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Dawn in the age of 
quantum fault tolerance
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QEC and fault tolerance
An overview
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‘Practical’ quantum computing

– Most of the interesting quantum 
algorithms we want to execute require 
large quantum circuits & many qubits

– Current qubit technologies fail too 
frequently (error rates a fraction of a 
per cent) to execute interesting instances

– Hardware is improving, but is unlikely to 
close the gap

– Fault tolerant quantum computing is a 
catch-all term, describing architectures 
to perform large quantum computations 
using faulty parts
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Quantum computing fault-tolerantly

Physical qubits
Noisy:  failure rates a 
fraction of a percent 

per clock cycle

Logical qubits
Near-perfect:  failure 
rates such that whole 
algorithm succeeds 
with high probability

QEC code
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https://www.youtube.com/watch?v=l4smz_J8f1E
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Quantum computing fault-tolerantly

– Is this even possible?  Requires physical error rates below a threshold.
– Depends on code, the architecture, and the physical nature of the errors
– Logic gates including QEC must be performed fault-tolerantly, to keep 

errors correctable (don’t allow errors to spread or multiply)
– Fault tolerance is a property of the whole circuit, not just a logical qubit 

or logical gate

Physical qubits
Noisy:  failure rates a 
fraction of a percent 

per clock cycle

Logical qubits
Near-perfect:  failure 
rates such that whole 
algorithm succeeds 
with high probability

QEC code

D. Gottesman, Quantum fault-tolerance in small experiments, 
arXiv:1610.03507
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Quantum computing fault-tolerantly

– Is this even possible?  Requires physical error rates below a threshold.
– Depends on code, the architecture, and the physical nature of the errors
– Logic gates including QEC must be performed fault-tolerantly, to keep 

errors correctable (don’t allow errors to spread or multiply)
– Fault tolerance is a property of the whole circuit, not just a logical qubit 

or logical gate

Physical qubits
Noisy:  failure rates a 
fraction of a percent 

per clock cycle

Logical qubits
Near-perfect:  failure 
rates such that whole 
algorithm succeeds 
with high probability

QEC code

D. Gottesman, Quantum fault-tolerance in small experiments, 
arXiv:1610.03507

Observation (Jeongwan’s):
Characterising the 

‘fault tolerance’ of a logical 
qubit or gate requires care
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Fault tolerance, overheads, and resources
– Step back and take a ‘whole circuit’ 

approach

– Threshold theorem states that an 
algorithm can be executed on (not too) 
noisy hardware with only a ‘small’ 
overhead

– But what happens in practice?

Algorithm
# qubits, 

circuit depth

Hardware
Fidelities, 

constraints

Select FT architecture
Choice of code

Gate set, method for gates
Code distance (from circuit size)

Resource estimates 
(space, time)
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Fault tolerant architectures
Tolerance to errors:  quantum error correcting codes
– ‘Topological’ stabilizer codes in a planar layout (‘on a chip’)
– Nearest-neighbour couplings (no long range couplings required)
– High error thresholds (0.1% - 1% error rates can be tolerated)
– Several hardware platforms now comfortably below threshold
– Bosonic codes offer competitive, even better performance

Gidney and Fowler, Quantum 2019

Main messages:  - quantum error correction is becoming possible right now
    - using current approaches at scale will be complex and costly

Krinner et al, Nature 2022

But at a cost:  resource overheads
– Many candidate codes require thousands, millions of 

physical qubits to encode a single logical qubit
– Measurements in QEC repeated many times to be reliable
– Resource overheads for logic gates are also astronomical
– e.g. 20 million noisy qubits and 8 hours to run a complex q. 

algorithm
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Logic gates
– Logical qubits are spread across many physical 

qubits in a code
– Performing logic gates requires acting on many 

physical qubits simultaneously
– Transversal logic gates:

– Apply independent physical gates
– Naturally fault-tolerant
– Constant depth (but still require FT QEC)

– General logic gates:
– Complex constructions to make FT
– e.g. Magic state distillation & injection
– Significant time overheads

Stabilizer codes:
A common class of 
quantum codes

Many popular codes 
have only Clifford 
gates as transversal

Circuits with only 
Clifford gates are not 
universal for QC
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Dogma

Clifford logic gates
Easy

Fault-tolerant
“Classical”

Non-Clifford logic gates
Hard

Costly FT constructions
“Quantum”

Designing FTQC:
• use classical resources to 

simulate Clifford logic gates
• focus on low-overhead 

approaches to non-Clifford 
logic gates
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Dogma

Clifford logic gates
Easy

Fault-tolerant
“Classical”

Non-Clifford logic gates
Hard

Costly FT constructions
“Quantum”

Designing FTQC:
• use classical resources to 

simulate Clifford logic gates
• focus on low-overhead 

approaches to non-Clifford 
logic gates

Observation:
This simple classification was 

useful for theoretical 
development

For FT experiments, we can’t 
partition things so easily
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Fault tolerant architectures
Scratching the surface of the 
surface code
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Fault tolerance, overheads, and resources
– Different FTQC approaches lead to 

overheads that vary by many orders of 
magnitude

– Common choice of code is the surface 
code, due to high threshold and local 2D 
layout

– Given the surface code, an approach to 
gates that offers the current lowest 
overheads is lattice surgery

Algorithm
# logical qubits, 

circuit depth

Hardware
Fidelities, 

constraints

Select FT architecture
Choice of code

Gate set, method for gates
Code distance (from circuit size)

Resource estimates 
(space, time)
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Intro to FTQC with surface codes and lattice surgery

– State of the art:  Litinski 2019 (‘A game of surface codes’) with some mods

the second qubit’s operators X2 and Z2 are found in the
two bottom edges. The remaining two edges represent
the operators Z1 · Z2 and X1 · X2.

In the following, we specify the operations that can be
used to manipulate the qubits represented by patches.
Some of these operations take one time step to complete
(denoted by 1⌧), whereas others can be performed in-
stantly, requiring 0⌧. The goal is to implement quan-
tum algorithms using as few tiles and time steps as pos-
sible. There are three types of operations: qubit initial-
ization, qubit measurement and patch deformation.

I. Qubit initialization:

– One-qubit patches can be initialized in the X

and Z eigenstates |+Í and |0Í. (Cost: 0⌧)

– Two-qubit patches can be initialized in the
states |+Í ¢ |+Í and |0Í ¢ |0Í. (Cost: 0⌧)

– One-qubit patches can be initialized in an ar-
bitrary state. Unless this state is |+Í or |0Í,
an undetected random Pauli error may spoil
the qubit with probability p. (Cost: 0⌧)

II. Qubit measurement:

– Single-patch measurements: The qubits rep-
resented by patches can be measured in the
X or Z basis. For two-qubit patches, the two
qubits must be measured simultaneously and
in the same basis. This measurement removes
the patch from the board, freeing up previ-
ously occupied tiles. (Cost: 0⌧)

– Two-patch measurements: If edges of two dif-
ferent patches are positioned in adjacent tiles,
the product of the operators of the two edges
can be measured. For example, the product
Z¢Z between two neighboring square patches
can be measured, as highlighted in step 2 of
Fig. 2a by the blue rectangle. If the edge of
one patch is adjacent to multiple edges of the
other patch, the product of all involved Pauli
operators can be measured. For instance, if
qubit A’s Z edge is adjacent to both qubit
B’s X edge and Z edge, the operator ZA ¢YB
can be measured (see step 3 of Fig. 2d), since
Y = iXZ. (Cost: 1⌧)

– Multi-patch measurements: An arbitrarily-
shaped ancilla patch can be initialized. The
product of any number of operators adjacent
to the ancilla patch can be measured. The an-
cilla patch is discarded after the measurement.
The example of a Y|q1Í ¢ X|q3Í ¢ Z|q4Í ¢ X|q5Í
measurement is shown in Fig. 2e. (Cost: 1⌧)

0⌧ Step 1 1⌧ Step 2

0⌧ Step 1
(c) Qubit movement

1⌧ Step 2 1⌧ Step 3

(d) Y basis measurement
0⌧ Step 1 1⌧ Step 2 2⌧ Step 3 2⌧ Step 4

0⌧ Step 1 1⌧ Step 2
(b) Moving corners(a) Bell state preparation

0⌧ Step 1 1⌧ Step 2
(e) Y|q1Í ¢ X|q3Í ¢ Z|q4Í ¢ X|q5Í measurement

ancilla

Figure 2: Examples of short protocols. (a) Preparation of a
two-qubit Bell state in 1⌧. (b) Moving corners of a four-corner
patch to change its shape in 1⌧. (c) Moving a square-patch
qubit over long distances in 1⌧. (d) Measurement of a square-
patch qubit in the Y basis using an ancilla qubit and 2⌧. (e) A
multi-qubit Y|q1Í ¢ X|q3Í ¢ Z|q4Í ¢ X|q5Í measurement in 1⌧.

III. Patch deformation:

– Edges of a patch can be moved to deform the
patch. If the edge is moved onto a free tile
to increase the size of the patch, this takes
1⌧ to complete. If the edge is moved inside
the patch to make the patch smaller, the ac-
tion can be performed instantly.

– Corners of a patch can be moved along the
patch boundary to change its shape, as shown
in Fig. 2b. (Cost: 1⌧)

To illustrate these operations, we go through three
short example protocols in Fig. 2a/c/d. The first ex-
ample (a) is the preparation of a Bell pair. Two square
patches are initialized in the |+Í state. Next, the oper-
ator Z ¢ Z is measured. Before the measurement, the
qubits are in the state |+Í ¢ |+Í = (|00Í + |01Í + |10Í +
|11Í)/2. If the measurement outcome is +1, the qubits
end up in the state (|00Í + |11Í)/

Ô
2. For the outcome

≠1, the state is (|01Í+ |10Í)/
Ô

2. In both cases, the two

Accepted in Quantum 2019-02-01, click title to verify 2

– Convert logical quantum circuit into ‘Pauli-
based computation’
– Many nontrivial aspects to this step

– Lattice surgery:  a method to fault-
tolerantly perform multi-logical-qubit 
Pauli measurements to perform gates

– Options for space vs time tradeoffs
– Data blocks and distillation blocks

– Lots of assumptions and choices of 
distillation scheme, and overheads

– Provides a direct way to estimate space 
and time overheads

Figure 43: Surface-code implementation of a six-corner patch
with shortened boundaries

Similarly, the single-patch measurement rule is modified
to

– Qubits can be measured in the X or Z basis. All
qubits that are part of the same patch are mea-
sured simultaneously and in the same basis. This
measurement removes the patch from the board.
(Cost: 0⌧)

Pauli product measurements. Using multi-corner
patches with shortened boundaries, the multi-patch
measurement rule is, in principle, redundant. For in-
stance, the Pauli product measurement of Fig. 8 can be
equivalently performed in 1⌧ via the protocol shown in
Fig. 44. An 8-corner ancilla patch is initialized in the
|+Í¢3 state. The shape of this patch is chosen, such
that each of the four Z edges is adjacent to one of the
four operators that are part of the measurement. Note
that this means that some of the X edges are shortened,
such that the qubits are susceptible to X errors. In this
case, this is not a problem, since the qubits are initial-
ized in X eigenstates and random X errors will cause
no change to the states. Next, in step 3, we measure
the four Pauli products Z|q1Í ¢Z1, Y|q2Í ¢Z2, Z|mÍ ¢Z3
and X|q4Í ¢ (Z1 · Z2 · Z3). Because the ancilla is ini-
tialized in an X eigenstate, the operators Z1, Z2 and
Z3 are unknown, and the outcome of each of the four
aforementioned measurements is entirely random. How-
ever, multiplying the four measurement outcomes yields
Z|q1Í ¢ Y|q2Í ¢ X|q4Í ¢ Z|mÍ ¢ (Z1 · Z2 · Z3 · Z1 · Z2 · Z3),
which is precisely the operator Z|q1Í¢Y|q2Í¢X|q4Í¢Z|mÍ
that we wanted to measure. Finally, to discard the an-
cilla patch we measure its three qubits in the X basis.
Again, X errors will have no e↵ect, as they commute
with the measurement basis. Measurement outcomes of
Xi = ≠1 prompt a Pauli correction. If in the previous
step, the Zi edge was measured together with a Pauli
operator P , the correction is a Pfi/2 gate. For instance,
if in Fig. 8 the final measurements yield X2 = ≠1 and
X3 = ≠1, the corrections are a Yfi/2 rotation on |q2Í
and a Zfi/2 rotation on |mÍ.

This type of protocol can be used to measure any
product of n Pauli operators. An ancilla patch needs
to be initialized in the |+Í¢n state with Z edges adja-

(a) Measurement of Z|q1Í ¢ Y|q2Í ¢ X|q4Í ¢ Z|mÍ

0⌧ Step 1 0⌧ Step 2

1⌧ Step 3 1⌧ Step 3

(b) Ancilla patch

Figure 44: Pauli product measurement protocol. (a) Example
of a measurement of the operator Z ¢ Y ¢ ¢ X ¢ Z of the
qubits |q1Í, |q2Í, |q3Í, |q4Í and |mÍ. (b) Ancilla patch used
during the measurement.

cent to the n operators part of the measurement. The
surface-code implementation of this protocol is identi-
cal to the surface-code implementation of multi-patch
measurements in Fig. 41.
While multi-corner patches and shortened edges in-

crease the number of surface-code operations that are
covered by the framework, there are still rules that
can be added to the ruleset to account for more op-
erations, such as, e.g., the movement of corners inside
a patch [10]. Also, for the initialization of non-Pauli
eigenstates, error models other than random Pauli er-
rors can be considered.

C Proof-of-principle device
Here, we discuss how (3d ≠ 1) · 2d physical data qubits
can be used to build a proof-of-principle device that is a
universal two-qubit error-corrected quantum computer
that uses undistilled magic states and can demonstrate
all the operations required for large-scale quantum com-
puting. We go through the example of a computation
that starts with three fi/8 rotations around Z¢Z, Y ¢X

and Y ¢ Y in Fig. 45. For the first rotation, we need to
measure Z1 ¢ Z2 ¢ Z|mÍ. A magic state is initialized in
a long patch in step 2, which is equivalent to initializing
a magic state and measuring X ¢ X between the magic
state and neighboring |0Í ancillas. This e↵ectively en-

Accepted in Quantum 2019-02-01, click title to verify 35
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Intro to FTQC with surface codes and lattice surgery

– State of the art:  Litinski 2019 (‘A game of surface codes’) with some mods

the second qubit’s operators X2 and Z2 are found in the
two bottom edges. The remaining two edges represent
the operators Z1 · Z2 and X1 · X2.

In the following, we specify the operations that can be
used to manipulate the qubits represented by patches.
Some of these operations take one time step to complete
(denoted by 1⌧), whereas others can be performed in-
stantly, requiring 0⌧. The goal is to implement quan-
tum algorithms using as few tiles and time steps as pos-
sible. There are three types of operations: qubit initial-
ization, qubit measurement and patch deformation.

I. Qubit initialization:

– One-qubit patches can be initialized in the X

and Z eigenstates |+Í and |0Í. (Cost: 0⌧)

– Two-qubit patches can be initialized in the
states |+Í ¢ |+Í and |0Í ¢ |0Í. (Cost: 0⌧)

– One-qubit patches can be initialized in an ar-
bitrary state. Unless this state is |+Í or |0Í,
an undetected random Pauli error may spoil
the qubit with probability p. (Cost: 0⌧)

II. Qubit measurement:

– Single-patch measurements: The qubits rep-
resented by patches can be measured in the
X or Z basis. For two-qubit patches, the two
qubits must be measured simultaneously and
in the same basis. This measurement removes
the patch from the board, freeing up previ-
ously occupied tiles. (Cost: 0⌧)

– Two-patch measurements: If edges of two dif-
ferent patches are positioned in adjacent tiles,
the product of the operators of the two edges
can be measured. For example, the product
Z¢Z between two neighboring square patches
can be measured, as highlighted in step 2 of
Fig. 2a by the blue rectangle. If the edge of
one patch is adjacent to multiple edges of the
other patch, the product of all involved Pauli
operators can be measured. For instance, if
qubit A’s Z edge is adjacent to both qubit
B’s X edge and Z edge, the operator ZA ¢YB
can be measured (see step 3 of Fig. 2d), since
Y = iXZ. (Cost: 1⌧)

– Multi-patch measurements: An arbitrarily-
shaped ancilla patch can be initialized. The
product of any number of operators adjacent
to the ancilla patch can be measured. The an-
cilla patch is discarded after the measurement.
The example of a Y|q1Í ¢ X|q3Í ¢ Z|q4Í ¢ X|q5Í
measurement is shown in Fig. 2e. (Cost: 1⌧)

0⌧ Step 1 1⌧ Step 2

0⌧ Step 1
(c) Qubit movement

1⌧ Step 2 1⌧ Step 3

(d) Y basis measurement
0⌧ Step 1 1⌧ Step 2 2⌧ Step 3 2⌧ Step 4

0⌧ Step 1 1⌧ Step 2
(b) Moving corners(a) Bell state preparation

0⌧ Step 1 1⌧ Step 2
(e) Y|q1Í ¢ X|q3Í ¢ Z|q4Í ¢ X|q5Í measurement

ancilla

Figure 2: Examples of short protocols. (a) Preparation of a
two-qubit Bell state in 1⌧. (b) Moving corners of a four-corner
patch to change its shape in 1⌧. (c) Moving a square-patch
qubit over long distances in 1⌧. (d) Measurement of a square-
patch qubit in the Y basis using an ancilla qubit and 2⌧. (e) A
multi-qubit Y|q1Í ¢ X|q3Í ¢ Z|q4Í ¢ X|q5Í measurement in 1⌧.

III. Patch deformation:

– Edges of a patch can be moved to deform the
patch. If the edge is moved onto a free tile
to increase the size of the patch, this takes
1⌧ to complete. If the edge is moved inside
the patch to make the patch smaller, the ac-
tion can be performed instantly.

– Corners of a patch can be moved along the
patch boundary to change its shape, as shown
in Fig. 2b. (Cost: 1⌧)

To illustrate these operations, we go through three
short example protocols in Fig. 2a/c/d. The first ex-
ample (a) is the preparation of a Bell pair. Two square
patches are initialized in the |+Í state. Next, the oper-
ator Z ¢ Z is measured. Before the measurement, the
qubits are in the state |+Í ¢ |+Í = (|00Í + |01Í + |10Í +
|11Í)/2. If the measurement outcome is +1, the qubits
end up in the state (|00Í + |11Í)/

Ô
2. For the outcome

≠1, the state is (|01Í+ |10Í)/
Ô

2. In both cases, the two
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– Convert logical quantum circuit into ‘Pauli-
based computation’
– Many nontrivial aspects to this step

– Lattice surgery:  a method to fault-
tolerantly perform multi-logical-qubit 
Pauli measurements to perform gates

– Options for space vs time tradeoffs
– Data blocks and distillation blocks

– Lots of assumptions and choices of 
distillation scheme, and overheads

– Provides a direct way to estimate space 
and time overheads

Figure 43: Surface-code implementation of a six-corner patch
with shortened boundaries

Similarly, the single-patch measurement rule is modified
to

– Qubits can be measured in the X or Z basis. All
qubits that are part of the same patch are mea-
sured simultaneously and in the same basis. This
measurement removes the patch from the board.
(Cost: 0⌧)

Pauli product measurements. Using multi-corner
patches with shortened boundaries, the multi-patch
measurement rule is, in principle, redundant. For in-
stance, the Pauli product measurement of Fig. 8 can be
equivalently performed in 1⌧ via the protocol shown in
Fig. 44. An 8-corner ancilla patch is initialized in the
|+Í¢3 state. The shape of this patch is chosen, such
that each of the four Z edges is adjacent to one of the
four operators that are part of the measurement. Note
that this means that some of the X edges are shortened,
such that the qubits are susceptible to X errors. In this
case, this is not a problem, since the qubits are initial-
ized in X eigenstates and random X errors will cause
no change to the states. Next, in step 3, we measure
the four Pauli products Z|q1Í ¢Z1, Y|q2Í ¢Z2, Z|mÍ ¢Z3
and X|q4Í ¢ (Z1 · Z2 · Z3). Because the ancilla is ini-
tialized in an X eigenstate, the operators Z1, Z2 and
Z3 are unknown, and the outcome of each of the four
aforementioned measurements is entirely random. How-
ever, multiplying the four measurement outcomes yields
Z|q1Í ¢ Y|q2Í ¢ X|q4Í ¢ Z|mÍ ¢ (Z1 · Z2 · Z3 · Z1 · Z2 · Z3),
which is precisely the operator Z|q1Í¢Y|q2Í¢X|q4Í¢Z|mÍ
that we wanted to measure. Finally, to discard the an-
cilla patch we measure its three qubits in the X basis.
Again, X errors will have no e↵ect, as they commute
with the measurement basis. Measurement outcomes of
Xi = ≠1 prompt a Pauli correction. If in the previous
step, the Zi edge was measured together with a Pauli
operator P , the correction is a Pfi/2 gate. For instance,
if in Fig. 8 the final measurements yield X2 = ≠1 and
X3 = ≠1, the corrections are a Yfi/2 rotation on |q2Í
and a Zfi/2 rotation on |mÍ.

This type of protocol can be used to measure any
product of n Pauli operators. An ancilla patch needs
to be initialized in the |+Í¢n state with Z edges adja-

(a) Measurement of Z|q1Í ¢ Y|q2Í ¢ X|q4Í ¢ Z|mÍ

0⌧ Step 1 0⌧ Step 2

1⌧ Step 3 1⌧ Step 3

(b) Ancilla patch

Figure 44: Pauli product measurement protocol. (a) Example
of a measurement of the operator Z ¢ Y ¢ ¢ X ¢ Z of the
qubits |q1Í, |q2Í, |q3Í, |q4Í and |mÍ. (b) Ancilla patch used
during the measurement.

cent to the n operators part of the measurement. The
surface-code implementation of this protocol is identi-
cal to the surface-code implementation of multi-patch
measurements in Fig. 41.
While multi-corner patches and shortened edges in-

crease the number of surface-code operations that are
covered by the framework, there are still rules that
can be added to the ruleset to account for more op-
erations, such as, e.g., the movement of corners inside
a patch [10]. Also, for the initialization of non-Pauli
eigenstates, error models other than random Pauli er-
rors can be considered.

C Proof-of-principle device
Here, we discuss how (3d ≠ 1) · 2d physical data qubits
can be used to build a proof-of-principle device that is a
universal two-qubit error-corrected quantum computer
that uses undistilled magic states and can demonstrate
all the operations required for large-scale quantum com-
puting. We go through the example of a computation
that starts with three fi/8 rotations around Z¢Z, Y ¢X

and Y ¢ Y in Fig. 45. For the first rotation, we need to
measure Z1 ¢ Z2 ¢ Z|mÍ. A magic state is initialized in
a long patch in step 2, which is equivalent to initializing
a magic state and measuring X ¢ X between the magic
state and neighboring |0Í ancillas. This e↵ectively en-
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Observation:
Surface code is particularly costly.  
Lots of opportunity for disruption

More exotic topological codes, 
qLDPC codes

More work to be done on codes 
with non-Clifford transversal gates
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Lowering the overheads
FTQC with LDPC, ASAP
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Topological codes vs qLDPC codes

Surface code has local check operators

Z X

Z

X

XX

Z

Z

X Z

Z X

X X

X X

Z Z

Z Z

qLDPC codes remove the locality constraint

More protection with larger systems
Encodes one logical qubit no matter 

how big

More protection with larger systems
Encodes many logical qubits, 

growing with size
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Recent breakthrough:  good codes!

From EC Zoo https://errorcorrectionzoo.org/c/qldpc

Yay!
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Don’t we need geometrically local gates?
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But…

– Is there a low-overhead architecture based on a high-rate qLDPC code?

– The ingredients are there:
– codes that satisfy Gottesman’s criteria
– reasonably high thresholds and fast decoders

– But focus has been on asymptotics.  What about in practice?

D. Gottesman, Fault-Tolerant Quantum Computation with 
Constant Overhead, arXiv:1310.2984



The University of Sydney Page 22

Nature | Vol 627 | 28 March 2024 | 779

A quantum error correcting code is of LDPC type if each check opera-
tor of the code acts only on a few qubits and each qubit participates 
in only a few checks. Several variants of the LDPC codes have been 
proposed recently including hyperbolic surface codes30–32, hypergraph 
product33, balanced product codes34, two-block codes based on finite 
groups35–38 and quantum Tanner codes39,40. The latter were shown39,40 
to be asymptotically ‘good’ in the sense of offering a constant encod-
ing rate and linear distance: a parameter quantifying the number of 
correctable errors. By contrast, the surface code has an asymptoti-
cally zero encoding rate and only square-root distance. Replacing 
the surface code with a high-rate, high-distance LDPC code could 
have major practical implications. First, the fault-tolerance overhead 
(the ratio between the number of physical and logical qubits) could 
be reduced notably. Second, high-distance codes show a very sharp 
decrease in the logical error rate: as the physical error probability 
crosses the threshold value, the amount of error suppression achieved 
by the code can increase by orders of magnitude even with a small 
reduction of the physical error rate. This feature makes high-distance 
LDPC codes attractive for near-term demonstrations that are likely 
to operate in the near-threshold regime. However, it was previously 
believed that outperforming the surface code for realistic noise mod-
els including memory, gate and state preparation and measurement 
errors may require very large LDPC codes with more than 10,000  
physical qubits31.

Here we present several concrete examples of high-rate LDPC codes 
with a few hundred physical qubits equipped with a low-depth syn-
drome measurement circuit, an efficient decoding algorithm and a 
fault-tolerant protocol for addressing individual logical qubits. These 
codes show an error threshold close to 0.7%, show excellent perfor-
mance in the near-threshold regime and offer a 10 times reduction of 
the encoding overhead compared with the surface code. Hardware 
requirements for realizing our error correction protocols are rela-
tively mild, as each physical qubit is coupled by two-qubit gates with 
only six other qubits. Although the qubit connectivity graph is not 
locally embeddable into a 2D grid, it can be decomposed into two planar 

degree-3 subgraphs. As we argue below, such qubit connectivity is well 
suited for architectures based on superconducting qubits.

Our codes are a generalization of bicycle codes proposed by MacKay  
et al.41 and studied in more depth in refs. 35,36,42. We named our 
codes bivariate bicycle (BB) because they are based on bivariate poly-
nomials, as detailed in the Methods. These are stabilizer codes of the 
Calderbank–Shor–Steane (CSS) type43,44 that can be described by a 
collection of six-qubit check (stabilizer) operators composed of Pauli 
X and Z. At a high level, a BB code is similar to the two-dimensional toric 
code7. In particular, physical qubits of a BB code can be laid out on a 
two-dimensional grid with periodic boundary conditions such that all 
check operators are obtained from a single pair of X and Z checks by 
applying horizontal and vertical shifts of the grid. However, in contrast 
to the plaquette and vertex stabilizers describing the toric code, check 
operators of BB codes are not geometrically local. Furthermore, each 
check acts on six qubits rather than four qubits. We will describe the 
code by a Tanner graph G such that each vertex of G represents either 
a data qubit or a check operator. A check vertex i and a data vertex j are 
connected by an edge if the ith check operator acts non-trivially on 
the jth data qubit (by applying Pauli X or Z). See Fig. 1a,b for example 
Tanner graphs of surface and BB codes, respectively. The Tanner graph 
of any BB code has vertex degree six and graph thickness29 equal to 
two, which means it can be decomposed into two edge-disjoint planar 
subgraphs (Methods). Thickness-2 qubit connectivity is well suited 
for superconducting qubits coupled by microwave resonators. For 
example, two planar layers of couplers and their control lines can be 
attached to the top and the bottom side of the chip hosting qubits, 
and the two sides mated.

A BB code with parameters [[n, k, d]] encodes k logical qubits into n 
data qubits offering a code distance d, meaning that any logical error 
spans at least d data qubits. We divide n data qubits into registers q(L) 
and q(R) of size n/2 each. Any check acts on three qubits from q(L) and 
three qubits from q(R). The code relies on n ancillary check qubits 
to measure the error syndrome. We divide n check qubits into regis-
ters q(X) and q(Z) of size n/2 that collect syndromes of X and Z types, 
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Fig. 1 | Tanner graphs of surface and BB codes. a, Tanner graph of a surface 
code, for comparison. b, Tanner graph of a BB code with parameters [[144, 12, 12]] 
embedded into a torus. Any edge of the Tanner graph connects a data and a 
check vertex. Data qubits associated with the registers q(L) and q(R) are shown 
by blue and orange circles. Each vertex has six incident edges including four 
short-range edges (pointing north, south, east and west) and two long-range 
edges. We only show a few long-range edges to avoid clutter. Dashed and solid 

edges indicate two planar subgraphs spanning the Tanner graph, see the 
Methods. c, Sketch of a Tanner graph extension for measuring Z  and X  
following ref. 50, attaching to a surface code. The ancilla corresponding to the 
X  measurement can be connected to a surface code, enabling load-store 
operations for all logical qubits by means of quantum teleportation and some 
logical unitaries. This extended Tanner graph also has an implementation in a 
thickness-2 architecture through the A and B edges (Methods).
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currant and future hardware to reduce 
overheads
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regimes?

– What long-range connectivity is needed, or 
most useful?
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Quantum low-density parity-check (qLDPC) codes can achieve high encoding rates and good code distance
scaling, providing a promising route to low-overhead fault-tolerant quantum computing. However, the long-
range connectivity required to implement such codes makes their physical realization challenging. Here, we
propose a hardware-efficient scheme to perform fault-tolerant quantum computation with high-rate qLDPC
codes on reconfigurable atom arrays, directly compatible with recently demonstrated experimental capabili-
ties. Our approach utilizes the product structure inherent in many qLDPC codes to implement the non-local
syndrome extraction circuit via atom rearrangement, resulting in effectively constant overhead in practically rel-
evant regimes. We prove the fault tolerance of these protocols, perform circuit-level simulations of memory and
logical operations with these codes, and find that our qLDPC-based architecture starts to outperform the surface
code with as few as several hundred physical qubits at a realistic physical error rate of 10−3. We further find
that less than 3000 physical qubits are sufficient to obtain over an order of magnitude qubit savings compared
to the surface code, and quantum algorithms involving thousands of logical qubits can be performed using less
than 105 physical qubits. Our work paves the way for explorations of low-overhead quantum computing with
qLDPC codes at a practical scale, based on current experimental technologies.

INTRODUCTION

Quantum error correction (QEC) is believed to be essen-
tial for realizing large-scale fault-tolerant quantum informa-
tion processing. However, traditional schemes for achieving
quantum error correction, such as the paradigmatic surface
code, are generally very costly in terms of resource overhead,
requiring millions of qubits to solve problems of interest [1–
4].

Recently, a new approach based on high-rate quantum low-
density parity-check (qLDPC) codes has been proposed as a
promising route to reduce the resources required. Unlike pla-
nar surface codes [1, 2, 5] that encode a single logical qubit
per block, qLDPC codes can encode multiple logical qubits
per block and achieve a much higher, asymptotically constant
encoding rate [6, 7] as well as better distance scaling [8–10].
However, in order to realize these appealing features, qLDPC
codes require long-range connectivity between qubits, mak-
ing their physical realization challenging [11–13]. While sev-
eral proposals have been made for physical implementation
of qLDPC codes in superconducting qubit architectures, the
required long-range and multi-layer connectivity is consider-
ably beyond both current and medium-term hardware capabil-
ities [14–16].

In bringing qLDPC codes into practical use for full-fledged
quantum computation, further challenges arise. A rigorous
analysis of the circuit-level fault tolerance of qLDPC codes is
lacking, despite some promising numerical evidence [14, 15].
Also, it is currently unclear if finite-size qLDPC codes can
outperform surface codes in near- or medium-term devices
with �10000 qubits and realistic physical error rates above
10−3. Since Gottesman’s seminal results demonstrating that

qLDPC codes can enable fault-tolerant quantum computing
with constant space overhead [17], several practical gate con-
structions have recently been proposed [18–21]. However,
no studies of the circuit-level performance of these protocols
have been carried out to date. In particular, it is not clear if
the performance and low overhead of the qLDPC codes can
be maintained during computation in a full circuit-level fault-
tolerant setting.

In this Article, we propose and analyze a realistic hardware-
efficient neutral atom implementation of fault-tolerant quan-
tum computation with high-rate qLDPC codes. We provide
concrete experimental and theoretical blueprints, demonstrat-
ing their advantage over surface codes starting from as few
as several hundred physical qubits. Our proposal is based on
reconfigurable atom arrays, a newly-developed hardware ar-
chitecture for quantum computation with long-range, recon-
figurable connectivity [22]. We show how the product struc-
ture of many qLDPC codes [6, 8, 23] naturally matches the
parallelism afforded by physical realizations of reconfigurable
atom arrays, enabling their hardware-efficient implementa-
tion in a logarithmic number of steps. Through a combina-
tion of single-shot circuit-level threshold proofs and circuit-
level simulations, we find competitive performance for hyper-
graph product (HGP) [6] codes and quasi-cyclic lifted prod-
uct (LP) [8] codes, achieving error thresholds of around 0.6%
under a circuit-level depolarizing noise model that neglects
idling errors. Accounting for idling errors, which only have a
minor contribution for the finite-size codes of our interest, we
achieve an order of magnitude saving over the surface code
with less than 3000 physical qubits (including ancillas) at a
physical error rate of 10−3 (see Fig. 1 bottom panel and Ta-
ble I). We further extend this analysis to logical gate operation,
numerically demonstrating that the high thresholds and good
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High-threshold and low-overhead 
fault-tolerant quantum memory

Sergey Bravyi1, Andrew W. Cross1, Jay M. Gambetta1, Dmitri Maslov1 ✉, Patrick Rall2 & 
Theodore J. Yoder1

The accumulation of physical errors1–3 prevents the execution of large-scale 
algorithms in current quantum computers. Quantum error correction4 promises  
a solution by encoding k logical qubits onto a larger number n of physical qubits,  
such that the physical errors are suppressed enough to allow running a desired 
computation with tolerable !delity. Quantum error correction becomes practically 
realizable once the physical error rate is below a threshold value that depends on the 
choice of quantum code, syndrome measurement circuit and decoding algorithm5. 
We present an end-to-end quantum error correction protocol that implements 
fault-tolerant memory on the basis of a family of low-density parity-check codes6.  
Our approach achieves an error threshold of 0.7% for the standard circuit-based noise 
model, on par with the surface code7–10 that for 20 years was the leading code in terms 
of error threshold. The syndrome measurement cycle for a length-n code in our family 
requires n ancillary qubits and a depth-8 circuit with CNOT gates, qubit initializations 
and measurements. The required qubit connectivity is a degree-6 graph composed  
of two edge-disjoint planar subgraphs. In particular, we show that 12 logical qubits  
can be preserved for nearly 1 million syndrome cycles using 288 physical qubits in 
total, assuming the physical error rate of 0.1%, whereas the surface code would  
require nearly 3,000 physical qubits to achieve said performance. Our !ndings bring 
demonstrations of a low-overhead fault-tolerant quantum memory within the reach 
of near-term quantum processors.

Quantum computing attracted attention due to its ability to offer 
asymptotically faster solutions to a set of computational problems 
compared to the best known classical algorithms5. It is believed that 
a functioning scalable quantum computer may help solve computa-
tional problems in such areas as scientific discovery, materials research, 
chemistry and drug design, to name a few11–14.

The main obstacle to building a quantum computer is the fragility of 
quantum information, owing to various sources of noise affecting it. As 
isolating a quantum computer from external effects and controlling it 
to induce a desired computation are in conflict with each other, noise 
appears to be inevitable. The sources of noise include imperfections 
in qubits, materials used, controlling apparatus, state preparation and 
measurement errors and a variety of external factors ranging from local 
man-made, such as stray electromagnetic fields, to those inherent to the 
Universe, such as cosmic rays. See ref. 15 for a summary. Whereas some 
sources of noise can be eliminated with better control16, materials17 and 
shielding18–20, several other sources appear to be difficult if at all pos-
sible to remove. The last kind can include spontaneous and stimulated 
emission in trapped ions1,2, and the interaction with the bath (Purcell 
effect)3 in superconducting circuits—covering both leading quantum 
technologies. Thus, error correction becomes a key requirement for 
building a functioning scalable quantum computer.

The possibility of quantum fault tolerance is well-established4. 
Encoding a logical qubit redundantly into many physical qubits 

enables one to diagnose and correct errors by repeatedly measuring 
syndromes of parity-check operators. However, error correction is 
only beneficial if the hardware error rate is below a certain threshold 
value that depends on a particular error correction protocol. The 
first proposals for quantum error correction, such as concatenated 
codes21–23, focused on demonstrating the theoretical possibility of 
error suppression. As understanding of quantum error correction and 
the capabilities of quantum technologies matured, the focus shifted to 
finding practical quantum error correction protocols. This resulted in 
the development of the surface code7–10 that offers a high error thresh-
old close to 1%, fast decoding algorithms and compatibility with the 
existing quantum processors relying on two-dimensional (2D) square 
lattice qubit connectivity. Small examples of the surface code with a 
single logical qubit have already been demonstrated experimentally 
by several groups24–28. However, scaling up the surface code to 100 or 
more logical qubits would be prohibitively expensive due to its poor 
encoding efficiency. This spurred interest in more general quantum 
codes known as low-density parity-check (LDPC) codes6. Recent pro-
gress in the study of LDPC codes suggests that they can achieve quan-
tum fault tolerance with a much higher encoding efficiency29. Here, 
we focus on the study of LDPC codes, as our goal is to find quantum 
error correction codes and protocols that are both efficient and pos-
sible to demonstrate in practice, given the limitations of quantum 
computing technologies.
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k d Parallelism Code family ndata nanc ntot

18 8 2
Hyperbicycle 294 500 800

Surface 1152 128 1300

50
14 2

Hyperbicycle 900 1400 2300
Surface 9800 300 10000

16 20
Hypergraph 1922 5000 7000

Surface 12800 2000 15000

578 16
578

Hypergraph 7938 120000 130000
Surface 150000 75000 225000

68
Hypergraph 7938 15000 23000

Surface 150000 10000 160000

TABLE I. Estimates of the overhead required to perform a round of logic, including those qubits needed to encode the data as
well as additional ancilla qubits required to perform fault-tolerant gates. We use LDPC codes constructed in [39, 40], which
all have initial check weights of no more than 10. We denote the number of logical qubits as k and the distance of the code as
d. Comparisons are made against the surface code with the same distance. Here, ‘parallelism’ denotes the number of logical
qubits that can be acted upon non-trivially in one round of error correction, and which determines the number of required
ancilla qubits. The number of data, ancillary, and total physical qubits needed to perform one round of logical measurements
with error correction are denoted ndata, nanc, and ntot, respectively. We do not include any ancilla qubits that may be used for
error syndrome extraction.

velopment [46–48].
To use these LDPC codes for quantum computation,

one must be able to fault-tolerantly implement a univer-
sal set of protected logic gates. While Ref. [42] establishes
a method to perform quantum computation using fault-
tolerant gate teleportation [49], the cost associated with
the distillation of the requisite resource state [50] is not
understood well in the practical regime of interest.

In this paper, we introduce a flexible new method to
perform low-overhead quantum logic gates for a general
class of quantum LDPC codes. Our work can be thought
as a generalisation of lattice surgery [51], where an ancil-
lary system is coupled to a quantum error-correcting code
to fault-tolerantly measure logical Pauli measurements.
Our new approach to low-overhead quantum logic builds
on an extensive literature into the use of code defor-
mations to perform Cli↵ord gates via measurement that
have been well studied for topological codes [7, 17, 51–
54], and which have recently been generalized to cer-
tain classes of quantum LDPC codes [55–58]. To employ
this approach for quantum LDPC codes in a way that
maintains the desirable low overheads, we construct the
required ancillary system by adapting weight-reduction
methods proposed in Refs. [59, 60] to measure the de-
sired logical operators of a given quantum LDPC code.
These logical operations then yield a universal gate set for
fault-tolerant quantum computing when supplemented
with noisy ancilla state injection via magic-state distilla-
tion [61].

Estimates of potential gains

Before presenting our detailed results, we briefly illus-
trate the potential overhead improvements that our con-
struction enables. We will make use of existing quantum
LDPC codes with explicit constructions and e�cient de-
coders, together with our fault-tolerant approach to per-

forming logic gates on these codes. Table I shows the
overhead required to complete a round of logical opera-
tions with error correction for a given number of logical
qubits k and code distance d for a number of quantum
LDPC codes, specifically, hyperbicycle and hypergraph
product codes explicitly constructed in Refs. [39, 40]. We
directly compare the qubit resources for our construction
against the use of surface codes encoding the same num-
ber of logical qubits and with the same code distance,
with the latter serving as a proxy for how well the codes
protect logical quantum information. The surface code
is currently the predominant candidate for a quantum
architecture, and considerable e↵ort has been spent opti-
mizing its overhead for fault tolerant computation. Our
analysis thus shows the potential overhead improvement
that can be achieved using a non-local architecture as
compared to a local architecture.
All codes we have used, and their fault tolerant op-

erations, use check operators involving no more than 13
qubits. This weight is larger than that of the surface
code, but not by a significant margin. Because this num-
ber is fixed at a small constant value, errors do not spread
significantly during measurement of these check opera-
tors, which would otherwise a↵ect the threshold of the
scheme. E�cient decoders for these codes have also been
designed that perform comparably to minimum-weight
perfect matching decoding on surface codes of similar
distance [39].
We implement Cli↵ord gates through parity measure-

ment of logical qubits in the Pauli basis. In order to keep
the overhead low, we restrict the number of logical qubits
that can participate in a single measurement round, and
we call this number the parallelism of the scheme; see
Fig. 1. For a given level of parallelism and given error
correcting code we require nanc physical qubits to cre-
ate the ancilla systems used in logical measurement, and
ndata is the size of the code used to store the logical in-
formation. Our analysis shows that at very small code
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sal set of protected logic gates. While Ref. [42] establishes
a method to perform quantum computation using fault-
tolerant gate teleportation [49], the cost associated with
the distillation of the requisite resource state [50] is not
understood well in the practical regime of interest.

In this paper, we introduce a flexible new method to
perform low-overhead quantum logic gates for a general
class of quantum LDPC codes. Our work can be thought
as a generalisation of lattice surgery [51], where an ancil-
lary system is coupled to a quantum error-correcting code
to fault-tolerantly measure logical Pauli measurements.
Our new approach to low-overhead quantum logic builds
on an extensive literature into the use of code defor-
mations to perform Cli↵ord gates via measurement that
have been well studied for topological codes [7, 17, 51–
54], and which have recently been generalized to cer-
tain classes of quantum LDPC codes [55–58]. To employ
this approach for quantum LDPC codes in a way that
maintains the desirable low overheads, we construct the
required ancillary system by adapting weight-reduction
methods proposed in Refs. [59, 60] to measure the de-
sired logical operators of a given quantum LDPC code.
These logical operations then yield a universal gate set for
fault-tolerant quantum computing when supplemented
with noisy ancilla state injection via magic-state distilla-
tion [61].

Estimates of potential gains

Before presenting our detailed results, we briefly illus-
trate the potential overhead improvements that our con-
struction enables. We will make use of existing quantum
LDPC codes with explicit constructions and e�cient de-
coders, together with our fault-tolerant approach to per-

forming logic gates on these codes. Table I shows the
overhead required to complete a round of logical opera-
tions with error correction for a given number of logical
qubits k and code distance d for a number of quantum
LDPC codes, specifically, hyperbicycle and hypergraph
product codes explicitly constructed in Refs. [39, 40]. We
directly compare the qubit resources for our construction
against the use of surface codes encoding the same num-
ber of logical qubits and with the same code distance,
with the latter serving as a proxy for how well the codes
protect logical quantum information. The surface code
is currently the predominant candidate for a quantum
architecture, and considerable e↵ort has been spent opti-
mizing its overhead for fault tolerant computation. Our
analysis thus shows the potential overhead improvement
that can be achieved using a non-local architecture as
compared to a local architecture.
All codes we have used, and their fault tolerant op-

erations, use check operators involving no more than 13
qubits. This weight is larger than that of the surface
code, but not by a significant margin. Because this num-
ber is fixed at a small constant value, errors do not spread
significantly during measurement of these check opera-
tors, which would otherwise a↵ect the threshold of the
scheme. E�cient decoders for these codes have also been
designed that perform comparably to minimum-weight
perfect matching decoding on surface codes of similar
distance [39].
We implement Cli↵ord gates through parity measure-

ment of logical qubits in the Pauli basis. In order to keep
the overhead low, we restrict the number of logical qubits
that can participate in a single measurement round, and
we call this number the parallelism of the scheme; see
Fig. 1. For a given level of parallelism and given error
correcting code we require nanc physical qubits to cre-
ate the ancilla systems used in logical measurement, and
ndata is the size of the code used to store the logical in-
formation. Our analysis shows that at very small code
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methods proposed in Refs. [59, 60] to measure the de-
sired logical operators of a given quantum LDPC code.
These logical operations then yield a universal gate set for
fault-tolerant quantum computing when supplemented
with noisy ancilla state injection via magic-state distilla-
tion [61].

Estimates of potential gains

Before presenting our detailed results, we briefly illus-
trate the potential overhead improvements that our con-
struction enables. We will make use of existing quantum
LDPC codes with explicit constructions and e�cient de-
coders, together with our fault-tolerant approach to per-

forming logic gates on these codes. Table I shows the
overhead required to complete a round of logical opera-
tions with error correction for a given number of logical
qubits k and code distance d for a number of quantum
LDPC codes, specifically, hyperbicycle and hypergraph
product codes explicitly constructed in Refs. [39, 40]. We
directly compare the qubit resources for our construction
against the use of surface codes encoding the same num-
ber of logical qubits and with the same code distance,
with the latter serving as a proxy for how well the codes
protect logical quantum information. The surface code
is currently the predominant candidate for a quantum
architecture, and considerable e↵ort has been spent opti-
mizing its overhead for fault tolerant computation. Our
analysis thus shows the potential overhead improvement
that can be achieved using a non-local architecture as
compared to a local architecture.
All codes we have used, and their fault tolerant op-

erations, use check operators involving no more than 13
qubits. This weight is larger than that of the surface
code, but not by a significant margin. Because this num-
ber is fixed at a small constant value, errors do not spread
significantly during measurement of these check opera-
tors, which would otherwise a↵ect the threshold of the
scheme. E�cient decoders for these codes have also been
designed that perform comparably to minimum-weight
perfect matching decoding on surface codes of similar
distance [39].
We implement Cli↵ord gates through parity measure-

ment of logical qubits in the Pauli basis. In order to keep
the overhead low, we restrict the number of logical qubits
that can participate in a single measurement round, and
we call this number the parallelism of the scheme; see
Fig. 1. For a given level of parallelism and given error
correcting code we require nanc physical qubits to cre-
ate the ancilla systems used in logical measurement, and
ndata is the size of the code used to store the logical in-
formation. Our analysis shows that at very small code

Observations (qLDPC):
Low-overhead architectures 
for FTQC based on qLDPC 

codes are within reach

Connectivity is front and 
centre; unlikely to find a good 

‘once-size-fits-all’ 
architecture



The University of Sydney Page 25

Lowering the overheads 2
Don’t waste my time
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Repeated syndrome measurements

Outlook

Our work raises questions in several areas, such as:

I Have we really exceeded the hashing bound?

I How do we specialise codes for a given noise model in general?

I What is the potential for non-CSS codes?
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– Surface code (and many others) require accurate syndrome measurements
– ‘Standard’ approach is to repeat syndrome extraction many (d) times 
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Repeated syndrome measurements

Outlook

Our work raises questions in several areas, such as:
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– Surface code (and many others) require accurate syndrome measurements
– ‘Standard’ approach is to repeat syndrome extraction many (d) times 

Observations 
(FT syndrome extraction):

Repeated measurements 
brings large time overheads

Time for some innovation:
- single shot

- Shor, Steane, Knill
- measurement-free

Delfosse and Reichardt 2020
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So where does that leave us?

– Quantum error correction will be 
incredibly challenging, but current 
estimates for resource overheads are 
likely pessimistic

– QEC is not a piece of quantum 
software to run, but a full-stack 
approach to integrate with hardware 
and control

– Plenty of opportunities for university-
based researchers to innovate
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Sydney and quantum

$35M for training 
and entrepreneurs
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