Pseudoentanglement

Soumik Ghosh

arxiv: 2211.00747 arxiv: 2311.12017

Joint work with…

Adam Bouland (Stanford)

Bill Fefferman (UChicago)

Tony Metger (ETH)

Umesh Vazirani (UC Berkeley)

Jack Zhou (Stanford)

Chenyi Zhang (Stanford)

Scott Aaronson (UT Austin)

Based on:

Quantum Pseudoentanglement

Scott Aaronson*1, Adam Bouland^{†2}, Bill Fefferman^{‡3}, Soumik Ghosh^{§3}, Umesh Vazirani^{¶4}, Chenyi Zhang^{$|2$}, and Zixin Zhou^{**2}

¹Department of Computer Science, University of Texas, Austin ²Department of Computer Science, Stanford University ³Department of Computer Science, University of Chicago ⁴Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

Public-key pseudoentanglement and the hardness of learning ground state entanglement structure

Adam Bouland^{*1}, Bill Fefferman^{†2}, Soumik Ghosh^{‡2},
Tony Metger^{§3}, Umesh Vazirani^{¶4}, Chenyi Zhang^{||1}, and Zixin Zhou^{**1}

¹Stanford University ²University of Chicago ³ETH Zurich ⁴UC Berkeley

Chapter 1: Background

Chapter 2: Private Key Pseudoentanglement

Chapter 3: Public Key Pseudoentanglement

Outline

Chapter 1: Background

Entanglement is the driving force of quantum computing

But there is a lot that we do not understand about entanglement.

This work: We will give a new property of entanglement.

III. Niklas Elmehed © Nobel Prize Outreach Alain Aspect Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach John F. Clauser Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach Anton Zeilinger Prize share: 1/3

Motivation:

Entanglement, Geometry, and Complexity

Major theme: Geometry in AdS = Entanglement in the CFT (eg: Ryu-Takayanagi formula)

- Our result: Entanglement cannot be felt/efficiently measured.
- Are corresponding geometries feelable? If so, then the AdS/CFT dictionary must be hard to compute!

Chapter 2: Private Key Pseudoentanglement

How do we measure entanglement?

We will measure entanglement using the von Neumann entanglement entropy $S(\ \cdot\)$ across a particular bipartition.

Definition: Two collections of states $\{ | \psi_{k_1} \rangle \}$ and $\{ | \phi_{k_2} \rangle \}$ are $(f(n), g(n))$ – pseudoentangled if

 $1.$ **Polynomial preparability:** Given the key k_1 and k_2 respectively, $|\psi_{k_1}\rangle$ and $|\phi_{k_2}\rangle$ are preparable by a polynomial time quantum algorithm.

Indistinguishability: If the keys are secret, then with high probability then for any poly time 2. quantum distinguisher

 $\Pr[\mathbf{D}(|\psi_{k_1}\rangle^{\otimes \text{poly}(n)})=1]-\Pr[\mathbf{D}(|\phi_{k_2}$

 β . Entanglement gap: $\ket{\psi_{k_1}}$ has entanglement entropy $\Theta(f(n))$ and $\ket{\phi_{k_2}}$ has entanglement $\Theta(g(n))$ across a fixed publicly known bipartition, with $f(n) > g(n)$.

$$
\Pr[D(|\phi_{k_2}\rangle^{\otimes \text{poly}(n)})=1] \Big| = \text{negl}(n).
$$

• These are an ensemble of states such that no efficient algorithm can distinguish, with non-negligible advantage, $poly(n)$ copies of the state from this ensemble from $\mathsf{poly(n)}$ copies of a Haar random state.

• These usually require complexity theoretic conjectures.

Our construction of pseudoentanglement will rely on computationally pseudorandom states…

State ensemble [n qubit states] Entanglement

t-designs [t copies are info-theoretically close to t copies of Haar random states]

How much entanglement spoofs the Haar measure?

How to get a lower bound? [JLS'18]

- -
-

If the state has very low entanglement, that is $\mathscr{O}(\mathsf{log(n)})$, then it can be detected by the SWAP test.

We will prove by contradiction. Assume there are pseudorandom states with entanglement $\mathcal{O}(\mathsf{logn})$.

We will prove there is a distinguisher that leverages low entanglement!

Let $|\hspace{.1cm} \psi\rangle^{\otimes 2}$ be that state. Apply SWAP test on $\frac{n}{2}$ qubits from each copy of $|\hspace{.1cm} \psi \rangle$, to get $\frac{1}{2}$ qubits from each copy of $|\psi\rangle$

Recap: Is the SWAP test based lower bound tight?

Our result: Yes!

We construct ensembles of pseudorandom quantum states that saturate the entanglement lower bound.

To start with, consider the following ensemble..

 $|\psi_{f_k}\rangle =$ 1

$$
\frac{1}{2^n}\sum_{x\in\{0,1\}^n}(-1)^{f_k(x)}|x\rangle.
$$

any quantum secure pseudorandom function

Divvy up the state into two registers:

 $|\psi_{f_k}\rangle =$ 1 $\frac{1}{2^n}$ $\sum_{i,j \in \{0,1\}}$

$$
\sum_{i,j\in\{0,1\}^{n/2}}(-1)^{f_k(i,j)}|i_A\rangle|j_B\rangle.
$$

For ease of presentation, define a pseudorandom matrix

has a one to one correspondence with the pseudorandom state

The reduced density matrix across subsystem A, given by ρ_{A} is

Subsystem B

$$
\rho_{\sf A} =
$$

$$
\frac{1}{2^n}C_f \cdot C_f^T.
$$

Note that the entanglement entropy is….

By Jensen's inequality

How to reduce the entanglement entropy?

Reduce the rank of $C_f!$ But do it in a quantum-secure way.

The idea is to reduce the rank of this matrix by using quantum secure 2^k to \cdot functions. 2^k to 1

- \bullet We construct a new pseudorandom matrix C'_{f} : the i^{th} row of C'_{f} is the $g(i)^{\mathsf{th}}$ row of C_f.
- We let the function $g(i) = f_1(f_2(i) \text{ mod } 2^{\frac{n}{2} k})$, where f_1 and f_2 are quantum secure pseudorandom permutations. By a variant of the collision bound, g is a valid pseudorandom function! $\frac{n}{2}$ – k), where f_1 and f_2

-
- By choosing k appropriately, we can make the entanglement as small as $ω$ (logn)!

• The construction is "private key"! Describing *g* reveals what the entanglement is.

This gives a pseudoentangled state across one cut…

We can get a maximal entanglement difference of Ω(*n*) versus $\mathcal{O}(\text{polylog}(n))$.

Can we strengthen the construction to have maximal pseudoentanglement across multiple cuts?

Let us take the qubits to be arranged in a $1D$ line

The key idea is to go from left to right and iteratively reduce the rank of the corresponding pseudorandom matrices by using fresh quantum secure PRFs.

-
-

Then by sub-additivity of entanglement entropy, this gives pseudoentanglement with scaling

$\Omega(n)$ versus $\mathcal{O}(|B|)$ polylog(n))

size of the cut

…across any cut!

Remarks

• Simple generalization to 2D, by snaking the 2D grid!

• Another construction also gives pseudoentanglement across multiple cuts, using

- subset phase states!
	-

• See Adam Bouland's Simons colloquium on "Quantum Pseudoentanglement."

Applications and other constructions

• Time-complexity lower bounds on problems that are as hard as entanglement testing, like spectrum testing, Schmidt rank testing, testing matrix product states etc.

• Time complexity lower bounds on entanglement distillation.

• Check out LOCC-based pseudoentanglement [Arnon-Friedman, Brakerski, Vidick '23]. Nice generalization to operational mixed state measures!

Chapter 3: Public Key Pseudoentanglement

Observation

Remember that for our private-key constructions, the distinguisher only got to see many copies of the unknown (low or high entanglement) state.

• The distinguisher did not know the circuit that prepared the

state!

Can we construct pseudoentangled states even when the circuit is revealed?

Motivation: Hamiltonian complexity!

Can we get Hamiltonians whose ground states are pseudoentangled?

Equivalent to asking for public-key pseudoentanglement, by circuit to Hamiltonian constructions [GH'20]!

More on this later!

Use LWE to construct two sets of indistinguishable functions: an (almost) injective one to build high entanglement states and a lossy one to build low entanglement states!

Gives public-key post-quantum cryptography!

[GH'20]:

A recap of the construction

Start with pseudorandom phase states, just as in the "private-key" case:

$$
|\psi_{f_k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{i,j \in \{0,1\}^n} (-1)^{f_k(i,j)} |i,j\rangle.
$$

Consider the corresponding pseudorandom matrix:

Idea: Repeat rows using a function g which is either 1-to-1 or has many collisions, ie "lossy".

Property: Even when a description of g is public, hard to tell apart the two cases.

 $g : \{0,1\}^{n/2} \rightarrow \{0,1\}^{n/2}$ Note:

How will we get our function? Through LWE!

vector

Standard LWE: every polynomial time algorithm has negligible advantage in distinguishing the samples, even with many samples.

Subexponential LWE: every polynomial time algorithm has sub-exponentially small advantage in distinguishing the samples, even with many samples.

A recap of LWE

Refresher on goal: We need to construct our function *g* using LWE…

To sample a one to one function

• Sample a $poly(n) \times \frac{n}{2}$ matrix U and let p 2

• Sample a $_{\text{poly(n)}\times\frac{n}{2}}$ matrix B^T · $C + E$ and let 2

> **w.h.p** a low ra **how low** de **length of sec param**

$$
f: \{0,1\}^{n/2} \to \{0,1\}^{poly(n)} \dots
$$

ik *U* and let $f(x) = Ux$.

$$
:\{0,1\}^{n/2}\rightarrow\{0,1\}^{poly(n)}\ldots
$$

BT ⋅ *C* + *E g*(*x*) = (*B^T* ⋅ *C* + *E*)*x* . **Gaussian noise**

Chosen uniformly at random, w.h.p a full rank matrix

To sample a "lossy" function g

Distinguishing these functions, given their description, is as hard as breaking LWE with many samples [Peikert and Waters, 2007]!

There is a problem with this approach!

For the constructions to work, the functions need to be from $\{0,1\}^{\frac{\pi}{2}}$ to $\{0,1\}^{\frac{\pi}{2}}$: ie, the co-domain needs to be much smaller than what we have. *n* $\frac{\pi}{2}$ to $\{0,1\}$ *n* 2

How to solve this problem?

Use a hash function to hash down the co-domain from $\{0,1\}^{\text{poly}(n)}$ back to and ensure there aren't too many collisions in the injective case. $\{0,1\}$ ^{poly(n)} back to $\{0,1\}$ ⁿ

Our result:

Assuming subexponential hardness of LWE, we get public key pseudoentangled states with maximal gap $(\Omega(n), \Theta(\text{polylog} n))$.

Assuming standard LWE, we get public key pseudoentangled states with gap $(\Omega(n), \Theta(n^c))$ for $0 < c < 1$.

How do we generalize to multiple cuts? Same way as the private key construction!

Think of the qubits to be on a 1-D line:

Iteratively apply the injective or lossy functions to hash down the rank of the pseudorandom matrix, just like we saw before.

Technical challenge: Need to make sure collisions don't compound in the almost injective function.

Application

The ground state |*ψ*⟩ has low or high entanglement…

Ground State Entanglement Structure

Given a Hamiltonian H, decide if….

Key idea: Pass the circuit description through Kitaev clocks.

More open problems

- Other constructions!
	- For subset state based constructions, check out [Tudor Giurgica-Tiron, Bouland' 23] [Geronimo, Magrafta, Wu' 23] [Fermi Ma, unpublished].
- Can we have geometrically local Hamiltonians with large spectral gap for which ground states are pseudoentangled?
- Can we find pseudoentangled states compatible with holography?

• Check out Lijie Chen's next talk!

Thank you!