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Goal: finding the top eigenvector of a Hermitian M
▶ Used for: computing PageRank, ground states, dimensionality reduction, etc.
▶ Assume we can query matrix elements of the (dense) matrix M ∈ Cd×d .
▶ Full diagonalization takes ∼ dω time where ω ∈ [2, 2.37 . . .); in practice ω ≈ 3.
▶ A matrix-vector multiplication takes merely d2 time⇒ use power method!

Power method

▶ For simplicity assume ∥M∥ = 1, and let ∆ be the spectral gap of M
▶ Sample a random vector v
▶ Iterate ∼ log d

∆ times:
compute and update v ← Mv

▶ The final vector is close to the top eignevector ψ(1) with high probability

▶ Initial overlap is |⟨ψ(1), v⟩| ≈ 1
√

d
:

gets magnified by ∼ (1 +∆) per step.
▶ The overall time complexity is ∼ d2/∆; this is provably optimal for ∆ = Θ(1)
▶ The Lánczos algorithm improves the gap dependence quadratically ∼ d2/

√
∆
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Speed up using quantum linear algebra?
▶ Preparing |v⟩ takes time O(log d) assuming QRAM (Kerenidis-Prakash’17)
▶ Applying M takes time d0.5+o(1) (Low’18 + G, Su, Low, Wiebe’18)
▶ Applying Π = |ψ(1)⟩⟨ψ(1)| takes time d0.5+o(1)/∆ (QSVT – G, Su, Low, Wiebe’18)
▶ Amplifying Πv to Πv/∥Πv∥ has overhead ∼

√
d

▶ Tomography of Πv has overhead ∼ d/ε (Apeldoorn, Cornelissen, G, Nannicini’22)
▶ Combining everything the total complexity is ∼ d2/(∆ε)

▶ We prove a quantum query lower bound ∼ d1.5 when ∆, ε = Θ(1)
▶ There is some hope, the running time is ∼ d1.5/(|⟨ψ(1), v⟩|∆ε)
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Needle in the haystack: quantum-classical conversions
▶ Classical amplification is for free — skip expensive quantum amplification
▶ Do tomography directly on |0⟩|Πv⟩+ |1⟩

∣∣∣(I − Π)v〉
▶ Power method is robust to small errors Πv + ζ (Hardt and Price’14)
▶ Suffices to ensure the error term is ∥ζ∥ ≤ ε and |⟨ψ(1), ζ⟩| ≤ ε

√
d

in each iteration
▶ We develop a new pure-state tomography procedure with such guarantees
▶ The complexity of our tomography algorithm remains ∼ d/ε (essentially optimal)

*Image from “Satisfiability: Theory, Practice, and Beyond” Simons program’21 3 / 11



Tomography by computational basis measurements | · |

Okamoto-Hoeffding Bound

Let 0 ≤X ≤ 1 be a bounded random variable, and s := X (1)+X (2)+...+X (n)

n be the empirical
mean of n i.i.d. samples. Then for p := E[X ] we have that

P(
√

s ≥
√

p + ε) ≤ exp
(
−2ε2n

)
,

P(
√

s ≤
√

p − ε) ≤ exp
(
−ε2n

)
.

Gate-efficient estimation of absolute amplitudes

Given 1
ε2 ln
(

2d
δ

)
samples of the pure quantum state |φ⟩ := |0⟩|ψ⟩+ |1⟩|·⟩ ∈ C2d ,

measure each copy and let si be the frequency of 0, i outcomes and define

ψ̄i :=
√

si.

With probability at least 1 − δ it gives an ε-ℓ∞ approximation of the absolute vales |ψ|.
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Tomography using conditional samples (R)

Gate-efficient tomography of “real” states using reference state |u⟩ =
∑d−1

i=0
1
√

d
|i⟩

Given 4d
ε2 ln
(

4d
δ

)
samples of the state |φ⟩ := (|+⟩(|0⟩|ψ⟩+ |1⟩|·⟩) + |−⟩|0⟩|u⟩)/

√
2 ∈ R4d ,

measure each copy and let sb ,i be the frequency of b , 0, i outcomes and define

ψ̃i :=


max{0, 2

√
s0,i −

1
√

d
} if s0,i > s1,i

0 if s0,i = s1,i

min{0,−(2
√

s1,i −
1
√

d
)} if s0,i < s1,i

With probability at least 1 − δ it gives an ε
√

d
-ℓ∞ (and thus ε-ℓ2) approximation of ψ.

▶ Idea can be extended for ψ ∈ Cd , see (Apeldoorn, Cornelissen, G, Nannicini’22).
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Unbiased tomography using a reference state ψ̄ ∈ Rd

Suppose we have a reference state ψ̄ ∈ Rd such that |ψ̄j |
2 ≥ max{ ε

2

d ,
2
3 |ψj |

2} for all j ∈ [d].
Given 12d

ε2 ln
(

8d
δ

)
copies of the pure state |φ⟩ :=

(
|+⟩|ψ⟩+ |−⟩

∣∣∣ψ̄〉)/√2 ∈ Cd ,
measure each copy and let sb ,i be the frequency of b , i outcomes, then

ψ̃j :=
s0,j − s1,j

ψ̄j

is an unbiased estimator ofℜ(ψ). Moreover, for any B = {v(j) : j ∈ [k ]} ONB we have

Pr
[
∀v ∈ B : |⟨ψ̃ −ℜ(ψ)|v⟩| <

ε
√

d

]
≥ 1 − δ.

|⟨0, i|ϕ⟩|2 − |⟨1, i|ϕ⟩|2 =

∣∣∣∣∣∣ψi + ψ̄i

2

∣∣∣∣∣∣2 −
∣∣∣∣∣∣ψi − ψ̄i

2

∣∣∣∣∣∣2 = ℜ(ψi)ψ̄i

Concentration follows from the Bennett-Bernstein Bound as 1
|ψ̄i |
≤
√

d
ε

and ∥Cov∥ ≤ 1.
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Application: Tomography using a reflection 2|ψ⟩⟨ψ| − I
Algorithm – quantum noisy power method – Chen, G, de Wolf [QIP’24]

▶ Input: Controlled reflection R = 2|ψ⟩⟨ψ| − I or block-encoding of Π = |ψ⟩⟨ψ|

▶ Init: sample Gaussian random vector ϕ(0)

▶ For j = 0 . . . log(d) do
Prepare data structure in QRAM for preparing the normalized state

∣∣∣ϕ(j)〉
Do tomography on Π

∣∣∣ϕ(j)〉 to ℓ2-precision ε giving ϕ(j+1)

▶ Initial overlap with |ψ⟩ is ∼ 1
√

d
, error overlap is ∼ ε

√
d

in each iteration

▶ In each iteration the overlap doubles until it is Ω(1) – total complexity is ∼ d log(d)
ε

▶ Given U block-encoding of a matrix M having gap ∆ turn into top-eigenvector
projector using QSVT by ∼ 1

∆
iterations

▶ Sparse M can be block-encoded by ∼
√

s queries⇒ ∼ d
√

s/(∆ε) overall
▶ Query complexity is ∼ d1.5/∆ for dense case and ε = Θ(1).

7 / 11



Extension: Process tomography of reflections 2Π − I
▶ Similar algorithm works if we are promised rank Π is at most r
▶ Sample ∼ r independent random vectors and apply power method for each
▶ The subspace spanned by the left singular vectors with s.v. Ω(1) approximate Π

▶ Algorithm uses R = 2Π − I about ∼ dr
ε

times

▶ Probably optimal, we prove Ω̃(dr + d
ε
) lower bound

▶ Unitary tomography has complexity Θ(d2/ε) (Haah, Kothari, O’Donnell, Tang’23)

Application to sparse matrices – Chen, G, de Wolf [QIP’24]

▶ Given U block-encoding of a matrix M having gap γ below top-r eigensubspace
turn into top-eigenvector projector using QSVT by ∼ 1

∆
iterations

▶ Sparse M can be block-encoded by ∼
√

s queries⇒ O
(
dr
√

s/(∆ε)
)

overall
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Iterative refinement
▶ Comes from early days of classical computing having limited precision numbers
▶ Solves a large linear equation system given such limited arithmetic precision
▶ Idea is to solve it only to constant precision, and then recurse

▶ Compute x̃ such that
∥∥∥Ax̃ − b

∥∥∥ ≤ 1
2∥b∥

▶ Set b ← Ax̃ − b and repeat log2(1/ε) times
▶ Take the sum x̄ =

∑
x̃ of the intermediate solutions

▶ The result satisfies ∥Ax̄ − b∥ ≤ ε∥b∥

▶ In the quantum case this requires updating the state preparation unitary
▶ E.g., use classical write quantum read QRAM
▶ Could get a polynomial speedup when classical output is required (IP solvers)
▶ Idea pioneered by Mohammadhossein Mohammadisiahroudi, Brandon

Augustino, Tamás Terlaky, et al.
▶ Similar ideas can be applied to pure state tomography
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Iteratively refined tomography

Refinement step

▶ Want to learn ψ(0), by improving the current estimate ψ(1)

▶ Input: ε ∈ (0, 2], unitaries U(0),U(1) such that
∥∥∥ψ(0) − ψ(1)

∥∥∥ ≤ ε for
ψ(i) := (⟨0a | ⊗ I)U(i)|0q⟩

▶ Let W := |+⟩⟨+| ⊗ U(0) − |−⟩⟨−| ⊗ U(1), and k ≈ 1/ε
▶ Let AA(W , k ) be the k -step amplitude amplification of
|φ⟩ := ψ(0) − ψ(1) = (⟨0a+1| ⊗ I)W |0q+1⟩

▶ Perform tomography on |ϕ⟩ := (⟨0a+1| ⊗ I)AA(W , k )|0q+1⟩ to ℓ2-precision 1
6 giving

estimate ϕ̃

▶ Output: ψ(1) ← ψ(1) + 2ϕ̃
2k+1 (satisfying

∥∥∥ψ(0) − ψ(1)
∥∥∥ ≤ ε/2 with probability ≥ 1 − δ)

▶ Complexity: ≈ 1
ε
× d

10 / 11



Quantum lower bound

Hard instance

▶ Hide d bits of information in ϕ ∈ {−1,+1}d .
▶ Define M := |ϕ⟩⟨ϕ|

2d +N(0, 1
100
√

d
) entry-wise noise.

▶ Because of random matrix theory with high probability ∥M∥ ≤ 1 and ∆ ≥ 1
4 .

▶ The top-eigenvector ψ(1) is O(1)-close to ϕ. Learning ψ(1) reveals Ω(d) bits.

Quantum lower bound – using a variant of the adversary method

▶ To learn ϕi we need to extract sign ± 1
d from noisy entries ± 1

d +N(0, 1
100
√

d
).

▶ Requires ∼ d “samples” classically⇒ ∼ Ω(d2) queries to learn most bits.
▶ Requires ∼

√
d “queries” quantumly⇒ ∼ Ω(d1.5) queries to learn most bits.
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