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Part I: Testable Agnostic Learning Framework

Distribution Testing + Agnostic Learning
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Also ok

Standard (aka Realizable) PAC Learning

Dataset 𝑆~𝑖.𝑖.𝑑.𝐷, 

labeled by 𝑔 in ℱ

Learning algo

Give classifier 𝑓

ℱ = Halfspaces, Low-depth formulas, Monotone functions, etc… 

err 𝑓 ≔ Pr
𝑥∼𝐷

[𝑓 𝑥 ≠ 𝑔(𝑥)], 

Want w.h.p. err 𝑓 ≤ 𝜖



Agnostic Learning

Dataset 𝑆~𝑖.𝑖.𝑑.𝐷, 

labeled by arbitrary 𝑔

Learning algo

Give classifier 𝑓

ℱ = Halfspaces, Low-depth formulas, Monotone functions, etc… 

err 𝑓 ≔ Pr
𝑥∼𝐷

[𝑓 𝑥 ≠ 𝑔(𝑥)],     OPTℱ :=min
𝑓′∈ℱ

err(𝑓′)

Want: w.h.p. err 𝑓 ≤ OPTℱ + 𝜖
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Adversarial label noise?

Concept class doesn’t 

quite fit?

𝑂𝑃𝑇ℱ = error of best 

classifier in ℱ



Why not always do agnostic learning?

Computational hardness!!! 

class ℱ = halfspaces in ℝ𝑑, i.e. 

 1 on one side of hyperplane,

 0 on other.

No 𝟐𝒐(𝒅) run-time algorithm known. 

e.g. [Guruswami and Raghavendra 06], [Feldman, Gopalan, Khot, and Ponnuswami

06], [Daniely 16]) …



Way around computational hardness: 

distribution-specific agnostic learning.

Efficient agnostic learning with distributional assumption!
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e.g. “data is uniform on 0,1 𝑑”

“data comes from Gaussian distribution”



Distributional assumptions for agnostic learning 

are popular!

e.g., [Kalai, Klivans, Mansour, and Servedio 05], [O’Donnell and Servedio 06], 

[Blais, O’Donnell, and Wimmer 08], [Klivans, O’Donnell, and Servedio 08], 

[Gopalan and Servedio 10], [Kane 10], [Wimmer 10], [Harsha, Klivans, and Meka

10], [Diakonikolas, Harsha, Klivans, Meka, Raghavendra, Servedio, and Tan 10], 

[Cheraghchi, Klivans, Kothari, and Lee], [Awasthi, Balcan, and Long 14], 

[Dachman-Soled, Feldman, Tan, Wan, and Wimmer 14], [Feldman and Vondrak 15], 

[Feldman and Kothari 15], [Blais, Canonne, Oliveira, Servedio, and Tan 15], 

[Canonne, Grigorescu, Guo, Kumar, and Wimmer 17], [Feldman, Kothari, and 

Vondrak 17], [Diakonikolas, Kane, Kontonis, Tzamos, and Zarifis 21] …
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Agnostic Learning Summary

What if classifier         

is no good?

Thm 1.2 in [paper] 

says it’s 𝜖-optimal

What if your data 

wasn’t uniform?

Agnostic learning goal (roughly):

Get classifier 𝑓 that’s 𝜖-optimal

compared to all classifiers in ℱ

 Fits a nearly-optimal classifier to 

data with arbitrary labels.

 Fundamental primitive in learning 

theory.

 Sidestep hardness results by 

making distributional assumptions.



But how you use this, actually?
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You run algorithm on some data. 

Real guarantee is:

 Either 𝐷=assumption, and 

therefore err 𝑓 ≤ 𝑂𝑃𝑇ℱ + 𝜖

 Or 𝐷 ≠assumption and all bets are 

off.

Good, you can rely on predictor 𝑓.

Bad, you probably want to 

throw 𝑓 away and do something 

else.

Not clear how to proceed!



Validation doesn’t help
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Attempt:

1. Run algorithm, get hypothesis 𝑓

2. Estimate err(𝑓).

3. Check err 𝑓 ≤ 𝑂𝑃𝑇ℱ + 𝜖

We don’t know what 𝑂𝑃𝑇ℱ(𝑓) is!



Use traditional distribution testing?
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Standard distribution testing:

Given: 𝑆~𝐷 over 0,1 𝑑

Want (w.h.p.):

 𝐷 = uniform on 0,1 𝑑 →Accept

 𝐷 is 𝜖-far from uniform on 0,1 𝑑 in TV distance→ Reject

Need Θ domain size = Θ(2 𝑑/2) samples.

Other distributions, earthmover distance:

Still 2Ω(𝑑) samples

Run-times in learning theory:

• “Efficient”:                         poly(𝑑/𝜖)

• “Dimension-efficient”:       𝑑𝑂𝜖(1)

2𝑑
1−Ω(1)

occasionally acceptable



Use traditional distribution testing?

Traditional distribution testing too expensive for us. 

(See text [Cannone ’22] for more info on the subject.)

Need to do something else.  
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However, ideas coming from distribution 

testing will be crucial for us.



More achievable goal:  

Is data “good enough” for 

algorithm?



[Rubinfeld Vasilyan STOC’23]: Testable agnostic learning 

Dataset 𝑆~𝐷, 

labeled by arbitrary 𝑔

Testable agnostic learning algo

Accept, Give classifier 𝑓

OR

Output “Reject, assumption 

is wrong!”

ℱ = Linear Classifiers, Low-depth formulas, Monotone functions, etc… 

err 𝑓 ≔ Pr
𝑥∼𝐷

[𝑓 𝑥 ≠ 𝑔(𝑥)], OPTℱ :=min
𝑓′∈ℱ

err(𝑓′)

Want 1) Completeness: 𝐷 = uniform on 0,1 𝑑 → w.h.p. will accept and err 𝑓 ≤ OPTℱ + 𝜖

2) Soundness for any 𝐷: w.h.p. if algo accepts → err 𝑓 ≤ OPTℱ + 𝜖.
12



Part II: Testable Agnostic Learning

via Moment-Matching.



[Rubinfeld, Vasilyan ’23]: testable agnostic learners exist for:

ℱ = Halfspaces on inputs from 

 Uniform distribution on 0,1 𝑑

Testable agnostic learner with run-time 𝑑 ෨𝑂 1/𝜖4

Gaussian distribution over ℝ𝑑

 Testable agnostic learner with run-time 𝑑 ෨𝑂 1/𝜖4

Run-time of the same order as optimal.

Need 𝑑
෩Θ 1/𝜖2 just for standard 

agnostic learning

First version of [RV’23] only had Gaussian. Uniform added in version 2, is simultaneous work with [Gollakota Kothari Klivans

23], who use different approach and get better 𝜖-dependence of 𝑑
෩O 1/𝜖2
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Our tester in [RV23]: moment-matching test.
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 Set 𝑘 ← ෨𝑂 1/𝜖4 .

 Draw 𝑑𝑂(𝑘) examples.

 For every monomial 𝑚(𝑥) = 𝑥1
𝛼1𝑥2

𝛼2 ⋯𝑥𝑑
𝛼𝑑 of degree at most 𝑘:

 Check

𝐸𝑥∼𝐷assumption
𝑚(𝑥) − 𝐸𝑥∼{Examples given to us} 𝑚(𝑥) ≤

𝜖

𝑑𝑂(𝑘)

 Check fails → Reject

 All checks pass → Accept

For 𝐷 = Uniform, this is the k-wise independence tester. (e.g. [Alon Goldreich

Mansour ‘03] [Alon Andoni Kaufmann Matulef Rubinfeld Xie ‘07]) 



Useful ingredient: framework of [KKMS’05] 

Agnostic learning framework via low-degree poly regression algorithm [Kalai Klivans Mansour 

Servedio FOCS ‘05]

Very general tool for distribution-specific agnostic learning. 

Approximation → Learning.
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You need to prove:

Halfspaces 𝜖-approximated by 

degree-𝑘 polys relative to 

distribution 𝐷 in 𝐿1-norm

You get:

Agnostic learning algorithm for 

Halfspaces under distribution 𝐷 in 

time 𝑑𝑂(𝑘) with error 𝜖

[KKMS ‘05]

𝔼𝑥~𝐷 ℎ 𝑥 − 𝑃 𝑥 ≤ 𝜖



Testable agnostic learner for halfspaces

Ingredients:

 Tester: check that degree-𝑘 moments are right.

 Agnostic learning framework via low degree poly regression algorithm [Kalai

Klivans Mansour Servedio FOCS ‘05]

How do we analyze this?

Known: 

Every halfspace 𝜖-approximated by 

degree- ෨𝑂(1/𝜖4) poly relative to uniform 

distribution

[RV’23] shows stronger statement:

Every halfspace 𝜖-approximated by 

degree- ෨𝑂(1/𝜖4) polynomial relative to any
෨𝑂(1/𝜖4)-wise independent distribution

This novel statement 

crucial for analysis

Proof in [RV’23] uses Chebychev polynomials 

and critical index machinery of  [Diakonikolas, 

Gopalan, Jaiswal, Servedio and Viola 2010]
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Proof:    𝔼𝑥~𝐷 𝑓 𝑥 − 𝑃down 𝑥 ≤ 𝔼𝑥~𝐷 𝑃up 𝑥 − 𝑃down 𝑥 =

= 𝔼𝑥~ 0,1 𝑑(𝑃up 𝑥 − 𝑃down 𝑥 ) ≤ 𝜖

Definition: class ℱ has sandwiching degree of 𝑘 with accuracy 𝜖 if:

For any 𝑓 in ℱ there exist 𝑃up and 𝑃down of degree ≤ 𝑘 s.t:

i)  For every 𝑥 in ℝ𝑑, 𝑃down 𝑥 ≤ 𝑓 𝑥 ≤ 𝑃up(𝑥)

ii) 𝔼𝑥∼ 0,1 𝑑 𝑃up 𝑥 − 𝑃down 𝑥 ≤ 𝜖

Lemma[GKK ’23]: class ℱ has sandwiching degree of ≤ 𝑘 with accuracy 𝜖 .

Sandwiching polynomials
This approach introduced by [Gollakota, 

Klivans, Kothari STOC ’23]. 

([RV ’23] used different proof) 

18

Every 𝑓 in ℱ is 𝜖-approximated by degree-𝑘 polynomial w.r.t any 𝑘-wise independent 𝐷



[L. Bazzi FOCS ‘07]: 𝑓 is 𝜖-fooled by 𝑘-wise independent distributions ⇄

⇄ 𝑓 has sandwiching degree  ≤ 𝑘 with accuracy 𝜖

Definition: 𝑓 has sandwiching degree of ≤ 𝑘 with accuracy 𝜖 if:

For any 𝑓 in ℱ there exist 𝑃up and 𝑃down of degree ≤ 𝑘 s.t:

i)  For every 𝑥 in ℝ𝑑, 𝑃down 𝑥 ≤ 𝑓 𝑥 ≤ 𝑃up(𝑥)

ii) 𝔼𝑥∼𝑁 0,𝐼𝑑 𝑃up 𝑥 − 𝑃down 𝑥 ≤ 𝜖

How to bound sandwiching 

degree?

Fooling well-studied in pseudorandomness

because lets you approx 𝔼𝑥∼ 0,1 𝑑 𝑓(𝑥)

deterministically.
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Definition: function 𝑓: 0,1 𝑑 → {0,1} is 𝜖-fooled by 𝑘-wise independent distributions if 

for all 𝑘-wise independent 𝐷 over 0,1 𝑑 have 𝔼𝑥∼ 0,1 𝑑 𝑓(𝑥) − 𝔼𝑥∼𝐷 𝑓(𝑥) ≤ 𝜖



𝑑 ෨𝑂(1/𝜖2)-time testable agnostic learning 

algorithm for halfspaces under uniform 

distribution over 0,1 𝑑

Overall recap

46

[Diakonikolas, Gopalan, Jaiswal, Servedio, 

Viola ‘09] ෨𝑂(1/𝜖2)-wise independent 

distributions fool halfspaces

[Bazzi ‘07]

Any halfspace can be 𝜖-sandwiched 

by a pair of degree- ෨𝑂(1/𝜖2) 

polynomials 

[GKK’23]

Every halfspace 𝜖-approximated by 
෨𝑂(1/𝜖2)-degree polynomial relative to any 
෨𝑂(1/𝜖2)-wise independent distribution[KKMS’05]

𝑑 ෨𝑂(1/𝜖2)-time agnostic 

learning for halfspaces

under ෨𝑂(1/𝜖2)-wise 

independent distributions

Moment-matching test
20

Works for other classes ℱ too (as long as 

fooled by k-wise independent)



Price of assumption-testing

 Learn monotone functions over Uniform on 0,1 𝑑

 2
෨𝑂

𝑑

𝜖 -time agnostic learning algorithm [Bshouty Tamon 96, KKMS05]

 [RV ‘23] Testable agnostic learning needs 2Ω(𝑑) samples

 Learn convex sets over Gaussian on ℝ𝑑

 2
෨𝑂

𝑑

𝜖4 -time agnostic learning algorithm [Klivans, O’Donnell, Servedio 08]

 [RV ‘23] Testable agnostic learning needs 2Ω(𝑑) samples
21

Weird:

Agnostic learning algorithm is similar –

low degree poly regression



Are monotone functions well-approximated 

by 𝑑/𝜖 − degree polynomial relative to 

𝑑/𝜖−wise independent distribution?

What’s different between halfspaces and monotone 

functions?
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Known: halfspaces well-approximated by 

𝑝𝑜𝑙𝑦(1/𝜖) −degree polys relative to 

uniform distribution

We show stronger statement:

Every halfspace well-approximated by 

𝑝𝑜𝑙𝑦(1/𝜖) −degree polynomial relative to 

𝑝𝑜𝑙𝑦(1/𝜖) −wise independent distribution

Known: monotone functions well 

approximated by 𝑑/𝜖 − degree polys 

relative to uniform distribution

Monotone functions well-approximated by 

𝑑/𝜖 − degree polynomial relative to 

𝑑/𝜖−wise independent distribution



Part III: Poly-time Testable Agnostic Learning



Follow-up Work: Testable Agnostic Learning in 

Polynomial Time

[Gollakota Klivans Stavropoulos Vasilyan ICLR ‘24] give testable 

semi-agnostic learner in this setting (see also [Diakonikolas Kane Kontonis

Liu Zarifis NeurIPS ‘23]) 23

Task Guarantee Run-time

Agnostic learning err 𝑓 ≤ 𝑂𝑃𝑇ℱ + 𝜖 𝑑poly 1/𝜖
[KKMS ’05]

Believed to be optimal 

due to SQ lower bound

ℱ = half-spaces*        𝐷 = standard Gaussian

* For [ABL ‘14],  and new results above ℱ = origin-centered half-spaces

Semi-agnostic learning err 𝑓 ≤ 𝑂(𝑂𝑃𝑇ℱ) + 𝜖 poly 𝑑/𝜖
[Awasthi, Balcan, Long ‘14]



Follow-up Work: Testable Agnostic Learning in 

Polynomial Time

[Gollakota Klivans Stavropoulos Vasilyan ICLR ‘24] give testable 

semi-agnostic learner in this setting (see also [Diakonikolas Kane Kontonis Liu 

Zarifis NeurIPS ‘23])

24

Task Guarantee Run-time

ℱ = half-spaces*        𝐷 = standard Gaussian

* For [ABL ‘14],  and new results above ℱ = origin-centered half-spaces

Semi-agnostic learning err 𝑓 ≤ 𝑂(𝑂𝑃𝑇ℱ) + 𝜖 poly 𝑑/𝜖
[Awasthi, Balcan, Long ‘14]

Testing degree-poly 1/𝜖 moments now too slow. 

Overcome this obstacle using new type of tester.



Our tester in in [GKSV ’23a] in more detail  

• Take ොv ← [ABL’14, DKTZ 20]

• Break [− log 1/𝜖 , log 1/𝜖] into buckets of width 

𝜖. Assign each example x𝑖 to bucket containing 𝑥𝑖 ⋅ ොv. 

Check that following hold:  

(i) Pr
x∼𝐷

x ⋅ ොv ∈ − log 1/𝜖 , log 1/𝜖 ≤ 10𝜖

(ii) {fraction of examples in each bucket} ∈ [𝜖2, 𝜖]
(iv) For each bucket:

a) Project examples to subspace ⊥ ොv
b) Run degree-4 moment test on projected points 𝜖

O log 1/𝜖

25



Part IV: Universal Testable Agnostic Learning



More follow-up work: testing assumptions for 

families of distributions

[Gollakota Klivans Stavropoulos Vasilyan 23b NeurIPS] give testable 

agnostic learner in this setting.

26

Task Guarantee Run-time

ℱ = half-spaces*        𝐷 = Any isotropic strongly log-concave

Semi-agnostic learning err 𝑓 ≤ 𝑂(𝑂𝑃𝑇ℱ) + 𝜖 poly 𝑑, 1/𝜖
[Awasthi, Balcan, Long ‘14]

Tester accepts every
distribution in large family.

Techniques include sum-of-squares relaxations and 
certifiable hypercontractivity [Kothari, Steinhardt ‘17]



Follow-up work: testing assumptions for families 

of distributions

[Gollakota Klivans Stavropoulos Vasilyan 23b] give testable agnostic 

learner in this setting. 27

Task Guarantee Run-time

ℱ = half-spaces*        𝐷 = Any isotropic strongly log-concave

* For [ABL ‘14],  and new results above ℱ = origin-centered half-spaces

Semi-agnostic learning err 𝑓 ≤ 𝑂(𝑂𝑃𝑇ℱ) + 𝜖 poly 𝑑, 1/𝜖
[Awasthi, Balcan, Long ‘14]

Tester accepts every
distribution in large family.

Can handle even larger class, if KLS conjecture true.



How sum-of-squares relaxations come in
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Critical property of isotropic log-concave 𝐷:

max
v: v 2=1

𝔼x∼𝐷 v ⋅ x 𝑘 ≤ 𝑘!

Want to make sure dataset 𝑆 has this property.

Issue: for 𝑘 > 2 not known how to compute/approximate 

max
v: v 2=1

𝔼x∼𝑆 v ⋅ x 𝑘 for worst-case 𝑆.



Study average-case version?
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Problem: 

• given 𝑆 from isotropic log-concave distribution 𝐷.

• Say yes if max
v: v 2=1

𝔼x∼𝑆 v ⋅ x 𝑘 ≤ 10𝑘!

• Say no otherwise.

Algorithm that always says yes succeeds with very high probability.



[Kothari, Steinhardt ’17] study certification problem: 

• given 𝑆 from isotropic log-concave distribution 𝐷.

• Say yes if max
v: v 2=1

𝔼x∼𝑆 v ⋅ x 𝑘 ≤ 10𝑘! and produce certificate proving this.

• Say no otherwise.

[Kothari, Steinhardt ’17] give poly(𝑑𝑘) algorithm.

• Based on sum-of-squares semidefinite relaxations. 

• For isotropic log-concave 𝐷, analysis conditional on KLS conjecture.

• For isotropic strongly log-concave 𝐷, analysis unconditional.

Study average-case certification

(aka 1-sided testing)
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Open problems
• Is sandwiching degree bound required for 

testable agnostic learning?

• Testable agnostic learners for intersections of 𝑘
halfspaces under Gaussian/uniform on 0,1 𝑑? 
𝑑 ෨𝑂(poly 𝑘 /𝜖2)) run-time known but maybe can 
match 𝑑 ෨𝑂(polylog 𝑘 /𝜖2)) run-time of non-testable 
agnostic learners?

• What other assumptions in TCS can we test?
31



Part V: Testing Distribution Shift, the Framework 
[Stavropoulos, Klivans, Vasilyan COLT ‘24]



Supervised learning revisited

Learning Algo Label 𝑓(𝑥) for all 𝑥 in 𝑆test

32

Labelled dataset 𝑆train

+1 -1                    +1

Unlabelled dataset 𝑆test

-1                           +1



PAC learning: the standard theoretical framework

Dataset 𝑆train~𝐷, labeled by 𝑔 ∈ ℱ

Unlabeled dataset 𝑆test~𝐷

Learning Algo

Label 𝑓(𝑥) for all 𝑥 in 𝑆𝑡𝑒𝑠𝑡

𝐷 = uniform on {0,1}𝑑,  Standard Gaussian in 𝑅𝑑, etc…

ℱ = Linear Classifiers, Low-depth formulas, Functions of Linear classifiers, Monotone 

functions, etc… 

errtest 𝑓 ≔ Pr
𝑥∼𝑆test

[𝑓 𝑥 ≠ 𝑔(𝑥)]

Want: w.h.p. errtest 𝑓 ≤ 𝜖

Critical assumption:

𝑆train and 𝑆test come from same 𝐷

33



Supervised learning

Learning Algo Label 𝑓(𝑥) for all 𝑥 in 𝑆𝑡𝑒𝑠𝑡

34

Labelled dataset 𝑆train

+1 -1                    +1

Unlabelled dataset 𝑆test

-1                           +1

What if different hospitals/ 

X-ray machines?



Distribution shift can lead to bad predictions

Dataset 𝑆train~𝐷train, labeled by 𝑔 ∈ ℱ

Unlabeled dataset 𝑆test~𝐷test

Learning Algo

Label 𝑓(𝑥) for all 𝑥 in 𝑆test

𝐷train = Standard Gaussian in ℝ𝑑, uniform on {0,1}𝑑, etc…

ℱ = Linear Classifiers, Low-depth Formulas, Intersections of Linear classifiers, Monotone 

functions, etc… 

Happens all the time in practice.
Concern: Pr

𝑥∼𝐷train
[𝑓 𝑥 ≠ 𝑔(𝑥)] ≤ 𝜖

but Pr
𝑥∼𝑆test

𝑓 𝑥 ≠ 𝑔 𝑥 ≫ 𝜖

Can’t trust the labeling! Leads to unexpected wrong predictions!



Distribution shift

Deployment

Mitigating distribution 

shift remains one of the 

major challenges of 

machine learning.
ML

Deploym

Distribution

shift ML

For example, classifiers 

trained on data from one 

hospital often fail to 

generalize to other 

hospitals [ZBL+18, 

WOD+21, TCK+22]. 36



Common goal in ML: mitigate distribution shift

Our work [Stavropoulos, Klivans, Vasilyan COLT ‘24]: 
Theory framework for mitigating distribution shift.

Want to be confident in labeling given by learning algo.

Goal: raise alarm instead of assigning bad labels

Concern: Pr
𝑥∼𝐷train

[𝑓 𝑥 ≠ 𝑔(𝑥)] ≤ 𝜖

but Pr
𝑥∼𝑆test

𝑓 𝑥 ≠ 𝑔 𝑥 ≫ 𝜖

Can’t trust the labeling! 37



New framework: 

Testable Learning with Distribution Shift (TDS Learning)

Dataset 𝑆train~𝐷train, labeled by 𝑔 ∈ ℱ

Unlabeled dataset 𝑆test~𝐷test

Learning Algo

Accept and Label 𝑓(𝑥) for 

all 𝑥 in 𝑆test

OR

Output “Reject, there is 

distribution shift”

𝐷train = Standard Gaussian in 𝑅𝑑, uniform on {0,1}𝑑, etc…

ℱ = Linear Classifiers, Low-depth formulas, Functions of Linear classifiers, Monotone 

functions, etc… 

err 𝑓 ≔ Pr
𝑥∼𝑆test

[𝑓 𝑥 ≠ 𝑔(𝑥)]

Want w.h.p. 1) Completeness:𝐷test = 𝐷train → will accept and err 𝑓 ≤ 𝜖

2) Soundness for any 𝐷test: if algo accepts → err 𝑓 ≤ 𝜖.
38



Goal [SKV ’24]: Develop techniques for 

TDS learning for various 𝐷train and ℱ.

39



Part VI: Previous work on distribution shift

a) Domain adaptation

b) PQ learning

40



Work on domain-adaptation

Work [S Ben-David, Blitzer, Crammer Pereira NeurIPS ‘06], [Blitzer, 

Crammer, Kulesza, Pereira, Wortma NeurIPS ‘07] and [Mansour, Mohri, and 

Rostamizadeh COLT ’09] give bounds on Pr
𝑥∼𝑆2

[𝑓 𝑥 ≠ 𝑔(𝑥)] in terms of 

Δℱ 𝑆test : = max
𝑓1,𝑓2∈ℱ

Pr
𝑥∈𝑆test

𝑓1 𝑥 ≠ 𝑓2 𝑥 − Pr
𝑥∈𝑆train

𝑓1 𝑥 ≠ 𝑓2 𝑥

And similar quantities, involving enumeration over ℱ.

Not known how to compute in time 2𝑜(𝑑).

41



Work on PQ learning

Framework studied in [Goldwasser, A. Kalai, Y. Kalai, Montasser NeurIPS ‘20], 

[A. Kalai, Kanade ALT ’21].

PQ learning → TDS learning

(roughly) PQ learning requires to reject/reject individual elements in 𝑆test

[GKKM ’20] studies sample complexity, not run-time.

[KK ‘21] gives poly(𝑑/𝜖) algorithm for parities over 0,1 𝑑
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Part VII: the moment-matching method and

𝐿2-sandwiching polynomials   

43



Moment matching 

method 

 Dataset 𝑆train~𝑖𝑖𝑑 0,1 𝑑, 

labeled by 𝑓 ∈ ℱ

 Unlabeled dataset 𝑆test~𝐷test

Parameter: 𝑘

TDS-learning via moment-matching:

1. For every monomial 𝑚 over ℝ𝑑 with deg 𝑚 ≤ 2𝑘:

If 𝔼𝑥∼𝑆test 𝑚 𝑥 − 𝔼
𝑥∼ 0,1 𝑑 𝑚 𝑥 >

𝜖

𝑑2𝑘
, then Reject.

2. 𝑃∗ ← argmin𝑃 of degree 𝑘 E𝑥∼𝑆train 𝑔 𝑥 − 𝑃 𝑥
2

3. Accept and label each 𝑥 in 𝑆test as sign(𝑃∗ 𝑥 )

Run-time: 𝑑𝑂(𝑘). For which 𝑘 will this work?

Can also consider for e.g. 𝐷train= standard Gaussian.
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Sandwiching polynomials

Idea for using sandwiching polynomials 

inspired by [Gollakota, Klivans, Kothari 

STOC ’23]. 

Definition: class ℱ has 𝑳𝟐-sandwiching degree of 𝑘 with accuracy 𝜖 if:

For any 𝑓 in ℱ there exist 𝑃up and 𝑃down of degree ≤ 𝑘 s.t:

i)  For every 𝑥 in ℝ𝑑, 𝑃down 𝑥 ≤ 𝑓 𝑥 ≤ 𝑃up(𝑥)

ii) 𝔼𝑥∼ 0,1 𝑑 𝑃up 𝑥 − 𝑃down 𝑥
2
≤ 𝜖

run-time = 𝑑𝑂(𝑘) 45

Transfer Lemma[KSV ‘24]: class ℱ has 𝑳𝟐-sandwiching degree of 𝑘 with accuracy 𝜖

Moment-matching with parameter 𝑘 is a TDS-learning algorithm 

for ℱ with error ≤ 𝜖 under 𝐷train~ 0,1 𝑑 .



But which function classes have 𝐿2-sandwiching polynomials? 

In [KSV ‘24] we use techniques from pseudorandomness to show a 

number of function classes have low-degree 𝐿2-sandwiching 

polynomials.

E.g. an intersection of ℓ halfspaces has 

𝐿2-sandwiching polynomials of degree ෨𝑂(ℓ6/𝜖2)

this + Transfer Lemma → TDS learning in time 𝑑 ෨𝑂(ℓ6/𝜖2)

for 𝐷train=Standard Gaussian OR uniform in {0,1}𝑑.
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Why techniques from 

pseudorandomness useful?

Definition: function 𝑓: 0,1 𝑑 → {0,1} is 𝜖-fooled by 𝑘-wise independent distributions if 

for all 𝑘-wise independent 𝐷 over 0,1 𝑑 have 𝔼𝑥∼ 0,1 𝑑 𝑓(𝑥) − 𝔼𝑥∼𝐷 𝑓(𝑥) ≤ 𝜖

Well-studied in pseudorandomness

because lets you approx 𝔼𝑥∼ 0,1 𝑑 𝑓(𝑥)

deterministically.
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Definition: 𝑓 has sandwiching degree of ≤ 𝑘 with accuracy 𝜖 if:

For any 𝑓 in ℱ there exist 𝑃up and 𝑃down of degree ≤ 𝑘 s.t:

i)  For every 𝑥 in ℝ𝑑, 𝑃down 𝑥 ≤ 𝑓 𝑥 ≤ 𝑃up(𝑥)

ii) 𝔼𝑥∼ 0,1 𝑑 𝑃up 𝑥 − 𝑃down 𝑥 ≤ 𝜖

Note [Gollakota, Klivans, Kothari STOC ’23] used this connection for testing assumptions of agnostic learning algorithms.

Almost what we need.

[L. Bazzi FOCS ‘07]: 𝑓 fooled by 𝑘-wise independent distributions ⇄

⇄ 𝑓 has sandwiching polynomials of degree 𝑘 and accuracy 𝜖



We take ideas from pseudorandamness and use them to 

bound the 𝐿2-sandwiching degree.

Specifically, we build on [Gopalan, O’Donnell, Wu, Zuckerman 

CCC ‘10] and [Diakonikolas, Gopalan, Jaiswal, Servedio, 

Emanuele Viola STOC ‘07].
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Is moment-matching 

method best?

We show: can do better with other methods!
Let ℱ={general halfspaces}.

Moment-matching requires 𝑑1/𝜖
2

run-time.

We give algorithm with run-time 𝑑
log

1

𝜖 .

 Dataset 𝑆train~𝑖𝑖𝑑𝑁(0, 𝐼𝑑), 

labeled by 𝑔(𝑥) = sign(v ⋅ 𝑥 + 𝜃)

 Unlabeled dataset 𝑆test~𝐷test
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We also show evidence of optimality:

Theorem No statistical query algorithm with run-time 𝑑
log0.99

1

𝜖

Surprising, because regular learning can be done in time poly(𝑑/𝜖).

Open: How fast can one TDS-learn halfspaces for 

𝑆train~𝑖𝑖𝑑 0,1 𝑑? Best we know is 𝑑 ෨𝑂 (1/𝜖2) time

Conjecture: impossible to do distribution-free

TDS learning of halfspaces in time 𝑑𝑂𝜖(1)



Conclusion
• We introduce novel frameworks for testing 

assumptions of learning algorithms.

• We give computationally efficient algorithms.

• Traditional distribution testing algorithms too 
slow. However, we build on ideas from 
distribution testing such as 𝑘-wise 
independence testing.
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Thank you!
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