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(as a resource for computation, 
simulation, metrology, etc…)

The entanglement challenge

Start with some simple initial state… 

Or gates

But we are always prone to errors…
And we can’t even detect when they happen!

… create a useful entangled state

So how do we scale up quantum 
systems while maintaining control, 

minimizing errors, and verifying we’ve 
done the correct evolution?



Outlook

Applications
Entanglement estimation, noise learning, etc

Benchmarking
For a large scale analog quantum simulator
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Can create large arrays in 
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Rydberg atom arrays

In our experiment we work
with arrays of strontium atoms

Lots of interesting atomic
physics to discuss…

But not for this talk!

Can create large arrays in 
multiple dimensions with 

full positional control 
(“rearrangement”) 
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Review: Browaeys et al, Nature Physics 16, 132 (2020)

Large separations:
Both atoms can be excited

Atom in the ground state

Making atoms interact

Rydberg atom

nucleus
electron

Electron wavefunction
n~100

(radius can be hundreds
of nanometers)

En
er

gy

Atomic separation

Small separations*:
Double excitation is blocked

*Visual is exaggerated

Try exciting two atoms…

One excitation becomes 
shared across both atoms…

Entanglement!



Physics with atom arrays, a small selection (pre 2024)

Semeghini, Science (2021)        de Leseleuc, Science (2019)

New phases of matter

Young, Science (2022)

Hubbard physics

Yan*, Spar*, PRL (2022)

Metrology

Norcia, Science (2019)                Shaw*, Finkelstein*, Nat Phys (2023)   
Madjarov, PRX (2019)                 Eckner, Nature (2023)

Optimization problems

Ebadi, Science (2022)

Quantum randomness

Choi*, Shaw*, Nature (2023)

High-fidelity two-qubit entanglement

Madjarov*, Covey*, Shaw, Nat Phys (2019)
Evered*, Bluvstein*, Kalinowski*, Nature (2023)

Ma*,  Liu*, Peng*, Nature (2023)
Scholl*, Shaw*, Nature (2023)  

Byun*, Kim*, PRXQ (2022)

Quantum magnetism

Bernien, Nature (2017)                      Scholl,  Nature (2021)     
Ebadi, Nature (2022)                         Chen, Nature (2023)

Quantum phase transitions

Scholl*, Shaw*, Nature (2023)         Keesling, Nature (2019)

Quantum algorithms

Bluvstein, Nature (2022)              
Graham, Nature (2022)

Liu, Science (2018)

Making molecules
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Ma*,  Liu*, Peng*, Nature (2023)
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Byun*, Kim*, PRXQ (2022)

Quantum magnetism

Bernien, Nature (2017)                      Scholl,  Nature (2021)     
Ebadi, Nature (2022)                         Chen, Nature (2023)

Quantum phase transitions

Scholl*, Shaw*, Nature (2023)         Keesling, Nature (2019)

Quantum algorithms

Bluvstein, Nature (2022)              
Graham, Nature (2022)

Liu, Science (2018)

Making molecules

Both quantum simulation and quantum computation applications!

Analog:
Simulating complex quantum 
dynamics by mapping to the 

natural system evolution

Digital:
Solving computational problems 

using a discrete and universal 
set of quantum operations
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Two different ways of 
defining a qubit on this 

three level system…

Analog:
Strongly interacting spin system 

with an Ising-like Hamiltonian 
which exhibits critical and 

high-entanglement behavior

Analog

A tale of two qubits

Rydberg

clock

ground
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t

Digital qubit: CZ gate fidelity 
(measured with RB) of 0.9973(4)*

*unpublished, published value is 0.9935

Finkelstein*, Tsai*,..., Shaw, Endres, 
arXiv:2402.16220 (2024)

Digital:
Long-lived qubit, amenable to 

gate-based operation, Rydberg 
state is only excited transiently

Other gate results from: Saffman, Lukin, Thompson, 
Kaufman, Bernien, Zhan, and more
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Analog qubit: Bell state fidelity of 
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Digital:
Long-lived qubit, amenable to 

gate-based operation

Two different ways of 
defining a qubit on this 

three level system…

*for erasure conversion, see also 
theory: Wu,..., Thompson, Nat Comm (2022)
experiment: Ma,...,Thompson, Nature 622 (2023)
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Analog

Analog:
Strongly interacting spin system 

with an Ising-like Hamiltonian 
which exhibits critical and 

high-entanglement behavior

Analog qubit: Bell state fidelity of 
~0.9992 (with erasure conversion*)

Detailed error modeling shows that 
~0.9999 is experimentally realistic

But what about
larger systems? 

Scholl*, Shaw*, et al., Nature 622 (2023)
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Fidelity benchmarking

Evolve under 
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No errors

Entanglement entropy grows 
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independent rate, but saturates at 
system size dependent time/level
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Fidelity benchmarking

Evolve under 
Ising-like

Hamiltonian

No errors

Errors during
evolution

Fidelity is the probability 
that we don’t make an error

Exponentially difficult to 
measure for large systems!

Arute et al, Nature (2019)

If the dynamics are explicitly 
randomized, you can estimate 
fidelity by measuring q(z), the 

experimental bitstring probability 
distribution in a fixed basis

We showed this also holds 
for time-independent 
Hamiltonian systems!

Choi*, Shaw* et al, Nature (2023)
Mark, Choi, Shaw et al, PRL (2023)
Cotler,...Shaw, et al, PRXQ (2023)

One-dimensional array of up to 60 atoms
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Start with all probability 
on a single bitstring

Choi*, Shaw* et al, Nature (2023)
Mark, Choi, Shaw et al, Phys Rev Lett (2023)       Also see: Arute et al, Nature (2019)  
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Quantum dynamics maps to 
near-random distribution...

 

Like a quantum fingerprint

000…000 111…111

Very sensitive to the exact 
initial state and dynamics!
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Impose a phase flip error on a 
single qubit: initially not visible!
(because error is orthogonal to 

measurement basis) 

Choi*, Shaw* et al, Nature (2023)
Mark, Choi, Shaw et al, Phys Rev Lett (2023)       Also see: Arute et al, Nature (2019)  
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Bitstring index

Choi*, Shaw* et al, Nature (2023)
Mark, Choi, Shaw et al, Phys Rev Lett (2023)       Also see: Arute et al, Nature (2019)  

Fidelity estimator proportional to Theory-Experiment correlation!

Experiment

Theory

000…000 111…111

000…000 111…111

Quantum dynamics maps to 
near-random distribution...

 

Like a quantum fingerprint

But error soon scrambles, 
changing the distribution!

“Butterfly effect”
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Creating maximum entanglement entropy states

Choi*, Shaw* et al, Nature (2023)
Mark, Choi, Shaw et al, PRL (2023)

First, use noisy simulation to verify fidelity 
estimator is accurate to the model fidelity

Model fidelity
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Creating maximum entanglement entropy states

First, use noisy simulation to verify fidelity 
estimator is accurate to the model fidelity

Can accurately benchmark
the experiment! Choi*, Shaw* et al, Nature (2023)

Mark, Choi, Shaw et al, PRL (2023)

Demonstration of benchmarking with experiment

Fidelity
Fidelity estimator

Experimental
fidelity estimator

Sample bitstrings

Needs an exact classical simulation… 
What about LARGER systems?
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At early times 
the system hasn’t 

built up much 
entanglement

Not exactly
simulatable

MPS perfectly 
simulates dynamics 
while entanglement 

is below the 
“bond dimension”

Exactly 
simulatable

Ex
ac

tl
y
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m
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We can simulate 
by using

Matrix product 
states (MPS)!
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Fidelity benchmarking breakdown

For large enough 
bond dimension, we 
exactly benchmark 
the system

Fidelity
estimate

Experimental
true fidelity

Simulation
fidelity

(Not exactly, but qualitatively)

≈ ×

When bond dimension 
is too small, classical 
accuracy drops

And so does the 
benchmarked 
quantum fidelity!
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Fidelity benchmarking breakdown

For large systems, can’t go to 
high enough bond dimension 

to benchmark regime II!

Fidelity
estimate

Experimental
true fidelity

Simulation
fidelity

(Not exactly, but qualitatively)

≈ ×

Existing benchmarking methods (e.g. 
system-size extrapolation via patch/elided 
circuits like Google) do not work for our 

system because of our analog noise 
sources*… is there another way?

*and maybe are also inaccurate for Google as well if you look closely 

enough…

Classical resources (MPS bond dimension)

But we can extrapolate as a 
function of bond dimension!
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Large scale fidelity

Resource extrapolation

This led us to discover certain 
non-Markovian noise leads to 

power law fidelity decay!
Shaw*, Chen*, Choi*, Mark*, et al, Nature, 2024

Once we knew what to look for, 
clearly visible in small system size 

error model simulations
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Shaw*, Chen*, Choi*, Mark*, et al, Nature, 2024

Large scale fidelity

Resource extrapolation

This led us to discover certain 
non-Markovian noise leads to 

power law fidelity decay!

Fidelities
Our system - 0.095 @ N=60 in 1D*

     Google** - 0.003 @ N=53 in 2D 

These results are consistent with 
a two-qubit fidelity of ~0.999

**Not a fair comparison because of 
different level of control, but gives a 

general sense of scale. Higher values in 
more recent papers (Morvan et al, 2023)

*10% vs. 0.00000000000000001%
17 orders-of-magnitude better 

than random chance
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What is the actual classical cost?

Physical error    vs     approximation error

Which better represents the quantum world? 
Quantum experiment or classical computer?

180 core-days on the Caltech supercomputer 
(using a highly optimized algorithm)

Find minimum classical resources for classical 
computer to have higher fidelity than experiment

Equivalent two-qubit fidelity
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Sycamore supremacy circuit
Complex 2D random unitary circuit

Our “circuit”
Time-independent, global, 1D evolution

Quantum is hard

Even for the simplest quantum evolution, 
classical computers struggle to keep up!
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Applications!
Hamiltonian estimation Noise learning

Entanglement estimation
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How entangled are we?

Evolve under 
Ising-like

Hamiltonian

No errors

Errors during
evolution

Whenever we’ve talked about 
entanglement, we’ve meant 
pure state entanglement

But what about the actual 
experimental mixed state entanglement?

Notoriously hard to measure, 
even theoretically!

We developed a new 
mixed state entanglement proxy*

*For experts, this is a proxy for the negativity

Exact for
certain states!

Provably tight 
lower bound for 

experiment!
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How entangled are we?
Mixed state entanglement entropy 

is notoriously hard to measure, 
even theoretically! 

General purpose, 
cross-platform, evaluation 
metric including both qubit 

quantity and quality!

(back of the 
envelope calculation)

Closely related to questions of: 

How many Bell pairs 
could we possibly extract?

What is the classical 
simulation complexity?

Comparing
analog quantum 

simulators and digital 
quantum processors

on the same plot!
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Unusual thermalization Entanglement estimation

Applications!
Hamiltonian estimation Noise learning

theory by Daniel Mark
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Shaw*, Mark*, et al, arXiv:2403.11971
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(RUC) evolution
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log x-axis

*a Porter-Thomas distribution

The PoP counts how 
many probabilities 
fall into each bin 

(gray lines)

We will be studying the 
probability-of-probabilities (PoP) 

distribution… For RUCs, this is well known 
to be an exponential distribution*



Learning noise from bitstring measurements

Shaw*, Mark*, et al, arXiv:2403.11971

Consider random 
unitary circuit 

(RUC) evolution
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Bitstring index000…000 111…111 Probability-of-
probabilities (PoP)

log x-axis

The PoP counts how 
many probabilities 
fall into each bin 

(gray lines)

Single qubit error

If one error occurs, the PoP distribution 
will still be an independent** 

exponential distribution*!

*a Porter-Thomas distribution
**Assuming dynamics is sufficiently scrambling
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Learning noise from bitstring measurements

Shaw*, Mark*, et al, arXiv:2403.11971
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Probability: 1-F
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If one error occurs, the 
probability-of-probabilities (PoP) 

distribution will be an independent** 
exponential distribution*

*a Porter-Thomas distribution
**Assuming dynamics is sufficiently scrambling

Single qubit error
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Learning noise from bitstring measurements

Shaw*, Mark*, et al, arXiv:2403.11971

Consider random 
unitary circuit 

(RUC) evolution
Errors

Probability: (1-F)/K

If many independent errors occur, the 
probability-of-probabilities (PoP) 

distributions will be many independent** 
exponential distributions*

K = NxD possible error locations
(spacetime volume of circuit)

The probability of 
observing the 

different distributions is 
given by the fidelity, F

Prob

Po
P

*a Porter-Thomas distribution
**Assuming dynamics is sufficiently scrambling

K possibilities

We can’t keep track of all microscopic 
errors, so the aggregate PoP is an 
incoherent sum over all of them!
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If many independent errors occur, the 
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distributions will be many independent** 
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Probability: F
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If many independent errors occur, the 
probability-of-probabilities (PoP) 

distributions will be many independent** 
exponential distributions*

No error

Probability: F

Learning noise from bitstring measurements

Consider random 
unitary circuit 

(RUC) evolution

*Assuming dynamics is sufficiently scrambling

Errors
Probability: (1-F)/K

K = NxD possible error locations
(spacetime volume of circuit)

The probability of 
observing the 

different distributions is 
given by the fidelity, F
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No error

Probability: F

Learning noise from bitstring measurements

Consider random 
unitary circuit 

(RUC) evolution

*Assuming dynamics is sufficiently scrambling

Errors
Probability: (1-F)/K

If many error occurs, the 
probability-of-probabilities (PoP) 

distributions will still be independent* 
exponential distributions

K = NxD possible error locations
(spacetime volume of circuit)

The probability of 
observing the 

different distributions is 
given by the fidelity, F
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Technical details aside, the take-home message is:
Given a noise channel (and a measured fidelity) we can always 

write the corresponding hypoexponential weights and 
analytically predict the PoP distribution

Prob

Parameterization is 
defined by the 
noise channel



Learning noise from bitstring measurements

What to notice: results from numerical simulations (bars) agree very well with 
corresponding analytical predictions (same color lines), while being clearly 

distinct from analytical predictions for other noise channels (faint lines)
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for Hamiltonian systems?



What to notice: results from numerical simulations (bars) agree very well with 
corresponding analytical predictions (same color lines), while being clearly 

distinct from analytical predictions for other noise channels (faint lines)

Learning noise from bitstring measurements

But why does this work 
for Hamiltonian systems?

See Soonwon’s talk just 
before mine about new 

theoretical discoveries (and 
experimental confirmations) 
that ergodic Hamiltonian 

systems universally behave 
like random unitary circuits… 

Shaw*, Mark*, et al, arXiv:2403.11971
Mark, Elben, Surace, Shaw et al, arXiv:2403.11970

this plot shows 
universal behavior 
between RUC and 

ergodic Hamiltonian 
systems



Learning noise from bitstring measurements

Can apply to experiment* using measured fidelity!

Shaw*, Mark*, et al, arXiv:2403.11971
*Because of finite-sampling costs, should actually compare low-order 

moments of the PoP, which are sample-efficient and still predictive
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Can define a 
distance from 

experimental to 
predicted PoP

*Because of finite-sampling costs, should actually compare low-order 
moments of the PoP, which are sample-efficient and still predictive

Can apply to experiment* using measured fidelity!
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consistent error 

models!
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Can define a 
distance from 

experimental to 
predicted PoP

And learn 
experimentally 
consistent error 

models!

RUC simulation shows learning noise 
models in this way is accurate!

Actual noise model parameter
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*Because of finite-sampling costs, should actually compare low-order 
moments of the PoP, which are sample-efficient and still predictive

Can apply to experiment* using measured fidelity!



Summary
Thank you!

Zhuo Chen

Manuel Endres

Ran Finkelstein

Joonhee Choi

Soonwon Choi

Pascal Scholl

Daniel Mark

Andreas Elben

Quantitative benchmarking enables
both improving quantum science, 

and realizing new science applications
Shaw*, Chen*, Choi*, Mark*, et al, Nature 628 (2024), arXiv:2308.07914
Shaw*, Mark*, et al, arXiv:2403.11971

Mixed state 
entanglement 

entropy is 
notoriously hard 
to measure, even 

theoretically! 



Moments analysis

Can more efficiently learn noises 
just from their effects on the 

moments of the PoP



Local noise -> Global depolarizing



Identifying scaling behavior

Simulation fidelity
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As the bond dimension is 
increased, fidelity estimate 
rises before saturating…
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N=18

N=60
For large systems, 
we can’t reach the 

“saturation bond dimension”



Identifying scaling behavior

Simulation fidelity
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N=6

N=60

As the bond dimension is 
increased, fidelity estimate 
rises before saturating…

For large systems, 
we can’t reach the 

“saturation bond dimension”

But we can extrapolate 
as a function of the 
bond dimension!


