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Chapter 1: Background



Entanglement is the driving force of qguantum
computing

Outreach Qutreach Outreach
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Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

But there is a lot that we do not understand about entanglement.

This work: We will give a new property of entanglement.



Motivation:

Entanglement, Geometry, and Complexity

Dictionary

—)

Quantum

Quantum
mechanical

CFT

gravity in
the AdS

Major theme: Geometry in AdS = Entanglement in the CFT
(eg: Ryu-Takayanagi formula)

Our result: Entanglement cannot be felt/efficiently measured.

Are corresponding geometries feelable? If so, then the AdS/CFT dictionary
must be hard to compute!



Chapter 2: Private Key Pseudoentanglement



How do we measure entanglement?

We will measure entanglement using the von Neumann

entanglement entropy S( - ) across a particular
bipartition.



Definition: Two collections of states{ |y, )} and { [ ¢, )} are

(f(n), g(n))— pseudoentangled if

1. Polynomial preparability: Given the key kland k2 respectively, | l//k1> and | gbk2) are preparable by
a polynomial time quantum algorithm.

2. Indistinguishability: If the keys are secret, then with high probability then for any poly time
guantum distinguisher D

Pr[D( |y )®PY™) = 1] = Pr[D(| ¢ )®*Y™) = 1]| = negl(n).

3. Entanglement gap: | l//k1> has entanglement entropy O(f(n)) and | gbk2) has entanglement O(g(n))
across a fixed publicly known bipartition, with f(n) > g(n).



Our construction of pseudoentanglement will rely on
computationally pseudorandom states...

® These are an ensemble of states such that no efficient algorithm can
distinguish, with non-negligible advantage, poly(n) copies of the state
from this ensemble from poly(n) copies of a Haar random state.

® These usually require complexity theoretic conjectures.



How much entanglement spoofs the Haar measure?

State ensemble [n qubit states] Entanglement

Haar random Near maximal, ie, ~ n
t-designs Near maximal, ie, ~ n
[t copies are info-theoretically close to t copies
of Haar random states] [Harrow and Low, 2009]
Computationally pseudorandom Can be as small as
w(log(n))



How to get a lower bound? [JLS’18]

We will prove by contradiction. Assume there are pseudorandom states with
entanglement O(logn).

We will prove there is a distinguisher that leverages low entanglement!

n
Let |y)®? be that state. Apply SWAP test on — qubits from each copy of | ), to get

2
1 Tr(p?d) 1 1
_ _ — < —
10y {H—e—H— = Prob[0] St 23 t S 50
1o, 0 7 '\
By Jensen’s O(n)
P X Inequality for Haar random

states

If the state has very low entanglement, that is @O(log(n)), then it can be detected
by the SWAP test.



Recap: Is the SWAP test based lower bound
tight?

Our result: Yes!

We construct ensembles of pseudorandom guantum

states that saturate the entanglement lower bound.




To start with, consider the following ensemble..

|
[y, ) = (— Y9 x).
k \@ xe{;,l}” '\

any quantum secure
pseudorandom function

Divvy up the state into two registers:

1 o
D (DA ).
V2" ijefo.1}”

[y ) =



For ease of presentation, define a pseudorandom matrix

Subsystem B
f05,09) ... fO%,19)
C:= : : Subsystem A

f1z,02) - f(12,12) <\

has a one to one
correspondence with the
pseudorandom state

The reduced density matrix across subsystem A, given by p, is

1 T
pAZECf.Cf.



Note that the entanglement entropy is....

S(pp) = O(log rank(Cy)) .

N\

By Jensen’s inequality

How to reduce the entanglement entropy?

Reduce the rank of C! But do it in a quantum-secure way.



The idea is to reduce the rank of this matrix by using quantum secure 2" to 1
functions.

h

e We construct a new pseudorandom matrix C: : the i™" row of C:is the g(i)th

row of C:.

e We let the function g(i) = f,(f,(i) mod 227K) where f, and f, are quantum secure

pseudorandom permutations. By a variant of the collision bound, g is a valid
pseudorandom function!

By choosing k appropriately, we can make the entanglement as small as
w(logn)!

® The construction is “private key”! Describing g reveals what the entanglement is.



This gives a pseudoentangled state across
one CuUt...

We can get a maximal entanglement difference of £2(n) versus
O(polylog(n)).

Can we strengthen the construction to have maximal
pseudoentanglement across multiple cuts?



et us take the qubits to be arranged in a 1D line

The key idea Is to go from left to right and iteratively reduce the rank of the
corresponding pseudorandom matrices by using fresh quantum secure PRFs.

Stepi: © © © 6/e 0o 0 @ 0 @

Stepi+1: © © © @ o|o o 00 0



Then by sub-additivity of entanglement entropy,
this gives pseudoentanglement with scaling

Q(n) versus O( | B | polylog(n))

(

size of the cut

...across any cut!



Remarks

® Simple generalization to 2D, by snaking the 2D grid!

o—90

|

o—90

® Another construction also gives pseudoentanglement across multiple cuts, using
subset phase states!

® See Adam Bouland’s Simons colloquium on “Quantum Pseudoentanglement.”



Applications and other constructions

® Time-complexity lower bounds on problems that are as hard as
entanglement testing, like spectrum testing, Schmidt rank testing,
testing matrix product states etc.

® [ime complexity lower bounds on entanglement distillation.

® Check out LOCC-based pseudoentanglement [Arnon-Friedman,
Brakerski, Vidick ’23]. Nice generalization to operational mixed state
measures!



Chapter 3: Public Key Pseudoentanglement



Observation

Remember that for our private-key constructions, the distinguisher
only got to see many copies of the unknown (low or high
entanglement) state.

® [he distinguisher did not know the circuit that prepared the
state!

Can we construct pseudoentangled states even when the
circuit is revealed?



Motivation: Hamiltonian complexity!

Can we get Hamiltonians whose ground states are
pseudoentangled?

Equivalent to asking for public-key pseudoentanglement, by circuit to
Hamiltonian constructions [GH’20]"

More on this later!



Gives public-key post-quantum cryptography!

s

Use LWE to construct two sets of indistinguishable functions: an (almost)
Injective one to build high entanglement states and a lossy one to build low
entanglement states!

Our work in context

Previous work n versus n — O(1) (Single cut)
[GH’20]:

Our work:

Q(n) versus O(|B|polylog(n)) (All cuts!)

Cut size



A recap of the construction

Start with pseudorandom phase states, just as in the “private-key” case:

1 .
D, (DD
V2" jeio.1y

Consider the corresponding pseudorandom matrix:

[ ) =

Idea: Repeat rows using a function g which is

Subsystem B either 1-to-1 or has many collisions, ie “lossy”.

£02,02) ... £(02,12)

Property: Even when a description of g is
public, hard to tell apart the two cases.

Subsystem A

f5,09) - f(1519)
Note:

g : {0,1}"* — {0,1}"



How will we get our function? Through LWE!

A recap of LWE

The task is to distinguish between

A< UX
—> - —> E7M r
(A, u) versus (ALA-s+ ¢) =Yy
]\ s — Ucl]

,\ Secret string /\ 7 Dg,a

Uniformly random Gaussian noise
vector

Standard LWE: every polynomial time algorithm has negligible advantage in distinguishing the
samples, even with many samples.

Subexponential LWE: every polynomial time algorithm has sub-exponentially small advantage in
distinguishing the samples, even with many samples.



Refresher on goal: We need to construct our function g using LWE...

To sample a one to one function 7: {0,1}"? — {0,1}PoY")

e Sample a poly(n) x% matrix U and let f(x) = Ux.

\

Chosen uniformly at
random, w.h.p a full
rank matrix

To sample a “lossy” function g : {0,1}"% — {0,1}PoV(™__,

e Sample a poly(n)x— matrix BT C+Eandletg(x)=(B'-C+E)x.

w.h.p a low rank matrlx 'X
how low depends on Gaussian

length of secret + other noise

parameters




There Is a problem with this approach!

For the constructions to work, the functions need to be from {0,112 to {0,1}2 : ie, the
co-domain needs to be much smaller than what we have.

How to solve this problem?

Use a hash function to hash down the co-domain from {0,1}P°Y" pack to {0,1}”

and ensure there aren’t too many collisions In the injective case.



Our result:

Assuming subexponential hardness of LWE, we get public key
pseudoentangled states with maximal gap

(2(n), O(polylogn)) .

Assuming standard LWE, we get public key pseudoentangled states
with gap (2(n), ®(n°)) for 0 < ¢ < 1.



How do we generalize to multiple cuts? Same way as the
private key construction!

Think of the qubits to be on a 1-D line:

Iteratively apply the injective or lossy functions to hash down
the rank of the pseudorandom matrix, just like we saw before.

Technical challenge: Need to make sure collisions don’t

compound Iin the almost injective function.



Application

Given a Hamiltonian H, decide if....
The ground state |y) has low or high entanglement...

This work: LWE-hard

As hard as breaking a particular type of post-
quantum cryptography!

Key idea: Pass the circuit description through Kitaev clocks.



More open problems

® Other constructions!

® For subset state based constructions, check out
[Tudor Giurgica-Tiron, Bouland’ 23] [Geronimo, Magrafta, Wu’
23] [Fermi Ma, unpublished].

e Can we have geometrically local Hamiltonians with large spectral gap
for which ground states are pseudoentangled?

e Can we find pseudoentangled states compatible with holography?

® Check out Lijie Chen’s next talk!



Thank you!



