneracy/arboricity 𝛼 is: max min (or avg) degree of a

subgraph
• The 𝑚 is really 𝛼 !

• [Eden-Ron-S 18, Eden-Ron-S 20] One can get 𝛼 in all the complexities

• For any minor-free family graphs:
• Clique estimation in O(n/C)
• k-Star estimation in n1-1/k (instead of n1-1/(k+1))

41

Sampling uar edge/clique

• [Eden-Ron-Rosenbaum 18, Eden-Rosenbaum 20, Eden-Mossel-Rubinfeld 21, Tetek-
Thorup 22, Eden-Narayanan-Tetek 23] Sampling uar edges

• [Fichtenberger-Gao-Peng 20, Eden-Ron-Rosenbaum 22] Sampling cliques
• [FGP20] does arbitrary subgraphs but needs uar edges

42

Model with uar edges

• Access to uniform random edges

• [Aliakbarpour-Biswas-Goulekis-Peebles-Rubinfeld-Yodpinyanee 18] k-star counting

• [Assadi-Khanna-Kapralov 19, Fichtenberger-Gao-Peng 20] Any H-subgraph!

• [Chierichetti-Dasgupta-Kumar-Lattanzi-Sarlos 16, Tetek-Thorup 22] Full neighbor list
in one query

43

me(H)

C

n

C1/3
+

mk/2

C

n

C1/(k+1)
+

m

C1/k

Independent set queries

• A different model, but again, you don’t see the whole graph

• [Beame-HarPeled-Ramamoorthy-Rashtchian-Sinha 18] Edge estimation
• [Addanki-McGregor-Musco 22]

• [Bhattacharya-Bishnu-Ghosh-Mishra 21] Triangles with tripartite queries

44

But is it practical?

Constants matter, only when they don’t

45

What do you mean?

• Algorithms can be implemented “off the shelf”?
• Small constant factors

• Ideas can be used for faster algorithms?
• Coding sublinear sampling algorithms

• Write papers in other conferences?
• Design algorithms that non-TCS people care about

• Solve algorithmic problems others care about?
• Either write SciPy package everyone uses, or make some money

46

Estimating the degree distribution

• [Eden-Jain-Pinar-Ron-S 18] Total of 0.01n degree queries in all cases

47

Sublinear triangle counting (for real)

• [Bera S 20] Sublinear triangle counting
• In the real-world, one cannot sample uniform random vertices

• Need to use random walks from “seed vertices”
• Assume mixing time bounds

• Need to couple random walk with Tools #1 - #4
• [Bera-Choudhari-Haddadan-Ahmadian 24] General clique counting

48

Accuracy over 100 independent runs
3% of edges seen, graphs have 300M – 30B edges

Estimating m (or n)

• [Dasgupta-Kumar-Sarlos 14, Chierichetti-Dasgupta-Kumar-Lattanzi-
Sarlos 16, BenEliezer-Eden-Oren-Fotakis 22]

• What is the right model?

49

The query model

• [Goldreich-Ron 02] G is bounded degree, stored as adjacency list
• n vertices, d degree bound

• You can select (random) vertices/seeds
• You can crawl from these seeds

• BFS, Random walks
• You can look up edges

50

v

v

v

Not true

But that’s how all
your experiments

are run!

T

R

Still not true

The query models…?

• You start with one/few random vertices
• You can crawl from these seeds
• BFS, Random walks

• You can look up edges
• Mixing time of graph is small

51

v

v

v

Words of wisdom

“All of us (applied researchers) are really running sublinear graphs
algorithms, because our data collection is incomplete.

Our data is a random snapshot of the ground truth”

Tina Eliassi-Rad

A deep question

“If I run my favorite graph algorithm on the sample, what does that say
about the whole?
How should I collect my graph data?”

Tina Eliassi-Rad

Concrete sublinear questions

• Triangle statistics and clustering coefficients

• Distribution of PageRank values

• Cluster/community structure of the graph

Less concrete sublinear questions

• Output of Graph Neural Net

• Output of downstream ML task

Time for coffee?

Dana, Talya, and I are working on a survey

56

