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Matrix product states and tensor networks

Tensors are just quantum states |T ⟩ =
∑

i1,i2,...,in
Ti1i2...in |i1i2 . . . in⟩.

Tensor networks are a way to construct states from lower dimensional ones.

For example a matrix product state is of the form

|T ⟩ =
∑

i1,i2,...,in

∑
α1,α2...,αn

(A(1))α1
i1,α2

(A(2))α2
i2,α3

· · · (A(n))αn
in,α1

|i1i2 . . . in⟩.

Each matrix is viewed as a tensor itself |A(j)⟩ =
∑

ij ,αj ,αj+1
(A(j))

αj

ij ,αj+1
|ij , αj , αj+1⟩.

The “α-legs” get traced when forming |T ⟩ while the “i-legs” do not.

A(1) A(2) · · · A(n)

α1
α2 α3 αn

i1 i2 in

B. Lackey (Microsoft Quantum) Quantum Lego April 22, 2024 2 / 20



Quantum codes from tensor networks

For simplicity define a [[n, k]]q quantum code as a mapping V : H⊗k
q → H⊗n

q , where
Hq = Cq. One can convert it to a rank n+ k tensor Vi1,...,in+k

over a basis

V =
∑
ij

Vi1...in+k
|ik+1, . . . , ik+n⟩⟨i1 . . . , ik|. (1)

Quantum lego is about building large codes from small.

Codes are traced like tensors in a network, yielding new codes.

The check matrix of new code is easily obtained from those of the smaller codes.

Logical operations are easily analyzed through “operator pushing.”

Yet, it is unclear how to obtain the distance of the new code from the smaller ones.

Goal: show the enumerator of the trace is the trace of the enumerators!
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A small example: the 2× 2 Bacon-Shor code

Today we will work extensively with the 2× 2 Bacon-Shor code.

We view it as a [[4, 2]] code with stabilizer S = ⟨XXXX,ZZZZ⟩.
The four physical qubits are the horizontal legs in the plane.

The logical qubit is the upward pointing leg.

The gauge qubit is the downward pointing leg.

Operations on gauge and logical
qubits are seen as tensor stabilizers.

For example, on the far left:

Z = ZIIZ = IZZI

X = XXII = IIXX.
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Operator pushing

Tracing can be analyzed via “operator pushing.”

Top: ZZZZZZ is stabilizer for the traced code.

Starting on the left, we push a Z through the trace.

We use a stabilizer to push this Z to the boundary.

Bottom: we find a representation of a X operator.

We use the local representation of X.

We push the X through the trace,

Finally use a stabilizer to push X to the boundary.

These rules can be formalized into a simple rule for manipulating check matrices.

In this example, the traced code is the [[6, 4, 2]] code with S = ⟨XXXXXX,ZZZZZZ⟩.
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Constructing topological codes

Here we see a surface code.

Two sets of gauge operators (point-
ing downward) each push to the
identity.

These define relations on these
qubits that may be identified as sta-
bilizers of the surface code.

We obtain the toric code by tracing corresponding legs on opposite boundaries.

Note that the gauge qubits of the legos are now the physical qubits of the code.

The logical qubits (pointing upwards) have similar relations we have not shown; these
form the logical qubits of the code, which are not localized to single legos.
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Variants on surface codes

The XZZX-code1 is recovered with
a similar network. Alternating legos
have a H applied to the gauge legs.

The triangle code2 twists the surface
code with a [[4, 1]] gadget. Note ad-
ditionalHs are traced into some legs.

2Kay, PRL 107(27):270502, 2011
2Yoder and Kim, Quantum 1 (2017): 2.
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Constructing color codes

Here we build a simple color code: the Steane code.

Again we trace two 2 × 2 Bacon Shor codes, but
now we trace the corresponding logical and gauge
qubit legs.

The resulting traced codes is symmetric: we just
identify one of the legs as logical (labeled 8 here).

This example illustrates how logical operators and
stabilizers intermix in the post-traced code.

For example: XXXXIIII is a stabilizer both for one lego and the traced code.

However, IIIIXXXX is a stabilizer of one lego, but defines a logical operator on the
traced code.

B. Lackey (Microsoft Quantum) Quantum Lego April 22, 2024 8 / 20



Atomic Legos

One can show every quantum code can
be constructed from three types of legos:

A one-qubit state, say |0⟩.
One qubit unitaries.

The GHZ state 1√
2
(|000⟩+ |111⟩).

Yet, we know of no bounds on how many
of these atomic legos will be needed.

For example, in double traced codes shown here, we seem to have a logical operation.

However these cancel if we push the logical operators on the traced legs.

Hence XX is a relation, and XXXX is a stabilizer of the post-traced code.

In fact, the post-traced code is again the 2× 2 Bacon-Shor code.
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Quantum weight distributions

Definition [Shor-Laflamme3]

Let E be an error basis on a Hilbert space H, and M1,M2 Hermitian operators on H (in
practice M1 = M2 = ΠC). Then their quantum weight distributions are

Ad(M1,M2) =
∑

E∈En[d]

Tr(E†M1) Tr(EM2),

Bd(M1,M2) =
∑

E∈En[d]

Tr(E†M1EM2).

Here En[d] = {E1⊗· · ·⊗En : #{Ej ̸= I} = d} (e.g. n-qubit Paulis of Hamming weight d).

Bd is the quantum analogue of the usual weight distribution of a code,

Ad is the quantum analogue of the weight distribution of its dual code.

3Shor and Laflamme, PRL 78(8):1600, 1997.
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Quantum weight enumerators

We package up these distributions as polynomials, or enumerators:

A(z;M1,M2) =

n∑
d=0

Ad(M1,M2)z
d, B(z;M1,M2) =

n∑
d=0

Bd(M1,M2)z
d.

The “perfect code” is a [[5, 1, 3]] stabilizer code.

Its stabilizer and some logical operators are shown.
▶ There are 16 stabilizers in total.
▶ Each logical operator has 16 equivalent representations.

Owing to how we have selected to normalize:

A[[5,1,3]](z) = 4 · (1 + 15z4)

B[[5,1,3]](z) = 2 · (1 + 30z3 + 15z4 + 18z5).

S =

〈 XZZXI,
IXZZX,
XIXZZ,
ZXIXZ

〉

XL = XXXXX

YL = YYYYY

ZL = ZZZZZ
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Two key results about quantum enumerators

Theorem (Rains4)

Let U = U1 ⊗ · · · ⊗ Un be a local unitary transformation. Then

A(w, z;UM1U
†, UM2U

†) = A(w, z;M1,M2),

and similarly for B.

Theorem (Shor, Laflamme, Rains)

Let E be an error basis on H = Cq and M1,M2 Hermitian operators on H⊗n. Then

B(w, z;M1,M2) = A
(
w+(q2−1)z

q , w−z
q ;M1,M2

)
.

4Rains, IEEE Trans. Inf. Theory 44(4), 1998.
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Enumerators characterize error detection

For a general [[n, k, d]] stabilizer code C we have

Ad(ΠC ,ΠC) = 4k ·#(S(C) ∩ En[d]).

Bd(ΠC ,ΠC) = 2k ·#(N (C) ∩ En[d]).

Hence the distance d is the smallest nonzero power of 1
2k
B(z; ΠC)− 1

4k
A(z,ΠC) with a

nonzero coefficient.

Theorem (Ashikhmin, Barg, Knill, Litsyn5)

Let C be a [[n, k, d]]-code. Then the probability of an undetected error under a
depolarization channel with error probability p is precisely

1
2k
B
(
1− 3p

4 ,
p
4

)
− 1

4k
A
(
1− 3p

4 ,
p
4

)
.

5Ashikhmin, Barg, Knill, Litsyn, IEEE Trans. Inf. Theory 46(3), 2000.
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Tensor enumerators

We create “tensor enumerators” that are tensors with polynomial entries.

A subset of legs J form the tensor indices (with basis elements eE,E′).

The remaining legs are “traced” into enumerators.

Here E ⊗J F means insert factors of E into F at positions in J ,

Definition.

Let E be an error basis on H, and M1,M2 be Hermitian operators. Then for any subset of
legs J ⊆ {1, . . . , n} with |J | = m, we define:

A(J)(z;M1,M2) =
∑

E,E′∈Em

∑
F∈En−m

Tr((E ⊗J F )†M1) Tr((E
′ ⊗J F )M2)z

wt(F )eE,E′ ,

B(J)(z;M1,M2) =
∑

E,E′∈Em

∑
F∈En−m

Tr((E ⊗J F )†M1(E
′ ⊗J F )M2)z

wt(F )eE,E′ .
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Properties of tensor enumerators

Proposition

Let M1,M2 and M ′
1,M

′
2 be Hermitian operators on H and H′ respectively. Let J and J ′

be set of legs on these. Then

A(J∪J ′)(z;M1 ⊗M ′
1,M2 ⊗M ′

2) = A(J)(z;M1,M2)⊗A(J ′)(z;M ′
1,M

′
2),

and similarly for B.

Theorem (Cao-L.)

Let E be a unitary error basis on Cq, Hermitian operators M1,M2 on (Cq)⊗n, and
J ⊆ {1, . . . , n} with m = |J |, then with Φ(eE,E′) = 1

q2m
∑

F,F ′∈Em Tr(F †EF ′(E′)†)eF,F ′ .

B(J)(w, z;M1,M2) = Φ
[
A(J)

(
w+(q2−1)z

q , w−z
q ;M1,M2

)]
,
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Tracing tensor enumerators

The main result can be summarized by
the following points.

The network of the tensor
enumerator is the same as that of
the underlying code.

The enumerator of the trace of two
legos is the trace of the constituent
enumerators (formally at left).

Theorem (Cao-L.)

Suppose j, k ∈ J ⊆ {1, . . . , n}, then

∧j,kA(J)(z;M1,M2)

= A(J\{j,k})(z;∧j,kM1,∧j,kM2),

and similarly for B(J).

Therefore, if the number of untraced legs does not grow too large we can exactly
compute enumerators for quantum codes at scale.

Roughly speaking the complexity is exponential in the size largest cut encountered when
tracing the network.
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Enumerators of surface codes

For the surface code, at left is a d = 4 example.

The lego boundaries have been traced against sta-
bilizer states (and so these are not the physical
qubits of the code).

The logical qubits of the legos (downward pointing
legs) are the physical qubits of the surface code.

The gauge qubits of the legos (upward pointing
legs) are in aggregate the logical qubit.

Scaling up, the quantum weight enumerators of a [[181, 1, 10]] surface code are

A(z) = 1 + 36z3 + 180z4 + 136z5 + 1344z6 + 7084z7 + 24001z8 + 60432z9 + 286748z10 + . . .

B(z) = 1 + 36z3 + 180z4 + 136z5 + 1344z6 + 7084z7 + 24001z8 + 60432z9 + 286768z10 + . . .
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Enumerators of rotated surface codes

The rotated surface code uses the same quantum
legos just assembled in slightly different way.

To the left we have an asymmetric 3× 5 code.

Similarly, the logical qubits (downward pointing)
are the physical qubits of the surface code, while
the gauge qubits (upward point) are in aggregate
the logical qubit.

For a [[256, 1, 16]] rotated surface code a

A(z) = 1 + 30z2 + 776z4 + 15538z6 + 276801z8 + 4431408z10 + 65676619z12

+ 912021486z14 + 12003931907z16 + 150911390280z18 + . . .

B(z) = 1 + 30z2 + 776z4 + 15538z6 + 276801z8 + 4431408z10 + 65676619z12

+ 912021486z14 + 12004980483z16 + 150970896992z18 + . . .
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Enumerators of color codes

Here we see the construction of the d = 7
color code (from the 6.6.6 family) built
from Steane codes as legos.

Steane codes can be built from smaller
legos, but are themselvees small enough
to be use as basic building blocks

The enumerators for a scaled up [[91, 1, 11]] code from this family are

A(z) = 1 + 54z4 + 297z6 + 2889z8 + 24258z10 + 197493z12 + 1629738z14

+ 13287999z16 + 108647952z18 + . . .

B(z) = 1 + 54z4 + 297z6 + 2889z8 + 24258z10 + 4176z11 + 197493z12 + 67242z13

+ 1629738z14 + 1066740z15 + 13287999z16 + 14401674z17 + 108647952z18 + . . .
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Thank You

Questions:

Can we find a simple lego constructions for quantum LDPC codes?

Can we extend these constructions to analyze fault-tolerant circuits?
▶ Answer: Yes! Stay tuned....

Can use tensor enumerators to predict how to build good codes using legos?
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