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Goal: finding the top eigenvector of a Hermitian M

» Used for: computing PageRank, ground states, dimensionality reduction, etc.
> Assume we can query matrix elements of the (dense) matrix M € C%d.

» Full diagonalization takes ~ d“ time where w € [2,2.37 .. .); in practice w = 3.
» A matrix-vector multiplication takes merely d? time = use power method!

Power method

> For simplicity assume ||[M|| = 1, and let A be the spectral gap of M
» Sample a random vector v
> |terate ~ % times:

compute and update v « Mv

The final vector is close to the top eignevector () with high probability

v

» Initial overlap is [(y(D, v)| = %:

gets magnified by ~ (1 + A) per step.
The overall time complexity is ~ d?/A; this is provably optimal for A = ©(1)
The Lanczos algorithm improves the gap dependence quadratically ~ o2/ VA
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Speed up using quantum linear algebra?
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Preparing |v) takes time O(log d) assuming QRAM (Kerenidis-Prakash’17)
Applying M takes time d®%t°(") (Low’18 + G, Su, Low, Wiebe’18)

Applying M = [y Xy ()| takes time d®%+t°(M/A (QSVT - G, Su, Low, Wiebe’18)
Amplifying Mv to Mv/||Mv]|| has overhead ~ Vd

Tomography of v has overhead ~ d/e (Apeldoorn, Cornelissen, G, Nannicini’22)
Combining everything the total complexity is ~ d?/(Ag)

We prove a quantum query lower bound ~ d'° when A, & = ©(1)

There is some hope, the running time is ~ d'°/(|[(y("), v)|Ag)



Needle in the haystack: quantum-classical conversions

Classical amplification is for free — skip expensive quantum amplification

Do tomography directly on [0)[v) + [1)|(/ = M)v)

Power method is robust to small errors lv + ¢ (Hardt and Price’14)

Suffices to ensure the error term is [I¢] < & and [(y("),£)| < £ in each iteration
We develop a new pure-state tomography procedure with such guarantees

The complexity of our tomography algorithm remains ~ d/e (essentially optimal)




Tomography by computational basis measurements | - |

Okamoto-Hoeffding Bound

X4 x@ 4. +Xx(0

Let 0 <X < 1 be a bounded random variable, and s := -

mean of ni.i.d. samples. Then for p := E[X] we have that

P(Vs> vp+é)< exp(—282n),
P(Vs< Vp-¢) < exp(—szn).

! be the empirical

Gate-efficient estimation of absolute amplitudes

Given - = In( ) samples of the pure quantum state |p) := |0)|y) + |1)]-) € C2°,
measure each copy and let s; be the frequency of 0, i outcomes and define

Ji = .

With probability at least 1 — ¢ it gives an &-{., approximation of the absolute vales ||



Tomography using conditional samples (R)

Gate-efficient tomography of “real” states using reference state |u) = Z, 0 f|/>

Given 4 In( ) samples of the state |) := (|4+)(I0)w) + [1)]-)) + [-)|0)|u))/ V2 € R4,
measure each copy and let s, ; be the frequency of b, 0, i outcomes and define

max{0, 2+/Sp; — %} if S0 > Sy
gi:=4 0 if Soj = Sy,
min{0, —(2/s1, — —) if Sp,i < Sy,

With probability at least 1 — ¢ it gives an %-&o (and thus &-f,) approximation of .

> ldea can be extended for y € C9, see (Apeldoorn, Cornelissen, G, Nannicini’22).



Unbiased tomography using a reference state y € R

Suppose we have a reference state ¢ € RY such that |y,|* > max{ £ =, 2|y} for all je[d]

Given 124 In(sg’) copies of the pure state |¢) := (|+>|w> + |- >|1,//))/ V2 e 9,
measure each copy and let s, ; be the frequency of b, i outcomes, then

~ So,j — S1

4= v

is an unbiased estimator of R (). Moreover, for any B = {vU): j € [k]} ONB we have

Pr[w € B: [( - R()IV)| < %] >1-6.

> = R(yi)yi

Concentration follows from the Bennett-Bernstein Bound as |w_| —d and [|Cov|| < 1.

KO, ilg)° — K1, i)l = |¥‘ : ‘u




Application: Tomography using a reflection 2|y Xy/| — |
Algorithm — quantum noisy power method — Chen, G, de Wolf [QIP’24]

> Input: Controlled reflection R = 2|y Xy| — I or block-encoding of 1 = [y Xy
» Init: sample Gaussian random vector ¢(©)
» Forj=0...log(d) do
Prepare data structure in QRAM for preparing the normalized state |¢U)>
Do tomography on I'I|¢(f)> to £,-precision & giving pU* "

> Initial overlap with |y} is ~ ==, error overlap is ~ id in each iteration

d’ Vd

> In each iteration the overlap doubles until it is (1) — total complexity is ~ d'%g(d)

» Given U block-encoding of a matrix M having gap A turn into top-eigenvector
projector using QSVT by ~ % iterations

> Sparse M can be block-encoded by ~ +/s queries = ~ dv/s/(Ag) overall
> Query complexity is ~ d'-°/A for dense case and ¢ = ©(1).



Extension: Process tomography of reflections 2[1 -/

» Similar algorithm works if we are promised rank I1is at most r

» Sample ~ r independent random vectors and apply power method for each

> The subspace spanned by the left singular vectors with s.v. Q(1) approximate [1
> Algorithm uses R = 2[1 — | about ~ < times

> Probably optimal, we prove ﬁ(dr + 2) lower bound

> Unitary tomography has complexity ©(d?/e) (Haah, Kothari, O’'Donnell, Tang'23)

Application to sparse matrices — Chen, G, de Wolf [QIP’24]

> Given U block-encoding of a matrix M having gap y below top-r eigensubspace
turn into top-eigenvector projector using QSVT by ~ % iterations

» Sparse M can be block-encoded by ~ +/s queries = O(dr Vs/ (As)) overall

1



Iterative refinement

» Comes from early days of classical computing having limited precision numbers
> Solves a large linear equation system given such limited arithmetic precision
> |dea is to solve it only to constant precision, and then recurse

> Compute X such that ||A% — b|| < /bl

> Setb « AX — b and repeat log,(1/¢) times

> Take the sum x = Y X of the intermediate solutions
> The result satisfies ||Ax — b|| < ]||b||

In the quantum case this requires updating the state preparation unitary
E.g., use classical write quantum read QRAM
Could get a polynomial speedup when classical output is required (IP solvers)

Idea pioneered by Mohammadhossein Mohammadisiahroudi, Brandon
Augustino, Tamas Terlaky, et al.

» Similar ideas can be applied to pure state tomography

vV v VY



Iteratively refined tomography

Refinement step

» Want to learn (%), by improving the current estimate /(")
> Input: & € (0, 2], unitaries U®, UM such that ||y(® - yO|| < & for
= (0% ® ) UM|09)
> Let W:=|+X+® UO - |-X-|® UV, and k ~ 1/¢
> Let AA(W, k) be the k-step amplitude amplification of
g = ¢ © — ) = ((0**'| ® ) W|0IH")
> Perform tomography on |¢) := ((02*'| ® )AA(W, k)|09"") to £,-precision § giving
estimate ¢
» Output: y() « () + z% (satisfying [[y(® — y|| < &/2 with probability > 1 - &)
> Complexity: ~ 1 x d



Quantum lower bound

Hard instance

» Hide d bits of information in ¢ € {—1, +1}°.
> Define M := 154 + N/(0, 1) entry-wise noise.

> Because of random matrix theory with high probability ||[M|| <1 and A > 1

» The top-eigenvector ") is O(1)-close to ¢. Learning /(') reveals Q(d) bits.

Quantum lower bound — using a variant of the adversary method

> To learn ¢; we need to extract sign + from noisy entries =3 + N/(0, 17 5=)-
> Requires ~ d “samples” classically = ~ Q(d?) queries to learn most bits.

> Requires ~ Vd “queries” quantumly = ~ Q(d'®) queries to learn most bits.

11/11



