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The entanglement challenge

Start with some simple state...
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But we are always prone to errors...
And we can’t even detect when they happen!

... create a useful
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The entanglement challenge

So how do we scale up quantum
systems while maintaining control,
minimizing errors, and verifying we've
done the correct evolution?
A




Outlook

Benchmarking Applications
For a large scale analog quantum simulator Entanglement estimation, noise learning, etc
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Rydberg atom arrays

Optical tweezers:
focused laser beams which can trap single atoms

Eiffel tower (126 sites)

Can create large arrays in
multiple dimensions with
full positional control
(“rearrangement”)




Rydberg atom arrays
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461 nm

Imaging, MOT

Can create large arrays in
multiple dimensions with
full positional control
(“rearrangement”)
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In our experiment we work
with arrays of strontium atoms

Lots of interesting atomic
physics to discuss...
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Rydberg atom arrays
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Can create large arrays in
multiple dimensions with
full positional control
(“rearrangement”)
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Rydberg

In our experiment we work
with arrays of strontium atoms

Lots of interesting atomic
physics to discuss...

But not for this talk!
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Making atoms interact

nucleus
/

|g> =& —electron

Atom in the ground state

Review: Browaeys et al, Nature Physics 16, 132 (2020)



Making atoms interact

nucleus

|g> :‘ielectron |T>

Atom in the ground state

Rydberg atom

Review: Browaeys et al, Nature Physics 16, 132 (2020)



Making atoms interact

nucleus
|g> :.ielectron |T> =

Atom in the ground state

Try exciting two atoms...

Rydberg atom

Review: Browaeys et al, Nature Physics 16, 132 (2020)



Making atoms interact

Small separations™ ‘
Double excitation is blocked

X

Try exciting two atoms...

\*Visual is exaggerated

7
S
’g Large separations:
L ® ][ [77) Both atoms can be excited
T lg7), Irg)
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Atomic separation




Making atoms interact

Small separations™
Double excitation is blocked

Try exciting two atoms...
m One excitation becomes

_Visualis exaggerated p shared across both atoms...

Entanglement!
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® I v = (lgr) + Irg))/V2
I — 199

Atomic separation



Physics with atom arrays, a small selection (pre 2024)

x)

7

LSemeghini, Science (2021)

New phases of matter

Aw/(zx) (MHz)

1
de Leseleuc, Saence (2019

N\

Trivial

Q!

site

fourdnaoo

Tawn‘u q

J

s

Hubbard physics

~\

Young, Science (2022)

\.

s 00 09 000 003 000 0
— et .
Data Theory
i as ua ot
v a L e
c
9
T o e—
o | Dota
1 2 3 4 5 6
Tunneling

Yan*, Spar*, PRL (2022)

J

( Quantum phase transitions

~\

5
Final detuning A ; (MHz)

Scholl*, Shaw*, Nature (2023)

c 1 100
Disordered 2
8 >
N i =
c T =
S| st éﬂﬁ w3
E | E &
g IE
0808080 | < | N
FY) 0 0 T 10
A (MHz)
b c
7 | e25MHzs 4l o wmps
£ 41 o5 MHzs Experiment f ,}ﬁ ¢
S 1 ciomns 7. e Jec sy
231 L 2o mHzps g3 capbee” ¢
B,1 - commzs e Laddt
H EN
51 i 2| 44t
< el ¥
0 0.07 0.1 0.3

02
Inverse detuning sweep rate s~ (:s/MHz)

Keesling, Nature (2019)J

r

Metrology

Phase 0, (deg)
W %0

N

o css ¢ sss

3P, transfer fraction (%)

Shaw*, Finkelstein*, Nat Phys (2023)
Eckner, Nature (2023)

Norcia, Science (2019)
\ Madjarov, PRX (2019)

@
= 08
g /4|
= o
° >
g =
g Soa
3 0
? ° 01
2 a >, Time (ms)

[ Optimization problems

Quantum evolution

Encoding

Readout

U(Q(t), ¢(t)

A1), Vi)

\N
N

P

D2y

o )
(2022) Optimization - &

Ebadi, Science

Byun*, Kim*, PRXQ (2022)
S

Quantum magnetism

2 035

°
© % 0%,

o 2 4 6 8
d(sites)

0 05 1
Rydberg probabilty

° Detuning lM}ﬁzi
Bernien, Nature (2017)

Scholl, Nature (2021)
Chen, Nature (2023)

Ebadi, Nature (2022)

~\

S

(ol )
( Quantum randomness \ | Making molecules
e 0 0) A ‘
| \I/A
0
1 )
-2 J150 kHz 289 kHz 0 ms
il I
o [ >
é -1 .
z? 2.2ms
1) ) u £
time 8 n
e 0
100 Experiment —— Numerics — — Erlang distribution 1 "_E 1
2 -2 3.7ms
g'“’ v 132 kHz
& I 0
'l' :; "Cs 150 kHz
e 1ov::n|23o\1301230|130vzxIiz; hia 53ms
Rescaled b\lsmng probability 2
b 0o Tweezer Radial Position (um)
Eamdlmenslon
Choi*, Shaw*, Nature (2023) Liu, Science (2018)

\

( High-fidelity two-qubit entanglement \

Bluvstein, Nature (2022)
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Physics with atom arrays, a small selection (pre 2024)

(

N
Both quantum simulation and quantum computation applications!
Analog: Digital:
Simulating complex quantum  Solving computational problems
dynamics by mapping to the using a discrete and universal
natural system evolution set of quantum operations
W,




A tale of two qubits

Two different
choices of qubit...

Rydberg state

f
metastable state L |c)

ground state
\. J

Approximate energy levels of
strontium, the atom we use
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gate-based operation, Rydberg
state is only excited transiently



A tale of two qubits

Two different
choices of qubit...

Rydberg state
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ground state
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Approximate energy levels of
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Digital:
Long-lived qubit, amenable to
gate-based operation, Rydberg
state is only excited transiently

Analog:

Strongly interacting spin system
with an Ising-like Hamiltonian
which exhibits critical and
high-entanglement behavior



A tale of two qubits

(

Digital qubit: CZ gate fidelity

*unpublished, published value is 0.9935

S error model
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Number of CZ gates

Other gate results from: Saffman, Lukin, Thompson,
Qaufman, Bernien, Zhan, and more

(measured with RB) of 0.9973(4)"

~

Finkelstein*, Tsai*,..., Shaw, Endres,
arXiv:2402.16220 (2024)
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Digital:
Long-lived qubit, amenable to
gate-based operation, Rydberg
state is only excited transiently



A tale of two qubits

(Analog qubit: Bell state fidelity of\
~0.9992 (with erasure conversion®)
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Detailed error modeling shows that —1)
~0.9999 is experimentally realistic 5 Analog:
S Strongly interacting spin system

which exhibits critical and
Q(periment: Ma,.., Thompson, Nature 622 (2023) j ¥ ) high-entanglement behavior

*for erasure conversion, see also

Scholl*, Shaw*, et al., Nature 622 (2023) X |0) with an Ising-like Hamiltonian
|
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A tale of two qubits

(Analog qubit: Bell state fidelity of\ r )
~0.9992 (with erasure conversion®)
- But what about
| larger systems?
SR X5 S Y S I N ) I O I | Experiment| | 3 L i )
S & &ozo \,z,s"i(\c\ \f’io‘:\ \%f’i\f’z \%‘,’i& e}‘{;\‘ﬁ ?}@:é\b
Analog
. . (
Detailed error modeling shows that —1)
~0.9999 is experimentally realistic 5 Analog:
. = Strongly interacting spin system
*
Scholl*, Shaw*, et al., Nature 622 (2023) A |0) with an Ising-like Hamiltonian
*for erasure conversion, see also | which exhibits critical and
theory: Wu,..., Thompson, Nat Comm (2022) 1

Q(periment: Ma,.., Thompson, Nature 622 (2023) j ¥ ) high-entanglement behavior




Fidelity benchmarking

One-dimensional array of up to 60 atoms
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Fidelity benchmarking

One-dimensional array of up to 60 atoms
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Entanglement entropy grows
linearly with a system-size

independent rate, but saturates at
system size dependent time/level



Fidelity benchmarking

One-dimensional array of up to 60 atoms
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Fidelity benchmarking

One-dimensional array of up to 60 atoms
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No errors

|O _f \_1

|0) - Evolve under | |\If>

: 4 Ising-like |

10) {1 Hamiltonian | ~

|O> S ) ) pexp
Errors during
evolution

Fidelity: F = (¥|pexp|¥)

Fidelity is the probability Exponentially difficult to
1 >
that we don't make an error measure for large systems!




Fidelity benchmarking

One-dimensional array of up to 60 atoms
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r N
o { - No errors w If Ejhe dyn(ajmics are explicitly
. B randomized, you can estimate
|0) - Evo.Lve u.nder - |\Ij> p(2) fidelity by measuring q(z), the
t | Ising-like - = experimental bitstring probability
10){ Hamiltonian |- distribution in a fixed basis
|O> \ J peXp [ q(z) Arute et al, Nature (2019)
Errors durlng\. [ S —
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Computational basis
(Bitstring of length N)
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Fidelity benchmarking
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Fidelity:

One-dimensional array of up to 60 atoms

No errors
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(Bitstring of length N)
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4 )
If the dynamics are explicitly

randomized, you can estimate
fidelity by measuring q(z), the
experimental bitstring probability
distribution in a fixed basis
Arute et al, Nature (2019)

We showed this also holds
for time-independent
Hamiltonian systems!

Choi*, Shaw* et al, Nature (2023)

Mark, Choi, Shaw et al, PRL (2023)
Cotler,...Shaw, et al, PRXQ (2023)




Fidelities from bitstrings

Time |\Ij> <
A, g p( )
o]
e—ZHt ] 8
e
o
0 >\0>!0>\0>I0>I >
000...000 Bitstring index m.m
Choi*, Shaw* et al, Nature (2023)
Also see: Arute et al, Nature (2019)

Mark, Choi, Shaw et al, Phys Rev Lett (2023)



Fidelities from bitstrings

Time ~ ’\Ij> _ B“ p(z)
S G Quantum dynamics maps to
o iHt ] © near-random distribution...
@) . c q
& Like a quantum fingerprint
0)0)0)0)]0)0)
000...000 Bitstring index m.m f
Very sensitive to the exact
initial state and dynamics!
Choi*, Shaw* et al, Nature (2023)
Also see: Arute et al, Nature (2019)

Mark, Choi, Shaw et al, Phys Rev Lett (2023)



Fidelities from bitstrings

Time ~ ’E[i> _ _B‘ p(z)
S B Quantum dynamics maps to
e LH? ] © near-random distribution...
g Like a quantum fingerprint

m.. m

000...000 Bitstring index
Time L\Ii> > Q(Z)
T = Impose a phase flip error on a
. < single qubit: initially not visible!
1Ht O )
o (because error is orthogonal to
T T i o measurement basis)

1010)(0)/0)|0){0) o

000...000 B|tstr|ng index m.m

Choi*, Shaw* et al, Nature (2023)

Mark, Choi, Shaw et al, Phys Rev Lett (2023) Also see: Arute et al, Nature (2019)



Fidelities from bitstrings

Time ~ L\Ii> _ B“ p(z)
e = Quantum dynamics maps to
et ] °© near-random distribution...
R £ Like a quantum fingerprint
10)10)10)10){0)[0)
000...000 Bitstring index m.m
Time L\Ii> > Q(Z)
T1I 1111 = But error soon scrambles,
Qo . . . .
[ )%—th ] I changing the distribution!
O n n
) Butterfly effect
0)/0)/0)]0)|0)|0

Choi*, Shaw* et al, Nature (2023)

Mark, Choi, Shaw et al, Phys Rev Lett (2023) Also see: Arute et al, Nature (2019)



Fidelities from bitstrings

) >  Theory p(2) _
= Quantum dynamics maps to
IS near-random distribution...
10)I0)10)[0)|0)[0) o) . . .
— ~— o Like a quantum fingerprint
Classical simulation
000...000 Bitstring index m.m
— -. Experiment q( z)
= But error soon scrambles,
o] . . . .
e changing the distribution!
O n n
£ — 3 £ Butterfly effect
Experiment
000...000 Bitstring index m.m

Fidelity estimator proportional to Theory-Experiment correlation!

Choi*, Shaw* et al, Nature (2023)

Mark, Choi, Shaw et al, Phys Rev Lett (2023) Also see: Arute et al, Nature (2019)



Demonstration of benchmarking with experiment
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Choi*, Shaw* et al, Nature (2023)
Mark, Choi, Shaw et al, PRL (2023)



Demonstration of benchmarking with experiment

T) )
& | O>- \ ?@ First, use noisy simulation to verify fidelity
E : U’ \4 estimator is accurate to the model fidelity
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e
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Choi*, Shaw* et al, Nature (2023)
Mark, Choi, Shaw et al, PRL (2023)



Demonstration of benchmarking with experiment
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What makes classical simulation hard?

A

System size

Exactly
simulatable

Evolution time



What makes classical simulation hard?

A
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simulatable
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Evolution time
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b= 16 s At early times
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What makes classical simulation hard?

Entanglement

System size

A

Exactly

simulatable

Evolution time

|

built up much
entanglement

5
Time (Q2t/27)

N=19 .
16 - At early times
L= N -1 the system hasn't
=]
Ll 1| T
10 16 22
L System size (N)
0 i I .
0 10

We can simulate
by using
Matrix product
states (MPS)!



What makes classical simulation hard?

A
9 MPS perfectly

D) > 9 simulates dynamics
Nl B S .
‘3 S while entanglement
- o E is below the
et [z “bond dimension"”
wn
>
n

Exactly
simulatable

Evolution time

Product
states

C T

6 IN=1 9 8rr Entanglement entropy
= 16 At early times
T} = . 6} i
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% 1 O . 1) 9 :\ .
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What makes classical simulation hard?

A
9 MPS perfectly
vl >2 simulates dynamics
=1 5% ;Ir?:Uel:’?;;t)é while entanglement
- i E is below the
et [z “bond dimension"”
S
n Exactly
simulatable

Evolution time

Product
states

< T

6 Entanglement entropy
= At early times _
% the system hasn't ooogo,. We can S|.mulate
El built up much S X o Typs) by using
£ % T2 entanglement ) cinglnan : Matrix product
L System size (N) a0 states (MPS)!
0% = 10 —r

5
Time (Q2t/27)



Fidelity benchmarking breakdown
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Classically exact

Evolution time



Fidelity benchmarking breakdown

System size

—

I

Classically exact

Evolution time

Quantum fidelity

estimator

Entanglement

Classical fidelity

151

N=27

Bond dimension

2 6 10
Time (cycles)

14

For large enough
bond dimension, we
exactly benchmark
the system



Fidelity benchmarking breakdown

System size

I

Classically exact

Evolution time

7~

Fidelity ,_ Experimental _ Simulation
estimate true fidelity fidelity

(Not exactly, but qualitatively)

—

Quantum fidelity

estimator

Entanglement

Classical fidelity

151

2

6 10
Time (cycles)

14

For large enough
bond dimension, we
exactly benchmark
the system

When bond dimension

| is too small, classical

accuracy drops

And so does the
benchmarked

quantum fidelity!



Fidelity benchmarking breakdown

I1

Classically approximate

Entanglement

bize

For large systems, can't go to 100 ' >'<=3072
high enough bond dimension

to benchmark regime IlI!
ﬁ

Evolution time

Classical fidelity

I
|
10_2 4t |
|
I

7

Fidelity ,_ Experimental _ Simulation
estimate true fidelity fidelity

(Not exactly, but qualitatively)

Quantum fidelity
estimator

2 6 0 14 2
Time (cycles)



Fidelity benchmarking breakdown

s 5y N=27 | IN=54
g |
II % FLr- e L L
. o c
Classically approximate s o ]
I S Existing benchmarking methods (e.g.

[ , h system-size extrapolation via patch/elided
For la rge systems, can't go to circuits like Google) do not work for our

high enough bond dimension system because of analog noise sources

to benchmark regime IlI!
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Evolution time

102

] Q\\

Classical fidelity
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Fidelity ,_ Experimental _ Simulation
estimate true fidelity fidelity

(Not exactly, but qualitatively)

Quantum fidelity
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Fidelity benchmarking breakdown

But we can extrapolate as a
function of bond dimension!

bize

, 08} Classically exa
For large systems, can't go to Classleally exact

high enough bond dimension

to benchmark regime IlI!
—e e

Evolution time

7~

Fidelity ,_ Experimental _ Simulation
estimate true fidelity fidelity

Classically
approximate

Late time quantum fidelity

(Not exactly, but qualitatively) 0.8
— '
10 100 1000

Classical resources (MPS bond dimension)
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Large scale fidelity

i N=24
S 0.5}
o L
Trustworthy: classical § ]
o
simulation is accurate o ._
_ >
— Resource extrapolation £
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Shaw*, Chen*, Choi*, Mark*, et al, Nature, 2024



Large scale fidelity

Fidelity estimator

1 L T ]
i N=24
L [ @
S 0.5¢
o L
Trustworthy: classical § ]
o
simulation is accurate o ._
_ S
— Resource extrapolation £
(]
S 0.1f 5
L L
N=60 |
K
0.1 1r g
0 5 10 150 5 10 15

Time (cycles)

1 T T T T
Simulation with only
shot-to-shot intensity noise

=
n

Fidelity

0-1 1 1 ’ 1 1 ]
0 100

Time (cycles)

This led us to discover certain
non-Markovian noise leads to
power law fidelity decay!

Shaw*, Chen*, Choi*, Mark*, et al, Nature, 2024



Large scale fidelity

Inferred from all X | Inferred from small X

1% : N=18, error model
4 N
Once we knew what to look for, o | ax ennane
s . . . ) Intensity noise
clearly visible in small system size | :
error model simulations > [ NS
% A\
T |
L : o e
F, (Ground truth) N
0.1 a | -
= Fd(lnferred):
— Effective exponential decay
0.05 !

0 5 10 15
Time (cycles)
This led us to discover certain
_ non-Markovian noise leads to
L . : power law fidelity decay!

Fidelity estimator

0 5 10 150 5 10 15
Time (cycles) Shaw*, Chen*, Choi*, Mark*, et al, Nature, 2024




Large scale fidelity

~N
J

Fidelities
Our system - 0.095 @ N=60 in 1D*

*10% vs. 0.00000000000000001%
17 orders-of-magnitude better
than random chance

Fidelity when entanglement saturates

12 36 60
System size

N e —




Large scale fidelity

~N
J

Fidelity when entanglement saturates

Fidelities
Our system - 0.095 @ N=60 in 1D*

These results are consistent with
a two-qubit fidelity of ~0.999

*10% vs. 0.00000000000000001%
17 orders-of-magnitude better
than random chance

12 36 60
System size

N ————————




Large scale fidelity

~N
J

Fidelities
Our system - 0.095 @ N=60 in 1D*
Google™ - 0.003 @ N=53in 2D

These results are consistent with
a two-qubit fidelity of ~0.999

*10% vs. 0.00000000000000001%
17 orders-of-magnitude better
than random chance

0.01 **Not a fair comparison because of
: : : ' : : different level of control, but gives a

"2 Systgr% size 60 general sense of scale. Higher values in

. more recent papers (Morvan et al, 2023) ‘

Fidelity when entanglement saturates




What is the actual classical cost?

Which better represents the quantum world?
Quantum experiment or classical computer?
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What is the actual classical cost?

Which better represents the quantum worlq 180 core-days on the Caltech supercomputer
Quantum experiment or classical computer? (using a highly optimized algorithm)
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What is the actual classical cost?

Which better represents the quantum worlq 180 core-days on the Caltech supercomputer
Quantum experiment or classical computer? (using a highly optimized algorithm)
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Quantum is hard

Sycamore supremacy circuit
Complex 2D random unitary circuit

Circuit depth



Quantum is hard

Sycamore supremacy circuit Our “circuit”
Complex 2D random unitary circuit Time-independent, global, 1D evolution
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Quantum is hard

Even for the simplest quantum evolution,

classical computers struggle to keep up!
_————
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Applications!

Mixed state entanglement proxy
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How entangled are we?

Whenever we've talked about
entanglement, we've meant
pure state entanglement

s

\

Ising-like

Hamiltonian

N\

Evolve under

J

No errors

D )




How entangled are we?

Whenever we've talked about
entanglement, we've meant
pure state entanglement

No errors

|O> _f \_1

|0) - Evolve under | |\If>

: 4 Ising-like |

10) {1 Hamiltonian | ~

|O> S ) ) peXp
Errors during
evolution

But what about the actual
experimental mixed state entanglement?

/V

Notoriously hard to measure,
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mixed state entanglement proxy”
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How entangled are we?

Whenever we've talked about
entanglement, we've meant
pure state entanglement

No errors
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Errors during
evolution

But what about the actual
experimental mixed state entanglement?

/V

Notoriously hard to measure,
even theoretically!

We developed a new
mixed state entanglement proxy”

Emixed — Epure + lOg(F)

N/2

Provably exact for
certain states!

— |sotropic state
- = N/2 + logz(F)

Mixed state entanglement

0 Fidelity 1

*For experts, this is a proxy for the negativity



How entangled are we?

Whenever we've talked about
entanglement, we've meant
pure state entanglement

No errors

|O> _f \_1

|0) - Evolve under | |\If>

: 4 Ising-like |

10) {1 Hamiltonian | A

|O> S ) ) peXp
Errors during
evolution

But what about the actual
experimental mixed state entanglement?

/V

Notoriously hard to measure,
even theoretically!

We developed a new
mixed state entanglement proxy”

Emixed — Epure + lOg(F)
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How entangled are we?

General purpose,
cross-platform, evaluation
metric including both qubit

quantity and quality!
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How entangled are we?
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Closely related to questions of:

How many Bell pairs
could we possibly extract?

What is the classical
simulation complexity?
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Learning noise from bitstring measurements

Consider random
unitary circuit
(RUC) evolution

N qubits

Shaw*, Mark*, et al, arXiv:2403.11971
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Consider random “
unitary circuit 9
(RUC) evolution >
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Shaw*, Mark*, et al, arXiv:2403.11971



Learning noise from bitstring measurements

We will be studying the
probability-of-probabilities (PoP)
distribution... For RUCs, this is well known
to be an exponential distribution”

Consider random
unitary circuit
(RUC) evolution

N qubits

log x-axis
The PoP counts how
many probabilities

\ fall into each bin
(gray lines)

000...000 Bitstring index M. Probability-of-
probabilities (PoP)

Probability

*a Porter-Thomas distribution

Shaw*, Mark*, et al, arXiv:2403.11971



Learning noise from bitstring measurements

Consider random
unitary circuit
(RUC) evolution

N qubits

Single qubit error

log x-axis

=

?_:’

(48]

Q

O

[ \
000...000 Bitstring index ..M Propability-of-

probabilities (PoP)

S If one error occurs, the PoP distribution
will still be an independent™
exponential distribution™!

The PoP counts how
many probabilities
fall into each bin
(gray lines)

*a Porter-Thomas distribution

Shaw*, Mark*, et al, arXiv:2403.11971

**Assuming dynamics is sufficiently scrambling



Learning noise from bitstring measurements

The probability of
observing the
different distributions is
given by the fidelity, F

Consider random
unitary circuit
(RUC) evolution

N qubits

Single qubit error

If one error occurs, the
probability-of-probabilities (PoP)
distribution will be an independent™
exponential distribution”

*a Porter-Thomas distribution
**Assuming dynamics is sufficiently scrambling

Shaw*, Mark*, et al, arXiv:2403.11971



Learning noise from bitstring measurements
WO e(f?‘w“? §‘ \_\ The probability of
?(Ooab‘“ Prob observing the
different distributions is

Consider random
unitary circuit
(RUC) evolution

given by the fidelity, F

Err0rs \
Probability; (1-F)/k A

N qubits

. : K ibiliti
K = NxD possible error locations POSSIDIHES
(spacetime volume of circuit)

If many independent errors occur, the
probability-of-probabilities (PoP)
distributions will be many independent
exponential distributions”

**

*a Porter-Thomas distribution
**Assuming dynamics is sufficiently scrambling

Shaw*, Mark*, et al, arXiv:2403.11971



Learning noise from bitstring measurements

%‘ \: The probability of
observing the

c d g Prob
on§| er re'an Qm % different distributions is
unitary C|rcg|t S b given by the fidelity, F
(RUC) evolution — A
K possibilities

K = NxD possible error locations
(spacetime volume of circuit)

We can't keep track of all microscopic

errors, so the aggregate PoP is an
incoherent sum over all of them!

_————

*a Porter-Thomas distribution
**Assuming dynamics is sufficiently scrambling

Shaw*, Mark*, et al, arXiv:2403.11971
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Learning noise from bitstring measurements

-

Hypoexponential
Incoherent sum over .
distribution
o One distribution
IS : . )
with weight F o
o\ [\ Kdistributions &
o l with weight (1-F)/K
Prob
Probability
_ Wi
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Learning noise from bitstring measurements

-

~\
Hypoexponentlal Parameterization is

distribution T defined by the

o One distribution noise channel
o with weight F

Incoherent sum over

L\; K distributions
l with weight (1-F)/K
Prob

PoP

PoP
weight
~5 -

Probability




Learning noise from bitstring measurements

Incoherent sum over

3 One distribution
. with weight F
L\_ K distributions

l with weight (1-F)/K
Prob

PoP

PoP

Hypoexponentlal Parameterization is

distribution T defined by the
noise channel

s F
. u: eee

index, i

ht

weig

Probability

Technical details aside, the take-home message is:
Given a noise channel (and a measured fidelity) we can always

write the corresponding hypoexponential weights and
analytically predict the PoP distribution




Learning noise from bitstring measurements

Random unitary circuit

What to notice: results from numerical simulations (bars) agree very well with

solid lines - analytics
T T

bars - numerics
T T

T
Global

Global Local and
depolarization |} . Gaussian global errors -
coherent
- 1 errors
2 0 2 2 1 2

weight

corresponding analytical predictions (same color lines), while being clearly

distinct from analytical predictions for other noise channels (faint lines)




Learning noise from bitstring measurements

solid lines - analytics bars - numerics
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What to notice: results from numerical simulations (bars) agree very well with
corresponding analytical predictions (same color lines), while being clearly
distinct from analytical predictions for other noise channels (faint lines)



Learning noise from bitstring measurements

But why does this work

for Hamiltonian systems?

weight
weight

weight

s

Hamiltonian system
_A_
PoP

0 % 2 0 5 2 0 % 2 0 1 2
Rescaled probability
What to notice: results from numerical simulations (bars) agree very well with
corresponding analytical predictions (same color lines), while being clearly
distinct from analytical predictions for other noise channels (faint lines)



Learning noise from bitstring measurements

-

See Soonwon'’s talk just
before mine about new
theoretical discoveries (and
experimental confirmations)
that ergodic Hamiltonian
systems universally behave
like random unitary circuits...

Relative variance + 1/D

Shaw*, Mark*, et al, arXiv:2403.11971
Mark, Elben, Surace, Shaw et al, arXiv:2403.11970
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Learning noise from bitstring measurements

Can apply to experiment” using measured fidelity!

T T
# samples = 32000
N =15 atoms

F =0.18 A—
t =22cycles infinite sampling

{ ? finite sampling
0

0 1 2 3

p(2)

O Experiment
== Global depolarizing (GD)

e Global coherent

05k === Full error model (FEM)

Probability-of-probabilities (PoP)

1 2
Rescaled probability, p(z)

_ *Because of finite-sampling costs, should actually compare low-order
Shaw*, Mark*, et al, arXiv:2403.11971 moments of the PoP, which are sample-efficient and still predictive



Learning noise from bitstring measurements

Can apply to experiment” using measured fidelity!

15| # samples = 32000 : Can define a
=15 atoms .
P mOIE L — distance from
=22 cycles infinite sampling i
T %, | experimental to
@]
< A redicted PoP
@ OO 1 2 3 p
= SIS RS- .
5 : 2 |
2 xperiment |
“g- == Global depolarizing (GD) = 4 T
< v
% == Global coherent o
E 05k == Full error model (FEM) é ’
o
£ o2t
Q
O
C
(qv]
4+
. R . .
0 1 2 3 )
Rescaled probability, p(z) (/@\ \/\1’3 <<§\
\/O <>\O &

*Because of finite-sampling costs, should actually compare low-order
Shaw*, Mark*, et al, arXiv:2403.11971 moments of the PoP, which are sample-efficient and still predictive



Learning noise from bitstring measurements

Can apply to experiment” using measured fidelity!

15| # samples = 32000 ' Can define a And learn
Foos L T distance from experimentally
=22 cycles infinite sampling . N .
~ % | experimental to consistent error
8 = finite sampling d t d P P d L |
E ok /15 : 3] preaicte 0] moaets:
% 1+ p(2) 1 "E y r T
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> ()
% === Global coherent o
E 05k == Full error model (FEM) é | i
2 o2t ||
o] |
O
C 3
0
4+
. Q0 ol | : . . .
0 1 2 3
Rescaled probability, p(z) ) Cb\ '& @ 0 0.5 1

N <“ Fraction of coherent error, R

*Because of finite-sampling costs, should actually compare low-order
Shaw*, Mark*, et al, arXiv:2403.11971 moments of the PoP, which are sample-efficient and still predictive



Learning noise from bitstring measurements

Can apply to experiment” using measured fidelity!

é . .
RUC simulation
— 1 o o]
v /
@ - A
£ 3 P
©
o v
o /
5 031 /34. T
3 o (@) act|ua|
g ~ B :
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0
G ol : ° R
0 0.5 1

Actual noise model parameter

RUC simulation shows learning noise
models in this way is accurate!

Shaw*, Mark*, et al, arXiv:2403.11971

~

And learn
experimentally
consistent error

Can define a
distance from
experimental to

predicted PoP models!
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*Because of finite-sampling costs, should actually compare low-order
moments of the PoP, which are sample-efficient and still predictive



Summary

and realizing new science applications

Quantitative benchmarking enables
both improving quantum science,

Shaw*, Chen*, Choi*, Mark*, et al, Nature 628 (2024), arXiv:2308.07914
Shaw*, Mark*, et al, arXiv:2403.11971
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Thank you!

Ran Finkelstein Andreas Elben




Moments analysis

B 7
Can more efficiently learn noises
just from their effects on the
moments of the PoP
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ldentifying scaling behavior
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ldentifying scaling behavior

08| Classicallyexact - As the bond dimension is
N=18 | increased, fidelity estimate
o rises before saturating...
% 04 -
= For large systems,
1% 4 we can't reach the
2 “saturation bond dimension”
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ldentifying scaling behavior

o8] Cesialyeact 1 N=6 As the bond dimension is
increased, fidelity estimate
5 rises before saturating...
Q
= | For large systems,
7 S - N=60 we can't reach the
%“ Ow gose | "saturation bond dimension”
2 e . w
s ' But we can extrapolate
oak _ as a function of the
D eprein bond dimension!
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