Sublinear Subgraph Counting

C. Seshadhri (Seshadhri Comandur)

Dept. of Computer Science & Engg
UC Santa Cruz

Amazon Scholar
AWS
Thanks to my teachers

Manindra Agrawal

Bernard Chazelle

Mike Saks

Tamara Kolda

Ali Pinar
Thanks to my collaborators

Talya Eden

Dana Ron
Sublinear graph algorithms

• How much of a graph needs to be seen for an (approximate) algorithmic task?

• How to sample a large graph?
Sublinear subgraph counting

- Approximate H-count in G
- G is simple, undirected
 - Think about G sparse, results hold in general
 - Not property testing!
- G stored as adjacency list
What’s the model?

• [Goldreich-Ron 02] “Standard sparse graph model”
• Vertex query: Get a uniform random vertex
• Degree query: For vertex \(v \), get degree \(d_v \)
• Neighbor query: For vertex \(v \), get a uar neighbor \(u \)
• Edge query: Given vertices \(u, v \), check if edge \((u,v) \) present
• (Get uar edge)

n known initially
V is not known
Nothing else known

Algorithm can crawl/BFS from some random starting vertices
Tool #1: Heavy vertices/edges

Shedding weight
A simple question

- Estimate the average degree of a graph
- Consider “obvious procedure”: sample uniform random vertices, take the average
- \([\text{Feige 02}] \, O(\sqrt{n})\) samples give a 2-approximation
 - Average is in \([m/n, 2m/n]\)
 - For \(n = 10^8\), only 10,000 samples!

\[\text{Avg degree} = \frac{\sum_v d_v}{n}\]
\[\overline{d} = \frac{2m}{n}\]

\(m = \#\text{edges}\)
\(n = \#\text{vertices}\)
Why 2? And why \sqrt{n}?

Star graph

Average degree ≈ 2

$o(n)$ samples only leaves, so empirical avg = 1

$n - c\sqrt{n}$ cycle

Average degree $\approx c/2$

$\ll \sqrt{n}/c$ samples will not hit clique. Empirical avg = 2
The variance problem

\[\mathbb{E}[X_1] = \bar{d} \]

\[\text{var}[X_1] \leq \frac{\sum_v d_v^2}{n} \]

Chebyshev

\[\Pr \left[|X - \mathbb{E}[X]| \geq \varepsilon \mathbb{E}[X] \right] \leq \frac{\text{var}[X]}{\varepsilon^2 \mathbb{E}[X]^2} = \frac{\text{var}[X_1]}{\varepsilon^2 k \mathbb{E}[X_1]^2} \]

\[k \approx \frac{\text{var}[X_1]}{\mathbb{E}[X_1]^2} \]

Choose \(k \) iid samples, so \(\mathbb{E}[X] = k \cdot \bar{d} \)

\[\text{var}[X] = k \cdot \text{var}[X_1] \]

\[k \approx \frac{\sum_v d_v^2}{n \bar{d}^2} \]

We can have avg deg = \(O(1) \)

but avg sq deg = \(\Omega(n) \)

We can have numerator \(n^2 \)

but denominator \(\Theta(n) \)
The variance problem

- Need to reduce variance
- Can we simply drop “large” outcomes?
 - Word of the day: Winsorize

\[k \approx \frac{\sum_v d_v^2}{nd^2} \]
But these are degrees!

- Avg degree of light vertices is \((1/2)\)-approx of avg degree
- But light degrees cannot be too large
 - So avg light degree has lower variance

\[d_v < \sqrt{m/\varepsilon}\]
\[d_v \geq \sqrt{m/\varepsilon}\]

- Sum of degrees of light vertices ≥
 - \(2 \times \text{(Light–light edges)} + \text{(Light-heavy edges)} \geq (1 - \varepsilon)m\)

At most \(2\sqrt{\varepsilon m}\) heavy vertices
At most \(\varepsilon m\) heavy-heavy edges
The variance problem

\[
\begin{align*}
\text{\begin{array}{cccc}
\bullet & \bullet & & \\
\bullet & & \bullet & \\
& & \bullet & \\
\end{array}} \quad d_1 \leq d_2 \leq d_3 \leq d_4
\end{align*}
\begin{align*}
\text{\begin{array}{cccc}
& & \bullet & \\
& & \bullet & \\
\bullet & & & \\
\end{array}} \quad d_{n-1} \leq d_n
\end{align*}
\]

\[Y_1 = \begin{cases}
 d_v & d_v < \sqrt{m/\varepsilon} \\
 0 & \text{else}
\end{cases} \]

\[k \approx \frac{\text{var}[Y_1]}{\mathbb{E}[Y_1]^2} \leq \frac{\max(Y_1)}{\mathbb{E}[Y_1]} \leq \frac{\sqrt{m}}{\bar{d}} \leq \frac{n}{\sqrt{m}}\]

\[
\text{var}[Y_1] \leq \mathbb{E}[Y_1^2] \leq \max(Y_1)\mathbb{E}[Y_1]
\]

• \(\sqrt{n}\) samples suffice to estimate average light degree
 • That gives (1/2)-approximation to true average degree

• Clean expression that deals with all (sparse to dense) cases

• But wait...how do we even sample \(Y\)?
A tale of two tails

\[X = n*(\text{avg of k uar degrees}) \]
\[E[X] = 2m \]

\[Y = n*(\text{avg of k uar Winsorized degrees}) \]
\[E[Y] = \text{sum of light degrees} \geq (1-\varepsilon)m \]

\[X \geq Y \]

\[\Pr[X < (1 - \varepsilon)m] \leq \Pr[Y < (1 - \varepsilon)m] \]

Chebyshev on Y, like previous slide

\[\Pr[X \geq (1 + \varepsilon)(2m)] \leq 1 - \varepsilon \]

Markov on X ([Feige 02] is tighter)

Take min of \(O(1/\varepsilon) \) estimates for full proof

\[\sqrt{n} \text{ samples give } (2+\varepsilon)-\text{approx to average degree} \]
Tool #2: Graph orientations

Get some direction
Back to a simple question

- Estimate the average degree of a graph
 - Beat the obvious procedure of sampling random degrees
 - Can we exploit graph structure?

- \([\text{Goldreich-Ron 08}] (1+\varepsilon)\)-approximation in \(O(\sqrt{n})\) time
Know thy neighbor

[Eden-Ron-S 17]

1. Pick u ar vertex u
2. Pick u ar neighbor v
3. If $d_u < d_v$, output $2d_u$
4. If $d_u > d_v$, output 0

(If equal, break ties consistently.)

Orient G into a DAG as follows:

$u < v$: if $d_u < d_v$ or $d_u = d_v$ and $id(u) < id(v)$
What do you expect?
What do you expect?
What do you expect?

We have an unbiased estimator for average degree

\[
E[Y_1] = \frac{1}{n} \sum_u d^+_u \cdot 2d_u = \frac{1}{n} \sum_u 2d^+_u = \frac{2m}{n} = \overline{d}
\]

- We have an unbiased estimator for average degree

\[
k \approx \frac{\text{var}[Y_1]}{E[Y_1]^2} \leq \frac{\max(Y_1)}{E[Y_1]}
\]
What’s the max?

\[d_v \geq d_u \geq d_u^+ \]

\[2m \geq \sum_{\text{green}} v \ d_v \geq (d_u^+)^2 \]

\[\max_u d_u^+ \leq \sqrt{2m} \]

\[k \approx \frac{\text{var}[Y_1]}{E[Y_1]^2} \leq \frac{\max(Y_1)}{E[Y_1]} \leq \frac{\sqrt{2m}}{d} \leq \frac{n}{\sqrt{m}} \]

• So \(O(\sqrt{n}) \) queries suffice to get \((1+\varepsilon)\)-approx of average degree
Tool #3: Chiba-Nishizeki

A really really useful fact
Triangle counting

- Approximate triangle in G
- About as classic as it gets

- [Eden-Levi-Ron-S 15] \((1+\varepsilon)\)-estimate to \(t\) in time:

\[
O^*(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t})
\]

Optimal!
A simple estimator

1. Pick uar (u,v)
2. Pick uar neighbor w from lower degree endpoint
3. Check if (u,v,w) is a triangle

Success prob \[= \frac{1}{m}\sum_{e=(u,v)\in E} \frac{t_e}{\min(d_u,d_v)}\]

• Assume access to uar edges
 • [Assadi-Kapralov-Khanna 18]

• We want to estimate average \(t_e\), # triangles containing e
 • \(t = 3m(\sum e t_e/m)\)
An unbiased estimator

1. Pick uar \((u,v)\)
2. Pick uar neighbor \(w\) from lower degree endpoint
3. Check if \((u,v,w)\) is a triangle, output \(Y_1 = \min(d_w, d_v)\), else 0

Expectation

\[
\frac{1}{m} \sum_{e=(u,v) \in E} \frac{t_e}{\min(d_u, d_v)} \cdot \min(d_u, d_v) = \frac{1}{m} \sum_{e \in E} t_e
\]

\[
k \approx \frac{\text{var}[Y_1]}{\mathbb{E}[Y_1]^2} \leq \frac{\max(Y_1)}{\mathbb{E}[Y_1]} = \frac{\max_{(u,v) \in E} \min(d_u, d_v)}{\mathbb{E}[Y_1]}
\]
Chiba-Nishizeki to the rescue

\[\sum_{(u,v) \in E} \min(d_u, d_v) \leq m \cdot \sqrt{2m} \]

• [Chiba-Nishizeki 85] In the context of clique counting and arboricity

• So average \(\min(d_u, d_v) \) is at most \(\sqrt{m} \)
An unbiased estimator

1. Pick uar (u,v)
2. Pick uar neighbor w from lower degree endpoint
3. Check if (u,v,w) is a triangle, output $Y_1 = \min(d_u, d_v)$, else 0

If $\min(d_u, d_v) \leq \sqrt{m}$

$$k \approx \frac{\text{var}[Y_1]}{E[Y_1]^2} \leq \frac{\max(Y_1)}{E[Y_1]} \leq \frac{\sqrt{m}}{E[Y_1]}$$

$$E[Y_1] = \frac{\sum_e t_e}{m} = \frac{m^{3/2}}{t}$$
Reducing variance

1. Pick uar (u,v)
2. Repeat \((1 + \min(d_u, d_v)/\sqrt{m})\) times
 a) Pick uar neighbor \(w\) from lower degree endpoint
 b) Check if \((u,v,w)\) is a triangle, set \(Z_i = \min(d_u, d_v)\), else 0
3. Output \(Y_1 = \text{average } Z_i\)

Variance of average of iid variables = Average of variance

\[
\text{var}[Y_1] = \frac{\text{var}[Z_1]}{\min(d_u, d_v)/\sqrt{m}} \leq \frac{\max(Z_1) \text{E}[Z_1]}{\min(d_u, d_v)/\sqrt{m}} = \sqrt{m} \text{E}[Y_1]
\]

\[
k \approx \frac{\text{var}[Y_1]}{\text{E}[Y_1]^2} \leq \frac{\sqrt{m}}{\text{E}[Y_1]}
\]
The punchline

1. Pick uar \((u,v)\)
2. Repeat \((1 + \min(d_u, d_v)/\sqrt{m})\) times
 a) Pick uar neighbor \(w\) from lower degree endpoint
 b) Check if \((u,v,w)\) is a triangle, set \(Z_i\) = \(\min(d_u, d_v)\), else 0
3. Output \(Y_1 = \) average \(Z_i\)

\[k \approx \frac{\text{var}[Y_1]}{\mathbb{E}[Y_1]^2} \leq \frac{\sqrt{m}}{\mathbb{E}[Y_1]} = \frac{m^{3/2}}{t} \leq \sqrt{2m^{3/2}} \]

Runtime per sample = \[
\frac{1}{m} \sum_{(u,v) \in E} \left(1 + \frac{\min(d_u, d_v)}{\sqrt{m}}\right) = 1 + \frac{\sum_{(u,v) \in E} \min(d_u, d_v)}{m^{3/2}} \leq 3
\]
To finish...

1. Pick uar (u,v)
2. Repeat \((1 + \min(d_u, d_v)/\sqrt{m})\) times
 a) Pick uar neighbor w from lower degree endpoint
 b) Check if \((u,v,w)\) is a triangle, set \(Z_i = \min(d_u, d_v)\), else 0
3. Output \(Y_1 = \text{average } Z_i\)

\[k \approx \frac{\text{var}[Y_1]}{\text{E}[Y_1]^2} = \frac{m^{3/2}}{t} \]

Runtime per sample < 3

- \(m^{3/2}/t\) algorithm for estimating triangle count
 - Assuming uar edges
- Optimal!
Tool #4: Simulating edge samples

Fake it till you make it
Fake uar edge samples

• Query all degrees in R
• Set up data structure that:
 1. Samples u in R proportional to d_u/d_R
 2. Output uar edge incident to v (uar nbr of u)

• This gives uar edge incident to R, in $O(1)$ time
• Can we use these as generic “uar” edges?
What do we need?

\[k \approx \frac{\text{var}[Y_1]}{\mathbb{E}[Y_1]^2} = \frac{\sum_{(u,v) \in E_R} \min(d_u, d_v)}{t_R} \]

1. Pick uar (u,v)
2. Repeat \((1 + \min(d_u, d_v)/\sqrt{m})\) times
 a) Pick uar neighbor w from lower degree endpoint
 b) Check if \((u,v,w)\) is a triangle, set \(Z_i = \min(d_u, d_v)\), else 0
3. Output \(Y_1 = \text{average } Z_i\)

• When is \(t_R\) good estimate for total triangle count?
 • Denominator \((t_R)\) should not too small

• Numerator is easy to deal with (Markov)
Tool #1: Heavy Vertices

- Can we simply drop “large” outcomes?
 - Word of the day: Winsorize
But these are degrees!

- At least \((1-\varepsilon)t\) triangles incident to light vertices
- Average \(t_v\) of light vertices gives \((1/3)\)-approx to average \(t_v\)

\[
k' \approx \frac{\text{var}[Y_1]}{E[Y_1]^2} \leq \frac{\max(Y_1)}{E[Y_1]} \approx \frac{t^{2/3}}{t/n} = \frac{n}{t^{1/3}}
\]
In total...

1. Pick uar (u,v)
2. Repeat \((1 + \min(d_u, d_v) / \sqrt{m}))\) times
 a) Pick uar neighbor w from lower degree endpoint
 b) Check if \((u,v,w)\) is a triangle, set \(Z_i = \min(d_w, d_v)\), else 0
3. Output \(Y_1 = \text{average } Z_i\)

\[
\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}
\]

• Direct analysis gives 3-approx for t
 • Optimal complexity for constant factor approx
• Getting \((1+\varepsilon)\)-approx needs little more work
 • Same tools, just need to determine whether vertex is heavy/light
Tool #1: Heavy Vertices

\[d_1 \leq d_2 \leq d_3 \leq d_4 \]

Tool #2: Graph orientations

\[d_u \text{ vs } d_v \]
Tool #3: Chiba-Nishizeki

\[\sum_{(u,v) \in E} \min(d_u, d_v) \leq m \cdot \sqrt{2m} \]

Tool #4: Simulating edge samples
Some survey-ish slides

If you’re in the audience, I hope I cited you
Sublinear subgraph counting

\[
\frac{n}{C^{1/3}} + \frac{m^{k/2}}{C}
\]

• [Gonen-Ron-Shavitt 15, Eden-Ron-S 17] k-Star counting, standard model

\[
\frac{n}{C^{1/(k+1)}} + \frac{m}{C^{1/k}} \leq n^{1-1/(k+1)}
\]
The arboricity connection

• The degeneracy/arboricity α is: max min (or avg) degree of a subgraph
 • The \sqrt{m} is really α!

• [Eden-Ron-S 18, Eden-Ron-S 20] One can get α in all the complexities

• For any minor-free family graphs:
 • Clique estimation in $O(n/C)$
 • k-Star estimation in $n^{1-1/k}$ (instead of $n^{1-1/(k+1)}$)
Sampling uar edge/clique

• [Fichtenberger-Gao-Peng 20, Eden-Ron-Rosenbaum 22] Sampling cliques
 • [FGP20] does arbitrary subgraphs but needs uar edges
Model with uar edges

• Access to uniform random edges

• [Aliakbarpour-Biswas-Goulekis-Peebles-Rubinfeld-Yodpinyanee 18] k-star counting
 \[
 \frac{n}{C^{1/(k+1)}} + \frac{m}{C^{1/k}}
 \]

 \[
 \frac{n}{C^{1/3}} + \frac{m^{k/2}}{C}
 \]

• [Chierichetti-Dasgupta-Kumar-Lattanzi-Sarlos 16, Tetek-Thorup 22] Full neighbor list in one query
Independent set queries

• A different model, but again, you don’t see the whole graph

• [Beame-HarPeled-Ramamoorthy-Rashtchian-Sinha 18] Edge estimation
 • [Addanki-McGregor-Musco 22]

• [Bhattacharya-Bishnu-Ghosh-Mishra 21] Triangles with tripartite queries
But is it practical?

Constants matter, only when they don’t
What do you mean?

• Algorithms can be implemented “off the shelf”?
 • Small constant factors

• Ideas can be used for faster algorithms?
 • Coding sublinear sampling algorithms

• Write papers in other conferences?
 • Design algorithms that non-TCS people care about

• Solve algorithmic problems others care about?
 • Either write SciPy package everyone uses, or make some money
Estimating the degree distribution

- [Eden-Jain-Pinar-Ron-S 18] Total of 0.01n degree queries in all cases
Sublinear triangle counting (for real)

• [Bera S 20] Sublinear triangle counting
• In the real-world, one cannot sample uniform random vertices
 • Need to use random walks from “seed vertices”
 • Assume mixing time bounds
• Need to couple random walk with Tools #1 - #4
• [Bera-Choudhari-Haddadan-Ahmadian 24] General clique counting

Accuracy over 100 independent runs
3% of edges seen, graphs have 300M – 30B edges
Estimating m (or n)

• [Dasgupta-Kumar-Sarlos 14, Chierichetti-Dasgupta-Kumar-Lattanzi-Sarlos 16, BenEliezer-Eden-Oren-Fotakis 22]

• What is the right model?
• [Goldreich-Ron 02] G is bounded degree, stored as adjacency list
 • n vertices, d degree bound
 • You can select (random) vertices/seeds
 • You can crawl from these seeds
 • BFS, Random walks
 • You can look up edges

But that's how all your experiments are run!
The query models...?

- You start with one/few random vertices
- You can crawl from these seeds
 - BFS, Random walks
- You can look up edges
- Mixing time of graph is small
Words of wisdom

“All of us (applied researchers) are really running sublinear graphs algorithms, because our data collection is incomplete.

Our data is a random snapshot of the ground truth”
A deep question

“If I run my favorite graph algorithm on the sample, what does that say about the whole?
How should I collect my graph data?”
Concrete sublinear questions

• Triangle statistics and clustering coefficients
• Distribution of PageRank values
• Cluster/community structure of the graph
Less concrete sublinear questions

• Output of Graph Neural Net

• Output of downstream ML task
Time for coffee?

Dana, Talya, and I are working on a survey