Joint work with Harriet Apel (UCL), Toby Cubitt (UCL), David Perez-Garcia (Universidad Complutense de Madrid) and Patrick Hayden (Stanford)

arxiv:1810.08992, arxiv:2003.13753, arxiv:2105.12067, arxiv:2401,09058

boundary

- Ads/CFT is the key example of
 the holographic principle
- o No complete mathematical description of the correspondence
- e Exactly solvable toy models using quantum info techniques

Boundary entanglement is related to bulk geometry

What makes a good toy model?

2. Entanglement

TA

S(PA) oc IVAI

3. Local Hamiltonians

The boundary Hamiltonian should be geometrically local geometrically local

boundary Hamiltonian

@ Holographic quantum error correcting codes o Hamiltonian simulation techniques o our construction @ Applications: position based cryptography o Open questions

Culture of Calle

Holographic quantum error correcting codes

Holographic quantum error correcting codes from perfect tensors [HaPPY 2015]

Perfect tensors: isometries across any bipartition, good QECC

Holographic quantum error correcting codes from perfect tensors [HaPPY 2015]

The error correction properties of AdS/CFT are well captured by this toy model

> some of the expected entanglement structure

Holographic quantum error correcting codes from random tensors Sent A XA Replace perfect tensors with random tensors:

ø beller error correction
 øroperties

© captures the entanglement properties of Ads/CFT

requires large local
 dimension

[Hayden et al 2016]

What do boundary Hamiltonians Look like in this model?

Hamillonian simulation

Perfect Hamiltonian Simulation

E

Operator norm: whole spectrum, all measurement outcomes, thermal properties preserved

@ But H' and H can have different interaction graphs

• Perfect simulation below Δ if $||\mathscr{E}(H) - H'|_{\Lambda}|| = 0$

Approximate Hamiltonian simulation

The say H' is a (Δ, ϵ, η) -simulation of H if below Δ H' approximately simulates H

© E controls the error in the eigenvalues of H

@ n controls the error in the eigenvectors of H

 \circ errors in the simulation grow as $2\epsilon t + \eta$

Perturbation gadgets

Subdivision

Reduce the weight of interactions to make the Hamiltonian Local

is simulated by:

Remove crossings so the Hamiltonian is geometrically local

Crossing

Fork

Reduce degree of interaction graph to place Hamiltonian on a lattice

is simulated by:

a

b

Perturbation gadgets The mediator qubit is acted on by a heavily weighted projector: $H_0 = J | 0 \rangle \langle 0 |$

for $J \gg 1$.

Costs of simulation:

o increase in norm of Hamiltonian

@ additional degrees of freedom

Each perturbation gadget acts on a single Pauli term - handle general Hamiltonians via linearity.

Can we localise the boundary of a random tensor HQECC?

HQECC constructed from Haar random lensors

Hamiltonian simulation techniques

non-local Hamiltonian on n gudits

Local Hamiltonianon exp(n)qudits

** ••••••

k-local terms deep in the bulk
 map to O(n) terms on the boundary

o these terms have Pauli rank exp(n)

making each term local only requires log(n) rounds of perturbation theory, but exp(n) ancillas

Why has the boundary size increased by so much?

What about using random stabiliser tensors?

Our construction uses random stabiliser tensors
 instead of Haar random tensors

 Random stabiliser tensors are obtained by applying a random Clifford to a reference state

@ Random Cliffords form a unitary 2-design

What about using random stadiliser lensors?

- Random stabiliser tensors are exactly perfect with high probability retain all the error correction properties of the HaPPY code with high probability
- Sing the mapping to the Ising model for random tensors plus quantisation of entropy in stabiliser states can show that the Ryu-Takayanagi entropy formula is obeyed exactly

Stabiliser lensors preserve the Pauli rank of operators

What about using random stabiliser tensors?

HQECC constructed from stabiliser random tensors

Hamiltonian simulation techniques

non-local Hamiltonian on n gudits

Local Hamiltonian on h(poly(log(n))) gudits

what about using random stabiliser tensors?

Time dilation in hoecce

The Ads metric is given by: $ds^{2} = \alpha^{2} [-\cosh^{2}\rho dt^{2} + d\rho^{2} + \sinh^{2}\rho d\Omega^{2}]$ -> time is dilated in the centre of the bulk

For stationary observers at different points:

 $dt_0 = \frac{\cosh(\rho_1)}{\cosh(\rho_0)} dt_1 \approx e^{\rho_1 - \rho_0} dt_1$

Time dilation in hoecce

Translating to model parameters, coordinate time at boundary is related to coordinate time in layer x by:

$$t_x = \tau^{R-x} t_R$$

Insert time dilation by hand via scaling Hamiltonian interaction strengths:

$$||h_x|| = O(\tau^{x-R})$$

Butterfly velocities: capture how fast information propagates on the boundary in the code subspace

Boundary signalling in boy models

3 Straight light cones for butterfly velocities

Applications: position based cryptography

Position based quantum cryptography

PBQC uses the provers position in spacetime as its credential

T1

C1

To

Co

Honest protocol: unitary is applied locally at the required position

Non-local attack: using shared entanglement attackers 'spoof' the required position

An allack on PBGC from holography

In the bulk there exists a position where the unitary can be applied locally

In the boundary there's no intersection of the lightcones: the unitary must be applied non-locally, using only linear entanglement

Can we replicate this attack in toy models?

1 PROPAGATE IN

Local SWAPS with exp decaying weight translate inputs to the centre of the bulk.

2 SIMULATE UNITARY

General local unitary U generated by n-local buik Hamiltonian H.

Tensor network map → tensor product operator over two regions

Need a GOOD Simulator to keep boundary causal.

3 PROPAGATE OUT

Local SWAPS again to deliver outputs

Causal structure on boundary maintained during protocol.

Tensor network obeys RT so can bound entanglement of non-local attack.

What counts as a good

SEMMERICAECOP

@ To maintain causal structure during boundary implementation of U, while maintaining small enough errors to break PBQC we need a simulator Hamiltonian with interaction strengths scaling as $poly(\frac{n^a}{c^b}||H_{target}||)$

o If we could construct such a simulator then we could break PBQC using only linear enlanglement

@ If PBQC can be proven to be secure by other means this implies a limit on how good simulations can be

How Eicht is this bound?

e For general Hamiltonians the bound isn't light

- sparse boundary Hamiltonians

We can apply this bound to bulk unitaries generated by
 k-local Hamiltonians - this gives a bound on simulating

@ Using history state simulation methods we can construct new simulation methods optimised for simulating sparse Hamiltonians - this gives simulators with interactions strengths scaling as $poly(\frac{n}{e^b}||H_{target}||)$ with $a+b \ge 1.5$

- @ Where's the gravity??
- Toy models with conformal symmetries in the boundary & time dynamics?
- Toy models that capture the full entanglement spectrum correctly?
- ø Other applications of these toy models?

