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® \We that quantum computing can advance physics, chemistry,

material science by solving the ground states of quantum systems.
® However, finding ground states is QMA-hard.

® So, ground states are both classically & quantumly hard to find.



Motivation

® The QMA-hardness of finding ground states implies that

ground states are not always physical.

® Assuming Nature cannot efficiently solve NP-hard problems,

then Nature should not always find the ground state.
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Motivation

® For some physical systems, such as spin glasses,

the systems almost always find suboptimal local minima.

® |n these systems, ground states are physically irrelevant.



Question

How tractable is the problem of finding a local minimum in

quantum systems using classical vs. quantum computers?




Question

How tractable is the problem of finding a local minimum in

quantum systems using classical vs. quantum computers?

To answer this, we need
(1) a formal definition of local minima,

(2) a characterization of these local minima.



Outline

® Define local minima in quantum systems

® Complexity of finding local minima

® Future directions



Outline

® Define local minima in quantum systems



/
\ > &/
/

& &
Perturbation N ® o _ o
\ 4 Def
e etTinition
\\\ /’ \\.’/
. }‘ Suboptimal
-o

Ground State local minimum

® Given an n-qubit Hamiltonian H written as a sum of few-body terms.

® A local minimum of H is an n-qubit state p that has the minimum

energy under any small perturbations to the state.
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Suboptimal

Ground State local minimum

® Consider perturbation P, mapping states to states parameterized by

a vector a € R"™, where m = poly(n).

® An n-qubit state p is an e-approximate local minimum of H under P it
Tr(Hp) < Tr(HP(p)) + ellall,

for all small vector «.
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Ground State local minimum

® ocal minima form a subset of the entire n-qubit state space.

® The local minima subset contains the ground state

and depends on the perturbations.

® \We will consider two classes of perturbations.



Local unitary perturbations

® A mathematically-natural definition of perturbations.

® Consider a pure n-qubit state |y). The perturbations are given by

y) — exp (—iz aah“) [y)

a=1
m

for a set of m tew-body Hermitian operators {h“}7"_ ..



Local unitary perturbations

® A mathematically-natural definition of perturbations.

® Consider a pure n-qubit state |y). The perturbations are given by

(_i i aaha) ‘W)
a=1

tHian Annaratare [ H41M
Forms a Riemannian geometry;

see Quantum Computation as Geometry
by Nielson et al., Science (2006)




Local unitary perturbations

® A mathematically-natural definition of perturbations.

® Consider a pure n-qubit state |y). The perturbations are given by

y) — exp (—iz aah“) [y)

a=1
m

for a set of m tew-body Hermitian operators {h“}7"_ ..



Thermal perturbations

® A physically-motivated definition of perturbations.

® \When a quantum system is placed in a :

the perturbations are described by thermal Lindbladian dynamics.

® These perturbations are generally irreversible, i.e., non-unitary.



Thermal perturbations

® 2 macroscopic properties from modern quantum thermodynamics:

p (inverse temperature) and 7 (characteristic time scale).

® The thermal perturbations are given by

p — €Xp ( Z a, L ) (P),

a=1

where Z/*" is a thermal Lindbladian for the few-body operator A“
through which the bath interacts with the system and a, > 0.
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Thermal per
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® 2 macroscopic properties from mod

p (inverse temperature) and 7 (chara

® The thermal perturbations are given by

p — €Xp ( Z a, L ) (P),

a=1

where /" is a thermal Lindbladian for the few-body operator A“
through which the bath interacts with the system and a, > 0.



Summary

® An n-qubit state p is an e-approximate local minimum of H under P

it Tr(Hp) < Tr(HP (p)) + €||a|| for all small vector a.

® Local unitary perturbations:

mathematically natural, reversible (« € R™), Hermitian evolutions.

® Thermal perturbations:

physically motivated, irreversible (o € RY), Lindbladian evolutions.
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® Define local minima in quantum systems

® Complexity of finding local minima



Local minima problem

® An algorithm solves the local minima problem efticiently if
For any n-qubit local Hamiltonian H and any local observable O,

the algorithm can output Tr(Op) to error € = 1/poly(n)

of an e-approximate local minimum p of H in poly(n) time.

® This is a problem with purely classical input and output.



Characterizing local minima

Proposition (Classically easy): The problem of finding local minima

under local unitary perturbation is in BPP.

Local unitary
perturbation

Ground State



Characterizing local minima

Lemma (Barren plateau): For any local Hamiltonian H, a random state

is a local minimum of H under local unitary perturbation.

Local unitary
perturbation

Ground State



Characterizing local minima

® | ocal unitary perturbations are mathematically natural but not

physically motivated, as thermodynamics are generally non-unitary.

® | et's see how the conceptual picture changes when we consider

thermal perturbations.



Characterizing local minima

Theorem (Quantumly easy): The problem of finding local minima

under thermal perturbation is quantumly easy.
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® This theorem is shown using a quantum thermal gradient descent

algorithm (to handle finite temperature and finite time scale).



Characterizing local minima

Theorem (Quantumly easy): The problem of finding local minima

under thermal perturbation is quantumly easy.

® This theorem is shown using a quantum thermal gradient descent

algorithm (to handle finite temperature and finite time scale).

® The convergence is proven by showing the smoothness properties of

the second derivative of thermal Lindbladians.



Characterizing local minima

Theorem (Quantumly easy): The problem of finding local minima

under thermal perturbation is quantumly easy.

While the problem is quantumly easy,

can the problem also be classically easy?



Characterizing local minima

Consider a class of Hamiltonians { H-} -~ on 2D lattices.

® Each poly-size quantum circuit C corresponds to a Hamiltonian H -

® The ground state of H- encodes the output of the circuit C.

® So finding the ground state of H- is BOP-hard.



Characterizing local minima

Consider a class of Hamiltonians { H-} -~ on 2D lattices.

® But, perhaps, finding local minima of H is much easier.

® Maybe there are some classically easy local minima lurking in the

exponentially large quantum Hilbert space!



Characterizing local minima

Theorem (No suboptimal local minima): All approximate local minima

of H- under thermal perturbations are close to the global minimum.

\ e
R
o,
\ \\\Q’Q
Therma . (é\@@//
perturbation & g

Ground State



Characterizing local minima

Theorem (No suboptimal local minima): All approximate local minima

of H- under thermal perturbations are close to the global minimum.
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® Consider a local operator A“.
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Environment

Proof Idea

System

ACZ

® Consider a local operator A“.

® The thermal bath induces a thermal Lindbladian /" with

A\

a continuous set of Lindblad jump operators {A?H(a))} .
’ WE(—00,00)

® The index w has an energy unit and measures the energy difference.



Spec(H)

Proof Idea

v e B(H)

® Intuition for the Lindblad jump operator Aj’H(a}):
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Proof Idea

v e B(H)

® Intuition for the Lindblad jump operator Aj’H(a}):

A= ) AS|E)E]|

l,]

A?,H(a)) — ZAg o(w— (k; — E,)) ‘E1><El‘
L]



Spec(H)

Proof Idea

v e B(H)

® Intuition for the Lindblad jump operator Aj’H(a}):
Al @) = ) Al |80 = (E; = EDIE)E)
L)

® While A“ has matrix elements betw. |E;) and higher & lower |E)),

A%w) for @ < 0 induces transitions from |E;) to lower energy |E;).



Spec(H)

Proof Idea

v e B(H)

(
® Intuition for the Lindblad jump operator A7 ,,(w): .
Al @) = ) Al |80 = (E; = EDIE)E)
L)
o |f 1 a local operator A® and E; < E,

, then there are no suboptimal local minima.



Spec(H)

Proof Idea

v € B(H)
® Intuition for the Lindblad jump operator AZH(G))I <, B
A ) = 3 Al [6.0 = (B = E)|EXE],
L,J
oIf 1 a local operator A“and E; < E,

, then there are no suboptimal local minima.

Note the similarity to classical combinatorial optimization



Proof Idea

Given a circuit C with unitary U, = U;...U;.

The Hamiltonian is H. = H, + H,,, + H;,

H_, checks the clock

with a unique ground state given by
- H, ., checks propagation

T
1 (T
T n 11—t
g\ 2T(t> (U Uil07)) @ 10177) H.  checks the input
| Hy [l > [|Hyop |l > [[Hip |

rop



Proof Idea
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Spec(H)

Proof Idea

It the Hamiltonians have a large Bohr frequency gap and  v<5#H)
Statement 1, 2, 3 hold,

(

then

The Hamiltonianis H- = H, + H,, ., + Hi, | g

C prop -

| checks the clock

with a unique ground state given by
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Proof Idea

H, is standard.

The Hamiltonian is H. = H, + H,,, + H;,

with a unique ground state given by

—

T
1 (T
T n 11—t
g\ 2T(t> (U Uil07)) @ 10177) H.  checks the input
| Hy [l > [|Hyop |l > [[Hip |

rop



Proof Idea

T—1
H, = Z h; . has a non-unitform ||, || decreasing in t,

C
=1
SO have the tendency to move to the right.

The Hamiltonian is H. = H, + H,,, + H;, H.

| checks the clock

with a unique ground state given by

—

SV

| Hy || > [|Hpyopll > || Hy |

rop



Proof Idea

TR . (T
H, o = Z Ny orop 1S NOt Trustration-free and yields AUNL
=1

so the energy spectrum is {k},{zo (evenly spaced).

The Hamiltonian is H. = H, + H,,, + H;,

with a unique ground state given by
- H, ., checks propagation

SV

HHCIH =>> HHp

| > ||H,||

rop
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Proof Idea

It the Hamiltonians have a large Bohr frequency gap and  v<5#H)
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Characterizing local minima

Theorem (No suboptimal local minima): All approximate local minima

of H- under thermal perturbations are close to the global minimum.
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Characterizing local minima

Theorem (Classically hard): The problem of finding local minima

under thermal perturbations is classically hard it BPP # BQP.
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Characterizing local minima

Corollary: There are 2D Hamiltonians where the energy of

classical ansatz optimized by efficient classical algorithms can be

strictly improved by simulating quantum thermodynamics.
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Characterizing local minima

Finding local minima

Finding local minima
under thermal perturbations

under local unitary perturbations

is trivial for classical computation is universal for quantum computation

(a) Energy landscape (b)
----------- VI S N . <
\ " AR
‘ "I \\\ b.% ,/,
- ‘ o
. : (C%\\ o
Local unitary ! Therma . <<§\®
perturbation i perturbation \ ,,,, g
. T
Ground State

Ground State



Characterizing local minima

Finding local minima :
A very good retfrigerator
under local unitary perturbations
: . . . . IS
is trivial for classical computation
(a) Energy landscape (b)
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Open Problems

® Our results show that there is quantum advantage in computing

properties of systems thermalizing at a

® |s there quantum advantage in computing properties of systems

thermalizing at ?



Conclusion

® Finding ground states is classically and quantumly hard.

® Finding local minima in energy is classically hard but quantumly easy.




