Testing Assumptions of Learning Algorithms

Arsen Vasilyan

MIT

Talk based on joint works with

Aravind Gollakota Apple

Adam R. Klivans UT Austin Ronitt Rubinfeld MIT

Konstantinos Stavropoulos UT Austin

Part I: Testable Agnostic Learning Framework Distribution Testing + Agnostic Learning

Standard (aka Realizable) PAC Learning

 \mathcal{F} = Halfspaces, Low-depth formulas, Monotone functions, etc...

Learning algo

Agnostic Learning

Adversarial label noise? Concept class doesn't quite fit?

 $OPT_{\mathcal{F}} = \text{error of best}$ classifier in \mathcal{F}

3

 \mathcal{F} = Halfspaces, Low-depth formulas, Monotone functions, etc...

Learning algo

Dataset $S \sim_{i.i.d.} D$,

labeled by **arbitrary** g

Give classifier f

 $\operatorname{err}(f) \coloneqq \Pr_{x \sim D} [f(x) \neq g(x)], \quad \operatorname{OPT}_{\mathcal{F}} \coloneqq \min_{f' \in \mathcal{F}} \operatorname{err}(f')$ Want: w.h.p. $\operatorname{err}(f) \leq \operatorname{OPT}_{\mathcal{F}} + \epsilon$

Why not always do agnostic learning?

class \mathcal{F} = halfspaces in \mathbb{R}^d , i.e.

• 1 on one side of hyperplane,

• 0 on other.

No $2^{o(d)}$ run-time algorithm known.

Computational hardness!!!

e.g. [Guruswami and Raghavendra 06], [Feldman, Gopalan, Khot, and Ponnuswami 06], [Daniely 16]) ...

Way around computational hardness: distribution-specific agnostic learning.

Efficient agnostic learning with distributional assumption!

e.g. "data is uniform on {0,1}^d" "data comes from Gaussian distribution"

Distributional assumptions for agnostic learning are popular!

e.g., [Kalai, Klivans, Mansour, and Servedio 05], [O'Donnell and Servedio 06], [Blais, O'Donnell, and Wimmer 08], [Klivans, O'Donnell, and Servedio 08], [Gopalan and Servedio 10], [Kane 10], [Wimmer 10], [Harsha, Klivans, and Meka 10], [Diakonikolas, Harsha, Klivans, Meka, Raghavendra, Servedio, and Tan 10], [Cheraghchi, Klivans, Kothari, and Lee], [Awasthi, Balcan, and Long 14], [Dachman-Soled, Feldman, Tan, Wan, and Wimmer 14], [Feldman and Vondrak 15], [Feldman and Kothari 15], [Blais, Canonne, Oliveira, Servedio, and Tan 15], [Canonne, Grigorescu, Guo, Kumar, and Wimmer 17], [Feldman, Kothari, and Vondrak 17], [Diakonikolas, Kane, Kontonis, Tzamos, and Zarifis 21] ...

Agnostic Learning Summary

Agnostic learning goal (roughly):

Get classifier f that's ϵ -optimal compared to all classifiers in \mathcal{F}

• Fits a nearly-optimal classifier to data with arbitrary labels.

- Fundamental primitive in learning theory.
- Sidestep hardness results by making distributional assumptions.

But how you use this, actually?

You run algorithm on some data. Real guarantee is:

- Either D=assumption, and therefore $\operatorname{err}(f) \leq OPT_{\mathcal{F}} + \epsilon$
- Or *D* ≠assumption and all bets are off.

Good, you can rely on predictor f.

Not clear how to proceed!

Bad, you probably want to throw *f* away and do something else.

Validation doesn't help

Attempt:

- 1. Run algorithm, get hypothesis f
- 2. Estimate err(f).
- 3. Check $\operatorname{err}(f) \leq OPT_{\mathcal{F}} + \epsilon$

We don't know what $OPT_{\mathcal{F}}(f)$ is!

Use traditional distribution testing?

Standard distribution testing:

Given: $S \sim D$ over $\{0,1\}^d$

Want (w.h.p.):

- **○** D =uniform on $\{0,1\}^d \rightarrow$ Accept
- **O** *D* is ϵ -far from uniform on $\{0,1\}^d$ in TV distance \rightarrow Reject

Need $\Theta(\sqrt{\text{domain size}}) = \Theta(2^{d/2})$ samples.

Other distributions, earthmover distance: Still $2^{\Omega(d)}$ samples

Run-times in learning theory:

- "Efficient":
- "Dimension-efficient": d^{O} $2^{d^{1-\Omega(1)}}$ occasionally acceptable

 $poly(d/\epsilon)$

 $d^{O_{\epsilon}(1)}$

Use traditional distribution testing?

Traditional distribution testing too expensive for us. (See text [Cannone '22] for more info on the subject.) Need to do something else.

However, ideas coming from distribution testing will be crucial for us.

More achievable goal: Is data "good enough" for algorithm?

[Rubinfeld Vasilyan STOC'23]: Testable agnostic learning

 \mathcal{F} = Linear Classifiers, Low-depth formulas, Monotone functions, etc...

2) **Soundness** for **any** *D*: w.h.p. if algo accepts $\rightarrow \operatorname{err}(f) \leq \operatorname{OPT}_{\mathcal{F}} + \epsilon$.

Part II: Testable Agnostic Learning via Moment-Matching.

[Rubinfeld, Vasilyan '23]: testable agnostic learners exist for:

\$\mathcal{F}\$ = Halfspaces on inputs from
 O Uniform distribution on {0,1}^d

Run-time of the same order as optimal. Need $d^{\tilde{\Theta}(1/\epsilon^2)}$ just for standard agnostic learning

OTestable agnostic learner with run-time $d^{\tilde{O}(1/\epsilon^4)}$

OGaussian distribution over \mathbb{R}^d

• Testable agnostic learner with run-time $d^{\tilde{O}(1/\epsilon^4)}$

First version of [RV'23] only had Gaussian. Uniform added in version 2, is simultaneous work with [Gollakota Kothari Klivans 23], who use different approach and get better ϵ -dependence of $d^{\tilde{O}(1/\epsilon^2)}$

Our tester in [RV23]: moment-matching test.

For D = Uniform, this is the k-wise independence tester. (e.g. [Alon Goldreich Mansour '03] [Alon Andoni Kaufmann Matulef Rubinfeld Xie '07])

- O Set *k* ← $\tilde{O}(1/\epsilon^4)$.
- Draw $d^{O(k)}$ examples.
- For every monomial $m(x) = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_d^{\alpha_d}$ of degree at most k:
 - O Check

$$\left| E_{x \sim D_{\text{assumption}}}[m(x)] - E_{x \sim \{\text{Examples given to us}\}}[m(x)] \right| \le \frac{\epsilon}{d^{O(k)}}$$

• Check fails \rightarrow **Reject**

• All checks pass \rightarrow Accept

Useful ingredient: framework of [KKMS'05]

Agnostic learning framework via low-degree poly regression algorithm [Kalai Klivans Mansour Servedio FOCS '05]

Very general tool for distribution-specific agnostic learning.

Approximation \rightarrow Learning.

You need to prove: Halfspaces ϵ -approximated by degree-*k* polys relative to distribution *D* in L_1 -norm

[KKMS '05]

You get:

Agnostic learning algorithm for Halfspaces under distribution D in time $d^{O(k)}$ with error ϵ

Testable agnostic learner for halfspaces

Ingredients:

• Tester: check that degree-*k* moments are right.

O Agnostic learning framework via low degree poly regression algorithm [Kalai Klivans Mansour Servedio FOCS '05]

How do we analyze this?

Known:

Every halfspace ϵ -approximated by degree- $\tilde{O}(1/\epsilon^4)$ poly relative to uniform distribution

[RV'23] shows stronger statement: Every halfspace ϵ -approximated by degree- $\tilde{O}(1/\epsilon^4)$ polynomial relative to any $\tilde{O}(1/\epsilon^4)$ -wise independent distribution

This novel statement crucial for analysis Proof in [RV'23] uses Chebychev polynomials and critical index machinery of [Diakonikolas, Gopalan, Jaiswal, Servedio and Viola 2010]

Sandwiching polynomials

This approach introduced by [Gollakota, Klivans, Kothari STOC '23].

Fup

18

([RV '23] used different proof)

Definition: class \mathcal{F} has **sandwiching** degree of k with accuracy ϵ if:

For any f in \mathcal{F} there exist P_{up} and P_{down} of degree $\leq k$ s.

i) For every x in \mathbb{R}^d , $P_{\text{down}}(x) \le f(x) \le P_{\text{up}}(x)$

ii)
$$\mathbb{E}_{x \sim \{0,1\}^d} \left[P_{\text{up}}(x) - P_{\text{down}}(x) \right] \le \epsilon$$

Lemma[GKK '23]: class \mathcal{F} has sandwiching degree of $\leq k$ with accuracy ϵ

Every f in \mathcal{F} is ϵ -approximated by degree-k polynomial w.r.t any k-wise independent D

Proof: $\mathbb{E}_{x \sim D} |f(x) - P_{\text{down}}(x)| \le \mathbb{E}_{x \sim D} \left(P_{\text{up}}(x) - P_{\text{down}}(x) \right) =$ = $\mathbb{E}_{x \sim \{0,1\}^d} (P_{\text{up}}(x) - P_{\text{down}}(x)) \le \epsilon$

How to bound sandwiching degree?

Fooling well-studied in pseudorandomness because lets you approx $\mathbb{E}_{x \sim \{0,1\}^d}[f(x)]$ deterministically.

Definition: f has sandwiching degree of $\leq k$ with accuracy ϵ if: Pup For any f in \mathcal{F} there exist P_{up} and P_{down} of degree $\leq k$ s.t i) For every x in \mathbb{R}^d , $P_{\text{down}}(x) \le f(x) \le P_{\text{up}}(x)$ ii) $\mathbb{E}_{x \sim N(0, I_d)} \left[P_{\text{up}}(x) - P_{\text{down}}(x) \right] \le \epsilon$ 4 **Definition:** function $f: \{0,1\}^d \to \{0,1\}$ is ϵ -fooled by k-wise independent distributions if for all *k*-wise independent *D* over $\{0,1\}^d$ have $\left|\mathbb{E}_{x \sim \{0,1\}^d}[f(x)] - \mathbb{E}_{x \sim D}[f(x)]\right| \le \epsilon$ [L. Bazzi FOCS '07]: f is ϵ -fooled by k-wise independent distributions \rightleftharpoons $\rightleftharpoons f$ has sandwiching degree $\leq k$ with accuracy ϵ

Overall recap

Works for other classes \mathcal{F} too (as long as fooled by k-wise independent)

[Bazzi '07]

Any halfspace can be ϵ -sandwiched by a pair of degree- $\tilde{O}(1/\epsilon^2)$ polynomials

[GKK'23]

[Diakonikolas, Gopalan, Jaiswal, Servedio, Viola '09] $\tilde{O}(1/\epsilon^2)$ -wise independent distributions fool halfspaces

[KKMS'05]

Every halfspace ϵ -approximated by $\tilde{O}(1/\epsilon^2)$ -degree polynomial relative to any $\tilde{O}(1/\epsilon^2)$ -wise independent distribution

 $d^{\tilde{O}(1/\epsilon^2)}$ -time agnostic learning for halfspaces under $\tilde{O}(1/\epsilon^2)$ -wise independent distributions

Moment-matching test

 $d^{\tilde{O}(1/\epsilon^2)}$ -time testable agnostic learning algorithm for halfspaces under uniform distribution over $\{0,1\}^d$

• Learn monotone functions over Uniform on $\{0,1\}^d$

- 2 $\tilde{o}\left(\frac{\sqrt{d}}{\epsilon}\right)$ -time agnostic learning algorithm [Bshouty Tamon 96, KKMS05]
- **O** [RV '23] Testable agnostic learning needs $2^{\Omega(d)}$ samples
- **O** Learn convex sets over Gaussian on \mathbb{R}^d
 - O 2^{Õ(√d)}/_{ϵ⁴}-time agnostic learning algorithm [Klivans, O'Donnell, Servedio 08]
 O [RV '23] Testable agnostic learning needs 2^{Ω(d)} samples

What's different between halfspaces and monotone functions?

Known: halfspaces well-approximated by $poly(1/\epsilon)$ –degree polys relative to uniform distribution

We show stronger statement: Every halfspace well-approximated by $poly(1/\epsilon)$ –degree polynomial relative to $poly(1/\epsilon)$ –wise independent distribution

Known: monotone functions well approximated by \sqrt{d}/ϵ – degree polys relative to uniform distribution

Monoconctena diversioner weise independent distribution?

Part III: Poly-time Testable Agnostic Learning

Follow-up Work: Testable Agnostic Learning in Polynomial Time Believed to be optimal

due to SQ lower bound

Task	Guarantee	Run-time
Agnostic learning	$\operatorname{err}(f) \leq OPT_{\mathcal{F}} + \epsilon$	$d^{\text{poly}(1/\epsilon)}$ [KKMS '05]
Semi-agnostic learning	$\operatorname{err}(f) \leq O(OPT_{\mathcal{F}}) + \epsilon$	poly(<i>d</i> /ε) [Awasthi, Balcan, Long '14]

[Gollakota Klivans Stavropoulos Vasilyan ICLR '24] give testable semi-agnostic learner in this setting (see also [Diakonikolas Kane Kontonis Liu Zarifis NeurIPS '23])

* For [ABL '14], and new results above $\mathcal{F} = \text{origin-centered}$ half-spaces

Follow-up Work: Testable Agnostic Learning in Polynomial Time

 $\mathcal{F} = \text{half-spaces}^*$ D = standard Gaussian

TaskGuaranteeRun-timeSemi-agnostic learning $err(f) \leq O(OPT_F) + \epsilon$ $poly(d/\epsilon)$
[Awasthi, Balcan, Long '14][Gollakota Klivans Stavropoulos Vasilyan ICLR '24] give testablesemi-agnostic learner in this setting (see also [Diakonikolas Kane Kontonis Liu])

Zarifis NeurIPS '23])

Testing degree-poly $(1/\epsilon)$ moments now too slow. Overcome this obstacle using new type of tester.

* For [ABL '14], and new results above $\mathcal{F} = \text{origin-centered}$ half-spaces

Our tester in in [GKSV '23a] in more detail

- Take $\hat{v} \leftarrow [ABL'14, DKTZ 20]$
- Break $[-\sqrt{\log 1/\epsilon}, \sqrt{\log 1/\epsilon}]$ into buckets of width ϵ . Assign each example x_i to bucket containing $x_i \cdot \hat{v}$. Check that following hold:

(i)
$$\Pr_{\mathbf{x} \sim D} \left[\mathbf{x} \cdot \hat{\mathbf{v}} \in \left[-\sqrt{\log 1/\epsilon} , \sqrt{\log 1/\epsilon} \right] \right] \le 10\epsilon$$

(ii) {fraction of examples in each bucket} $\in [\epsilon^2, \epsilon]$ (iv) For each bucket:

- a) Project examples to subspace $\perp \hat{v}$
- b) Run degree-4 moment test on projected points

Part IV: Universal Testable Agnostic Learning

More follow-up work: testing assumptions for families of distributions Tester accepts every

 $\mathcal{F} = \text{half-spaces}^*$ $D = \mathbf{Any}$ isotropic strongly log-concave

Task	Guarantee	Run-time
Semi-agnostic learning	$\operatorname{err}(f) \leq O(OPT_{\mathcal{F}}) + \epsilon$	$poly(d, 1/\epsilon)$
		[Awasthi, Balcan, Long '14]

distribution in large family.

[Gollakota Klivans Stavropoulos Vasilyan 23b NeurIPS] give testable agnostic learner in this setting.

Techniques include sum-of-squares relaxations and certifiable hypercontractivity [Kothari, Steinhardt '17]

Follow-up work: testing assumptions for families of distributions Tester accepts every distribution in large family. $\mathcal{F} = half-spaces^*$ D = Any isotropic strongly log-concave Can handle even larger class, if KLS conjecture true. Task Guarantee **Run-time** Semi-agnostic learning $\operatorname{err}(f) \leq O(OPT_{\mathcal{F}}) + \epsilon$ $poly(d, 1/\epsilon)$ [Awasthi, Balcan, Long '14] [Gollakota Klivans Stavropoulos Vasilyan 23b] give testable agnostic learner in this setting. 27

* For [ABL '14], and new results above $\mathcal{F} = \text{origin-centered}$ half-spaces

How sum-of-squares relaxations come in

Critical property of isotropic log-concave *D*:

$$\max_{\mathbf{v}: \|\mathbf{v}\|_{2}=1} \mathbb{E}_{\mathbf{x}\sim D}\left((\mathbf{v} \cdot \mathbf{x})^{k} \right) \leq k!$$

Want to make sure dataset *S* has this property.

Issue: for k > 2 not known how to compute/approximate $\max_{v: \|v\|_2=1} \mathbb{E}_{x \sim S} \left((v \cdot x)^k \right) \text{ for worst-case } S.$

Study average-case version?

Problem:

- given *S* from isotropic log-concave distribution *D*.
- Say **yes** if $\max_{\mathbf{v}: \|\mathbf{v}\|_2 = 1} \mathbb{E}_{\mathbf{x} \sim S}\left((\mathbf{v} \cdot \mathbf{x})^k \right) \le 10k!$
- Say **no** otherwise.

Algorithm that always says **yes** succeeds with very high probability.

Study average-case **certification** (aka 1-sided testing)

[Kothari, Steinhardt '17] study certification problem:

- given *S* from isotropic log-concave distribution *D*.
- Say yes if $\max_{v: \|v\|_2=1} \mathbb{E}_{x\sim S}\left((v \cdot x)^k\right) \le 10k!$ and produce certificate proving this.
- Say **no** otherwise.

[Kothari, Steinhardt '17] give $poly(d^k)$ algorithm.

- Based on sum-of-squares semidefinite relaxations.
- For isotropic log-concave *D*, analysis conditional on KLS conjecture.
- For isotropic **strongly** log-concave *D*, analysis unconditional.

30

COMPANY

lame (Jurname

Open problems

- Is sandwiching degree bound **required** for testable agnostic learning?
 - Testable agnostic learners for intersections of khalfspaces under Gaussian/uniform on $\{0,1\}^d$? $d^{\tilde{O}(\text{poly}(k)/\epsilon^2)}$ run-time known but maybe can match $d^{\tilde{O}(\text{polylog}(k)/\epsilon^2)}$ run-time of non-testable agnostic learners?

• What other assumptions in TCS can we test?

Part V: Testing Distribution Shift, the Framework [Stavropoulos, Klivans, Vasilyan COLT '24]

Supervised learning revisited

Labelled dataset S_{train}

+1 -1 +1 ->

Unlabelled dataset S_{test}

Learning Algo

Label f(x) for all x in S_{test}

-1

+1

PAC learning: the standard theoretical framework

D =uniform on $\{0,1\}^d$, Standard Gaussian in \mathbb{R}^d , etc...

 \mathcal{F} = Linear Classifiers, Low-depth formulas, Functions of Linear classifiers, Monotone functions, etc...

Supervised learning

Labelled dataset S_{train}

What if different hospitals/ X-ray machines?

-1

+1 -1 +1 ->

Unlabelled dataset S_{test}

Learning Algo

Label f(x) for all x in S_{test}

+1

Distribution shift can lead to bad predictions

 $D_{\text{train}} = \text{Standard Gaussian in } \mathbb{R}^d$, uniform on $\{0,1\}^d$, etc...

 \mathcal{F} = Linear Classifiers, Low-depth Formulas, Intersections of Linear classifiers, Monotone functions, etc... Learning Algo

Dataset $S_{\text{train}} \sim D_{\text{train}}$, labeled by $g \in \mathcal{F}$ \longrightarrow Label f(x) for all x in S_{test} Unlabeled dataset $S_{\text{test}} \sim D_{\text{test}}$ **Concern**: $\Pr_{\substack{x \sim D_{\text{train}}}} [f(x) \neq g(x)] \leq \epsilon$ but $\Pr_{\substack{x \sim S}} [f(x) \neq g(x)] \gg \epsilon$ Happens all the time in practice. $x \sim S_{\text{test}}$ Leads to unexpected wrong predictions! Can't trust the labeling!

Distribution shift

Mitigating distribution shift remains one of the major challenges of machine learning.

For example, classifiers trained on data from one hospital often fail to generalize to other hospitals [ZBL+18, WOD+21, TCK+22].

Common goal in ML: mitigate distribution shift

Our work [Stavropoulos, Klivans, Vasilyan COLT '24]: Theory framework for mitigating distribution shift.

Want to be confident in labeling given by learning algo.

Goal: raise alarm instead of assigning bad labels

Concern: $\Pr_{\substack{x \sim D_{\text{train}}\\x \sim S_{\text{test}}}} [f(x) \neq g(x)] \leq \epsilon$ but $\Pr_{\substack{x \sim S_{\text{test}}\\Can't \text{ trust the labeling!}}} [f(x) \neq g(x)] \gg \epsilon$

 $D_{\text{train}} = \text{Standard Gaussian in } \mathbb{R}^d$, uniform on $\{0,1\}^d$, etc...

 \mathcal{F} = Linear Classifiers, Low-depth formulas, Functions of Linear classifiers, Monotone functions, etc... Learning Algo

Dataset $S_{\text{train}} \sim D_{\text{train}}$, labeled by $g \in \mathcal{F}$ Unlabeled dataset $S_{\text{test}} \sim D_{\text{test}}$

$$\operatorname{err}(f) \coloneqq \Pr_{x \sim S_{\text{test}}} [f(x) \neq g(x)]$$

Accept and Label f(x) for all x in S_{test} OR

Output "**Reject**, there is distribution shift"

distribution shift"

Want w.h.p. 1) Completeness: $D_{\text{test}} = D_{\text{train}} \rightarrow \text{will accept and } \operatorname{err}(f) \leq \epsilon$ 2) Soundness for any D_{test} : if algo accepts $\rightarrow \operatorname{err}(f) \leq \epsilon$.

Goal [SKV '24]: Develop techniques for TDS learning for various D_{train} and \mathcal{F} .

Part VI: Previous work on distribution shifta) Domain adaptationb) PQ learning

Work on domain-adaptation

Work [S Ben-David, Blitzer, Crammer Pereira NeurIPS '06], [Blitzer, Crammer, Kulesza, Pereira, Wortma NeurIPS '07] and [Mansour, Mohri, and Rostamizadeh COLT '09] give bounds on $\Pr_{x \sim S_2} [f(x) \neq g(x)]$ in terms of

$$\Delta_{\mathcal{F}}(S_{\text{test}}) := \max_{f_1, f_2 \in \mathcal{F}} \left(\left| \Pr_{x \in S_{\text{test}}}[f_1(x) \neq f_2(x)] - \Pr_{x \in S_{\text{train}}}[f_1(x) \neq f_2(x)] \right| \right)$$

And similar quantities, involving enumeration over \mathcal{F} .

Not known how to compute in time $2^{o(d)}$.

Work on PQ learning

Framework studied in [Goldwasser, A. Kalai, Y. Kalai, Montasser NeurIPS '20], [A. Kalai, Kanade ALT '21].

PQ learning \rightarrow TDS learning

(roughly) PQ learning requires to reject/reject individual elements in S_{test}

[GKKM '20] studies sample complexity, not run-time. [KK '21] gives $poly(d/\epsilon)$ algorithm for parities over $\{0,1\}^d$

Part VII: the moment-matching method and L_2 -sandwiching polynomials

Moment matching method

Parameter: *k*

• Dataset $S_{\text{train}} \sim_{iid} \{0,1\}^d$, labeled by $f \in \mathcal{F}$

• Unlabeled dataset $S_{\text{test}} \sim D_{\text{test}}$

Can also consider for e.g. D_{train} = standard Gaussian.

TDS-learning via moment-matching:

1. For every monomial *m* over \mathbb{R}^d with deg $(m) \leq 2k$:

If
$$\left|\mathbb{E}_{x \sim S_{\text{test}}}[m(x)] - \mathbb{E}_{x \sim \{0,1\}^d}[m(x)]\right| > \frac{\epsilon}{d^{2k}}$$
, then **Reject**.

2. $P^* \leftarrow \operatorname{argmin}_{P \text{ of degree } k} \left(\mathbb{E}_{x \sim S_{\operatorname{train}}} \left[\left(g(x) - P(x) \right)^2 \right] \right)$

3. Accept and label each x in S_{test} as sign($P^*(x)$)

Run-time: $d^{O(k)}$.

For which *k* will this work?

Sandwiching polynomials

Idea for using sandwiching polynomials inspired by [Gollakota, Klivans, Kothari STOC '23].

Transfer Lemma[KSV '24]: class \mathcal{F} has L_2 -sandwiching degree of k with accuracy ϵ

Moment-matching with parameter k is a TDS-learning algorithm

for \mathcal{F} with error $\leq \epsilon$ under $D_{\text{train}} \sim \{0,1\}^d$.

run-time = $d^{O(k)}$

But which function classes have L_2 -sandwiching polynomials?

In [KSV '24] we use techniques from **pseudorandomness** to show a number of function classes have low-degree L_2 -sandwiching polynomials.

E.g. an intersection of ℓ halfspaces has L_2 -sandwiching polynomials of degree $\tilde{O}(\ell^6/\epsilon^2)$ this + Transfer Lemma \rightarrow TDS learning in time $d^{\tilde{O}(\ell^6/\epsilon^2)}$ for D_{train} =Standard Gaussian OR uniform in $\{0,1\}^d$.

Why techniques from pseudorandomness useful?

Well-studied in pseudorandomness because lets you approx $\mathbb{E}_{x \sim \{0,1\}^d}[f(x)]$ deterministically.

f

Almost what we need.

47

Definition: function $f: \{0,1\}^d \to \{0,1\}$ is ϵ -fooled by *k*-wise independent distributions if

for all *k*-wise independent *D* over $\{0,1\}^d$ have $\left|\mathbb{E}_{x \sim \{0,1\}^d}[f(x)] - \mathbb{E}_{x \sim D}[f(x)]\right| \le \epsilon$

[L. Bazzi FOCS '07]: *f* fooled by *k*-wise independent distributions \rightleftharpoons

 $\rightleftharpoons f$ has sandwiching polynomials of degree k and accuracy ϵ

Definition: *f* has sandwiching degree of $\leq k$ with accuracy ϵ if:

For any *f* in
$$\mathcal{F}$$
 there exist P_{up} and P_{down} of degree $\leq k$ s.t:

i) For every x in \mathbb{R}^d , $P_{\text{down}}(x) \le f(x) \le P_{\text{up}}(x)$

ii) $\mathbb{E}_{x \sim \{0,1\}^d} \left[P_{\text{up}}(x) - P_{\text{down}}(x) \right] \le \epsilon$

Note [Gollakota, Klivans, Kothari STOC '23] used this connection for testing assumptions of agnostic learning algorithms.

We take ideas from pseudorandamness and use them to bound the L_2 -sandwiching degree.

Specifically, we build on [Gopalan, O'Donnell, Wu, Zuckerman CCC '10] and [Diakonikolas, Gopalan, Jaiswal, Servedio, Emanuele Viola STOC '07].

Is moment-matching method best?

• Dataset $S_{\text{train}} \sim_{iid} N(0, I_d)$,

labeled by $g(x) = \operatorname{sign}(\mathbf{v} \cdot \mathbf{x} + \theta)$

• Unlabeled dataset $S_{\text{test}} \sim D_{\text{test}}$

We show: can do better with other methods!

Let $\mathcal{F} = \{\text{general halfspaces}\}.$

Moment-matching requires d^{1/ϵ^2} run-time.

Open: How fast can one TDS-learn halfspaces for $S_{\text{train}} \sim_{iid} \{0,1\}^d$? Best we know is $d^{\tilde{O}(1/\epsilon^2)}$ time

We give algorithm with run-time $d^{\log(\frac{1}{\epsilon})}$.

Conjecture: impossible to do **distribution-free** TDS learning of halfspaces in time $d^{O_{\epsilon}(1)}$

We also show evidence of optimality:

Theorem No statistical query algorithm with run-time $d^{\log^{0.99}(\frac{1}{\epsilon})}$

Surprising, because regular learning can be done in time $poly(d/\epsilon)$.

Conclusion

- We introduce novel frameworks for testing assumptions of learning algorithms.
- We give computationally efficient algorithms.
- Traditional distribution testing algorithms too slow. However, we build on ideas from distribution testing such as *k*-wise independence testing.

