A Quantum Speed-Up for Approximating the Top Eigenvector of a Matrix via Improved Tomography

> András Gilyén HUN-REN Alfréd Rényi Institute of Mathematics

> Joint work with Yanlin Chen and Ronald de Wolf

Simons Institute, Berkeley, 24th April 2024

Goal: finding the top eigenvector of a Hermitian M

- Used for: computing PageRank, ground states, dimensionality reduction, etc.
- ▶ Assume we can query matrix elements of the (dense) matrix $M \in \mathbb{C}^{d \times d}$.
- ▶ Full diagonalization takes ~ d^{ω} time where $\omega \in [2, 2.37...)$; in practice $\omega \approx 3$.
- A matrix-vector multiplication takes merely d^2 time \Rightarrow use power method!

Power method

- For simplicity assume ||M|| = 1, and let Δ be the spectral gap of M
- Sample a random vector v
- Iterate ~ $\frac{\log d}{\Delta}$ times: compute and update $v \leftarrow Mv$
- The final vector is close to the top eignevector $\psi^{(1)}$ with high probability
- Initial overlap is |⟨ψ⁽¹⁾, v⟩| ≈ 1/√d: gets magnified by ~ (1 + Δ) per step.
- The overall time complexity is ~ d^2/Δ ; this is provably optimal for $\Delta = \Theta(1)$
- ▶ The Lánczos algorithm improves the gap dependence quadratically $\sim d^2/\sqrt{\Delta}$

Speed up using quantum linear algebra?

- Preparing $|v\rangle$ takes time $O(\log d)$ assuming QRAM (Kerenidis-Prakash'17)
- Applying *M* takes time $d^{0.5+o(1)}$ (Low'18 + **G**, Su, Low, Wiebe'18)
- ► Applying $\Pi = |\psi^{(1)} \chi \psi^{(1)}|$ takes time $d^{0.5+o(1)}/\Delta$ (QSVT **G**, Su, Low, Wiebe'18)
- Amplifying Πv to $\Pi v / || \Pi v ||$ has overhead $\sim \sqrt{d}$
- Tomography of Πv has overhead ~ d/ε (Apeldoorn, Cornelissen, **G**, Nannicini'22)
- Combining everything the total complexity is $\sim d^2/(\Delta \varepsilon)$
- We prove a quantum query lower bound ~ $d^{1.5}$ when $\Delta, \varepsilon = \Theta(1)$
- There is some hope, the running time is $\sim d^{1.5}/(|\langle \psi^{(1)}, v \rangle|\Delta \varepsilon)$

Needle in the haystack: quantum-classical conversions

- Classical amplification is for free skip expensive quantum amplification
- Do tomography directly on $|0\rangle|\Pi v\rangle + |1\rangle |(I \Pi)v\rangle$
- Power method is robust to small errors $\Pi v + \zeta$ (Hardt and Price'14)
- Suffices to ensure the error term is $\|\zeta\| \le \varepsilon$ and $|\langle \psi^{(1)}, \zeta \rangle| \le \frac{\varepsilon}{\sqrt{d}}$ in each iteration
- We develop a new pure-state tomography procedure with such guarantees
- The complexity of our tomography algorithm remains $\sim d/\varepsilon$ (essentially optimal)

Tomography by computational basis measurements | · |

Okamoto-Hoeffding Bound

Let $0 \le X \le 1$ be a bounded random variable, and $s := \frac{X^{(1)} + X^{(2)} + ... + X^{(n)}}{n}$ be the empirical mean of *n* i.i.d. samples. Then for $p := \mathbb{E}[X]$ we have that

$$\mathbb{P}(\sqrt{s} \ge \sqrt{p} + \varepsilon) \le \exp(-2\varepsilon^2 n), \\ \mathbb{P}(\sqrt{s} \le \sqrt{p} - \varepsilon) \le \exp(-\varepsilon^2 n).$$

Gate-efficient estimation of absolute amplitudes

Given $\frac{1}{\varepsilon^2} \ln(\frac{2d}{\delta})$ samples of the pure quantum state $|\varphi\rangle := |0\rangle |\psi\rangle + |1\rangle |\cdot\rangle \in \mathbb{C}^{2d}$, measure each copy and let s_i be the frequency of 0, *i* outcomes and define

$$\bar{\psi}_i := \sqrt{s_i}.$$

With probability at least $1 - \delta$ it gives an $\varepsilon - \ell_{\infty}$ approximation of the absolute vales $|\psi|$.

Tomography using conditional samples (\mathbb{R})

Gate-efficient tomography of "real" states using reference state $|u\rangle = \sum_{i=0}^{d-1} \frac{1}{\sqrt{d}} |i\rangle$

Given $\frac{4d}{\varepsilon^2} \ln\left(\frac{4d}{\delta}\right)$ samples of the state $|\varphi\rangle := (|+\rangle(|0\rangle|\psi\rangle + |1\rangle|\cdot\rangle) + |-\rangle|0\rangle|u\rangle)/\sqrt{2} \in \mathbb{R}^{4d}$, measure each copy and let $s_{b,i}$ be the frequency of b, 0, i outcomes and define

$$ilde{\psi}_i := \left\{egin{array}{ll} \max\{0, & 2\,\sqrt{s_{0,i}} - rac{1}{\sqrt{d}}\} & ext{if } s_{0,i} > s_{1,i} \ 0 & ext{if } s_{0,i} = s_{1,i} \ \min\{0, -(2\,\sqrt{s_{1,i}} - rac{1}{\sqrt{d}})\} & ext{if } s_{0,i} < s_{1,i} \end{array}
ight.$$

With probability at least $1 - \delta$ it gives an $\frac{\varepsilon}{\sqrt{d}} - \ell_{\infty}$ (and thus $\varepsilon - \ell_2$) approximation of ψ .

▶ Idea can be extended for $\psi \in \mathbb{C}^d$, see (Apeldoorn, Cornelissen, **G**, Nannicini'22).

Unbiased tomography using a reference state $ar{\psi} \in \mathbb{R}^d$

Suppose we have a reference state $\bar{\psi} \in \mathbb{R}^d$ such that $|\bar{\psi}_j|^2 \ge \max\{\frac{\varepsilon^2}{d}, \frac{2}{3}|\psi_j|^2\}$ for all $j \in [d]$. Given $\frac{12d}{\varepsilon^2} \ln(\frac{8d}{\delta})$ copies of the pure state $|\varphi\rangle := (|+\rangle|\psi\rangle + |-\rangle|\bar{\psi}\rangle)/\sqrt{2} \in \mathbb{C}^d$, measure each copy and let $s_{b,i}$ be the frequency of b, i outcomes, then

$$ilde{\psi}_j := rac{m{s}_{\mathsf{0},j} - m{s}_{\mathsf{1},j}}{ar{\psi}_j}$$

is an unbiased estimator of $\mathfrak{K}(\psi)$. Moreover, for any $B = \{v^{(j)} : j \in [k]\}$ ONB we have

$$\Pr\left[\forall v \in B : |\langle \tilde{\psi} - \Re(\psi) | v \rangle| < \frac{\varepsilon}{\sqrt{d}}\right] \ge 1 - \delta.$$

$$|\langle 0,i|\phi
angle|^2-|\langle 1,i|\phi
angle|^2=\left|rac{\psi_i+ar{\psi}_i}{2}
ight|^2-\left|rac{\psi_i-ar{\psi}_i}{2}
ight|^2=\mathfrak{R}(\psi_i)ar{\psi}_i$$

Concentration follows from the Bennett-Bernstein Bound as $\frac{1}{|\bar{\psi}_i|} \leq \frac{\sqrt{d}}{\varepsilon}$ and $||Cov|| \leq 1$.

Application: Tomography using a reflection $2|\psi \chi \psi| - I$

Algorithm – quantum noisy power method – Chen, G, de Wolf [QIP'24]

- ▶ Input: Controlled reflection $R = 2|\psi \chi \psi| I$ or block-encoding of $\Pi = |\psi \chi \psi|$
- Init: sample Gaussian random vector $\phi^{(0)}$
- For $j = 0 \dots \log(d)$ do

Prepare data structure in QRAM for preparing the normalized state $|\phi^{(j)}\rangle$ Do tomography on $\Pi |\phi^{(j)}\rangle$ to ℓ_2 -precision ε giving $\phi^{(j+1)}$

- Initial overlap with $|\psi\rangle$ is $\sim \frac{1}{\sqrt{d}}$, error overlap is $\sim \frac{\varepsilon}{\sqrt{d}}$ in each iteration
- ▶ In each iteration the overlap doubles until it is $\Omega(1)$ total complexity is $\sim \frac{d \log(d)}{\varepsilon}$
- ► Given *U* block-encoding of a matrix *M* having gap Δ turn into top-eigenvector projector using QSVT by $\sim \frac{1}{\Delta}$ iterations
- ▶ Sparse *M* can be block-encoded by $\sim \sqrt{s}$ queries $\Rightarrow \sim d\sqrt{s}/(\Delta \varepsilon)$ overall
- Query complexity is $\sim d^{1.5}/\Delta$ for dense case and $\varepsilon = \Theta(1)$.

Extension: Process tomography of reflections $2\Pi - I$

- Similar algorithm works if we are promised rank Π is at most r
- ► Sample ~ *r* independent random vectors and apply power method for each
- The subspace spanned by the left singular vectors with s.v. $\Omega(1)$ approximate Π
- Algorithm uses $R = 2\Pi I$ about $\sim \frac{dr}{\epsilon}$ times
- Probably optimal, we prove $\widetilde{\Omega}(dr + \frac{d}{\epsilon})$ lower bound
- Unitary tomography has complexity $\Theta(d^2/\varepsilon)$ (Haah, Kothari, O'Donnell, Tang'23)

Application to sparse matrices – Chen, G, de Wolf [QIP'24]

- Given U block-encoding of a matrix M having gap γ below top-r eigensubspace turn into top-eigenvector projector using QSVT by ~ ¹/_Δ iterations
- ▶ Sparse *M* can be block-encoded by $\sim \sqrt{s}$ queries $\Rightarrow O(dr \sqrt{s}/(\Delta \varepsilon))$ overall

Iterative refinement

- Comes from early days of classical computing having limited precision numbers
- Solves a large linear equation system given such limited arithmetic precision
- Idea is to solve it only to constant precision, and then recurse
 - Compute \tilde{x} such that $||A\tilde{x} b|| \le \frac{1}{2}||b||$
 - Set $b \leftarrow A\tilde{x} b$ and repeat $\log_2(1/\varepsilon)$ times
 - Take the sum $\bar{x} = \sum \tilde{x}$ of the intermediate solutions
 - The result satisfies $||A\bar{x} b|| \le \varepsilon ||b||$
- In the quantum case this requires updating the state preparation unitary
- E.g., use classical write quantum read QRAM
- Could get a polynomial speedup when classical output is required (IP solvers)
- Idea pioneered by Mohammadhossein Mohammadisiahroudi, Brandon Augustino, Tamás Terlaky, et al.
- Similar ideas can be applied to pure state tomography

Iteratively refined tomography

Refinement step

- Want to learn $\psi^{(0)}$, by improving the current estimate $\psi^{(1)}$
- ▶ Input: $\varepsilon \in (0, 2]$, unitaries $U^{(0)}, U^{(1)}$ such that $\left\|\psi^{(0)} \psi^{(1)}\right\| \le \varepsilon$ for $\psi^{(i)} := (\langle 0^a | \otimes I \rangle U^{(i)} | 0^q \rangle$
- ► Let $W := |+\chi +| \otimes U^{(0)} |-\chi -| \otimes U^{(1)}$, and $k \approx 1/\varepsilon$
- ► Let AA(W, k) be the *k*-step amplitude amplification of $|\varphi\rangle := \psi^{(0)} \psi^{(1)} = (\langle 0^{a+1} | \otimes I \rangle W | 0^{q+1} \rangle$
- ▶ Perform tomography on $|\phi\rangle := (\langle 0^{a+1}| \otimes I)AA(W,k)|0^{q+1}\rangle$ to ℓ_2 -precision $\frac{1}{6}$ giving estimate $\tilde{\phi}$
- Output: $\psi^{(1)} \leftarrow \psi^{(1)} + \frac{2\tilde{\phi}}{2k+1}$ (satisfying $\left\|\psi^{(0)} \psi^{(1)}\right\| \le \varepsilon/2$ with probability $\ge 1 \delta$)
- Complexity: $\approx \frac{1}{\varepsilon} \times d$

Quantum lower bound

Hard instance

- Hide *d* bits of information in $\phi \in \{-1, +1\}^d$.
- Define $M := \frac{|\phi \setminus \phi|}{2d} + \mathcal{N}(0, \frac{1}{100\sqrt{d}})$ entry-wise noise.
- Because of random matrix theory with high probability $||M|| \le 1$ and $\Delta \ge \frac{1}{4}$.
- The top-eigenvector $\psi^{(1)}$ is O(1)-close to ϕ . Learning $\psi^{(1)}$ reveals $\Omega(d)$ bits.

Quantum lower bound – using a variant of the adversary method

- ► To learn ϕ_i we need to extract sign $\pm \frac{1}{d}$ from noisy entries $\pm \frac{1}{d} + \mathcal{N}(0, \frac{1}{100\sqrt{d}})$.
- Requires $\overline{\sim d}$ "samples" classically $\Rightarrow \sim \Omega(d^2)$ queries to learn most bits.
- Requires ~ \sqrt{d} "queries" quantumly $\Rightarrow \sim \Omega(d^{1.5})$ queries to learn most bits.